
Correct Programming Guided By Inductive

Refinement

Kwangkeun Yi

December 2, 2009

1 Introduction

Inductive refinement is useful, even essential, in developing bug-free programs.
We demonstrate this powerful programming methodology by using the regular
expression match problem.

2 Background

Let Σ be an alphabet, that is, a finite set of letters. We use c to denote a letter.
Σ∗ is the set of finite strings over the alphabet Σ. We use s to denote a string.
The null string is written ε. The set Σ∗ is inductively defined as

s → ε

| c·s (c ∈ Σ)

String concatenation of s and s′ is written s·s′. The empty string is the identity
element for the concatenation operator, that is, ε·s = s = s·ε.

A language L is a subset of Σ∗. The size |s| of string s is defined as |ε| = 0
and |c·s| = 1 + |s|. We use the following operations on languages:

L L′ = {s·s′ | s ∈ L, s′ ∈ L′}
L0 = {ε}
Li+1 = L Li

L∗ = ∪i≥0L
i

Regular expressions are notation for languages. The set of regular expres-
sions is inductively defined as

r → ε

| c

| rr

| r+r

| r∗

1

Each regular expression r denotes language L(r) inductively as follows:

L(ε) = {ε}
L(c) = {c}

L(rr ′) = L(r)L(r ′)
L(r + r ′) = L(r) ∪ L(r ′)

L(r∗) = L(r)∗

We use L(R) also for a set R of regular expressions to denote ∪r∈RL(r). L(∅)
is defined as ∅. The size |r | of regular expression r is defined as: |ε| = |c| = 1,
|rr ′| = |r + r ′| = |r | + |r ′| + 1, and |r∗| = |r | + 1.

3 A Regular Expression Matching Program

3.1 Problem and Specification

The regular expression matching problem is, for a string s ∈ Σ∗ and a regular
expression r , to determine whether s ∈ L(r).

Our goal is to program “r!s” that returns true iff string s matches regu-
lar expression r . The inductive specification for “r!s” consists of five cases,
following the definition of the regular-expression grammar:

ε!s = s = ε

c!s = s = c

r1 + r2!s = r1!s ∨ r2!s (1)

r1r2!s = ∃s1∃s2 : s = s1 ·s2 ∧ r1!s1 ∧ r2!s2 (2)

r∗
!s = s = ε ∨ (∃s1∃s2 : s = s1 ·s2 ∧ r!s1 ∧ r∗

!s2) (3)

The problem is to find s’s substrings s1 and s2 that satisfy the conditions for
the last two cases.

3.2 Inductive Refinement

Our first step toward the implementation of (2) and (3) uses an inductive anal-
ysis of the string argument s → ε | c·s (for c ∈ Σ):

r∗
!ε = True

r∗
!c·s = r ′r∗

!s for some r ′ ∈ r †c

= False ∨
∨

{r ′r∗
!s | r ′ ∈ r†c} (4)

where L(r†c) = {s | c·s ∈ L(r)}.

That is, r†c denotes the set of regular expressions for the strings in r whose
leading letter c has been removed.

2

Analyzing r1r2!s proceeds along the same lines:

r1r2!ε = r1!ε ∧ r2!ε (5)

r1r2!c·s = r ′
1r2!s for some r ′

1 ∈ r1 †c

= False ∨
∨

{r ′
1r2!s | r ′

1 ∈ r1†c} (6)

The definition of the function r†c again follows the definition of the regular-
expression grammar:

ε†c = ∅

c′†c = ∅ (c 6= c′)

c†c = {ε}

r1+r2†c = r1 †c ∪ r2 †c (7)

r1r2†c = {r ′
1r2 | r ′

1 ∈ r1†c} (8)

r∗†c = {r ′r∗ | r ′ ∈ r†c} (9)

Are the definitions of r!s and r†c correct?

3.2.1 Checking r†c Correct

First, the termination of r†c is clear, because arguments to the recursive calls
follow a well-founded order: every regular expression argument to recursive
callees is smaller than that of the caller. From a finite regular expression there
is no infinitely decreasing chain.

We have to check that our definition of r†c satisfies the specification:

L(r†c) = {s | c·s ∈ L(r)}.

Alah, the case r1r2†c has an error. By its definition (Eq. (8)), L(r 1r2†c) is
L(r1†c)L(r2). Is this set equal to {s | c ·s ∈ L(r 1)L(r2)}? Unfortunately it
is not; for example, in the case L(r 1) = {ε} and c ·s ∈ L(r2), the latter set is
nonempty, while the former set is empty.

What to do? To fix the problem is to inductively refine the definition one
step further. Because the check naturally suggests the consideration of the cases
for r1, we refine the definition of r1r2†c by the inductive sub-cases for r 1:

cr2†c = {r2}

c′r2†c = ∅ (c 6= c′)

εr2†c = r2 †c (10)

(r11
r12

)r2†c = r11
(r12

r2) †c (11)

(r11
+ r12

)r2†c = r11
r2 †c ∪ r12

r2 †c (12)

r∗
1r2†c = r2 †c ∪ {r ′r∗

1r2 | r ′ ∈ r1†c} (13)

The cases where L(r1) can have ε are handled either by case analysis or by
recursive calls.

3

Now about the termination of the new definition. Because of Eq. (11) we
have to find a different well-founded order for the recursive calls. Because, for
the recursive call r11

(r12
r2)†c from (r11

r12
)r2†c, the regular expression’s left-

hand side (Left(rr ′)
let

= r) is decreasing, the arguments to recursive calls follow
the order

(r , c) > (r ′, c)
iff |r | > |r ′| (for Eq. (7),(9),(10),(12),(13))
or (|r | = |r ′| ∧ |Left(r)| > |Left(r ′)|) (for Eq. (11))

The order is well-founded; there is no infinitely decreasing chain from finite
(r , c).

3.2.2 Checking r!s Correct

First, the termination of r!s is clear, because the arguments to recursive calls
follow a well-founded order:

(r , s) > (r ′, s′)
iff |s| > |s′| (for Eq. (4),(6))
or (|s| = |s′| ∧ |r | > |r ′|) (for Eq. (1),(5))

There is no infinitely decreasing chain from finite (r , s).
Unfortunately, the case of r 1r2!c·s has an error (Eq. (6)). When it returns

false, it means that, by its definition, r†c = ∅ or ∀r ′ ∈ r†c : r ′
1r2!s = False.

Consider the case r†c = ∅, which means that c ·s 6∈ L(r 1). Can we conclude,
from this, that c ·s 6∈ L(r1r2)? No, because if ε ∈ L(r1) and c ·s ∈ Lr2, it is
possible that c·s ∈ L(r1r2).

To fix this problem we refine the inductive definition by one more step. We
refine the definition of r1r2!c·s by analyzing the five inductive sub-cases for r 1:

εr2!c·s = r2!c·s (14)

cr2!c·s = r2!s (15)

(r11
r12

)r2!c·s = r11
(r12

r2)!c·s (16)

(r11
+ r12

)r2!c·s = r11
r2!c·s ∨ r12

r2!c·s (17)

r∗
1r2!c·s = r2!c·s ∨

∨
{r ′(r∗

1r2)!s | r ′ ∈ r1†c} (18)

The termination is easy to see, because arguments to recursive calls follow the
well-founded order :

(r , s) > (r ′, s′)
iff |s| > |s′| (for Eq. (4),(15),(18))
or (|s| = |s′| ∧ |r | > |r ′|) (for Eq. (1),(5),(14),(17),(18))
or (|s| = |s′| ∧ |r | = |r ′| ∧ |Left(r)| > |Left(r ′)|) (for Eq. (16))

Figure 1 displays the complete and provably correct definition of our pattern
matching program.

4

ε!s = s = ε

c!s = s = c

r1 + r2!s = r1!s ∨ r2!s

r
∗
!ε = True

r
∗
!c·s = False ∨

W

{r ′
r
∗
!s | r ′ ∈ r†c}

r1r2!ε = r1!ε ∧ r2!ε

εr2!c·s = r2!c·s
cr2!c·s = r2!s

(r11
r12

)r2!c·s = r11
(r12

r2)!c·s
(r11

+ r12
)r2!c·s = r11

r2!c·s ∨ r12
r2!c·s

r
∗

1r2!c·s = r2!c·s ∨
W

{r ′(r∗

1r2)!s | r ′ ∈ r1†c}

ε†c = ∅
c
′†c = ∅ (c 6= c

′)
c†c = {ε}

r1 + r2†c = r1 †c ∪ r2†c

r
∗†c = {r ′

r
∗ | r ′ ∈ r†c}

cr2†c = {r2}
c
′
r2†c = ∅ (c 6= c

′)
εr2†c = r2†c

(r11
r12

)r2†c = r11
(r12

r2)†c

(r11
+ r12

)r2†c = r11
r2 †c ∪ r12

r2†c

r
∗

1r2†c = r2 †c ∪ {r ′
r
∗

1r2 | r ′ ∈ r1†c}

Figure 1: Correct implementation of r!s and r†c

5

4 Conclusion

Inductive refinement from the sketch of algorithms to their completion is useful,
even essential, in developing correct programs. Errors are fixed by refining
the algorithms by repeatedly applying inductive analysis to a function’s input
structure.

This approach is powerful enough to guide us to arrive at practical as well
as correct programs. See [?].

6

