SNU 4541.574 Programming Language Theory

Ack: from BCP's slides

Typing derivations

Exercise 9.2.2: Show (by drawing derivation trees) that the following terms have the indicated types:

- 1. f:Bool \rightarrow Bool \vdash f (if false then true else false) : Bool
- 2. f:Bool \rightarrow Bool \vdash λx :Bool. f (if x then false else x) : Bool \rightarrow Bool

The two typing relations

Question: What is the relation between these two statements?

```
1. t : T
```

2. $\vdash t : T$

The two typing relations

Question: What is the relation between these two statements?

```
1. t : T
2. ⊢t : T
```

First answer: These two relations are completely different things.

- We are dealing with several different small programming languages, each with its own typing relation (between terms in that language and types in that language)
- For the simple language of numbers and booleans, typing is a binary relation between terms and types (t : T).
- For λ→, typing is a *ternary* relation between contexts, terms, and types (Γ ⊢ t : T).

(When the context is empty — because the term has no free variables — we often write $\vdash t : T$ to mean $\emptyset \vdash t : T$.)

Conservative extension

Second answer: The typing relation for λ_{\rightarrow} conservatively extends the one for the simple language of numbers and booleans.

- Write "language 1" for the language of numbers and booleans and "language 2" for the simply typed lambda-calculus with base types Nat and Bool.
- The terms of language 2 include all the terms of language 1; similarly typing rules.
- Write $t :_1 T$ for the typing relation of language 1.
- Write $\Gamma \vdash t :_2 T$ for the typing relation of language 2.
- Theorem: Language 2 conservatively extends language 1: If t is a term of language 1 (involving only booleans, conditions, numbers, and numeric operators) and T is a type of language 1 (either Bool or Nat), then t :1 T iff Ø ⊢ t :2 T.

Preservation (and Weakening, Permutation, Substitution)

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Steps of proof:

- Weakening
- Permutation
- Substitution preserves types
- Reduction preserves types (i.e., preservation)

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t$: T and $x \notin dom(\Gamma)$, then Γ , x:S $\vdash t$: T.

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

```
Lemma: If \Gamma \vdash t : T and x \notin dom(\Gamma), then \Gamma, x: S \vdash t : T.
```

Permutation tells us that the order of assumptions in (the list) $\mbox{\sc r}$ does not matter.

Lemma: If $\Gamma \vdash t : T$ and Δ is a permutation of Γ , then $\Delta \vdash t : T$.

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t$: T and $x \notin dom(\Gamma)$, then $\Gamma, x: S \vdash t : T$.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) $\mbox{\sc r}$ does not matter.

Lemma: If $\Gamma \vdash t$: T and Δ is a permutation of Γ , then $\Delta \vdash t$: T.

Moreover, the latter derivation has the same depth as the former.

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Proof: By induction

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Proof: By induction on typing derivations.

Which case is the hard one??

 $\textit{Theorem: If } \Gamma \vdash t \ : \ T \text{ and } t \longrightarrow t' \text{, then } \Gamma \vdash t' \ : \ T.$

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T. Proof: By induction on typing derivations. Case T-APP: Given $t = t_1 t_2$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$ Show $\Gamma \vdash t' : T_{12}$

By the inversion lemma for evaluation, there are three subcases...

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T. *Proof:* By induction on typing derivations. Case T-APP: Given $t = t_1 t_2$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$ Show $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases... Subcase: $t_1 = \lambda x: T_{11}$. t_{12} t_2 a value v_2 $\mathbf{t}' = [\mathbf{x} \mapsto \mathbf{v}_2]\mathbf{t}_{12}$

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T. *Proof:* By induction on typing derivations. Case T-APP: Given $t = t_1 t_2$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$ Show $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases... Subcase: $t_1 = \lambda x: T_{11}$. t_{12} t_2 a value v_2 $t' = [x \mapsto v_2]t_{12}$

Uh oh.

Theorem: If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$. *Proof:* By induction on typing derivations. Case T-APP: Given $t = t_1 t_2$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$ Show $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases... Subcase: $t_1 = \lambda x: T_{11}, t_{12}$ t_2 a value v_2 $t' = [x \mapsto v_2]t_{12}$

Uh oh. What do we need to know to make this case go through??

Lemma: If Γ , $x: S \vdash t$: T and $\Gamma \vdash s$: S, then $\Gamma \vdash [x \mapsto s]t$: T.

I.e., "Types are preserved under substitition."

Lemma: If Γ , $x: S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

Lemma: If Γ , $x: S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

Lemma: If Γ , $x: S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

 $\begin{array}{lll} \textit{Case T-APP:} & \texttt{t} = \texttt{t}_1 \ \texttt{t}_2 \\ & \Gamma, \texttt{x:S} \vdash \texttt{t}_1 : \texttt{T}_2 {\rightarrow} \texttt{T}_1 \\ & \Gamma, \texttt{x:S} \vdash \texttt{t}_2 : \texttt{T}_2 \\ & \texttt{T} = \texttt{T}_1 \end{array}$

By the induction hypothesis, $\Gamma \vdash [x \mapsto s]t_1 : T_2 \rightarrow T_1$ and $\Gamma \vdash [x \mapsto s]t_2 : T_2$. By T-APP, $\Gamma \vdash [x \mapsto s]t_1 \ [x \mapsto s]t_2 : T$, i.e., $\Gamma \vdash [x \mapsto s](t_1 \ t_2) : T$.

Lemma: If Γ , $x: S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

 $\begin{array}{ll} \textit{Case } T\text{-}VAR: & t = z \\ & \text{with } z\text{:}T \in (\Gamma, x\text{:}S) \end{array}$

There are two sub-cases to consider, depending on whether z is x or another variable. If z = x, then $[x \mapsto s]z = s$. The required result is then $\Gamma \vdash s : S$, which is among the assumptions of the lemma. Otherwise, $[x \mapsto s]z = z$, and the desired result is immediate.

Lemma: If Γ , $x: S \vdash t : T$ and $\Gamma \vdash s : S$, then $\Gamma \vdash [x \mapsto s]t : T$.

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

By our conventions on choice of bound variable names, we may assume $x \neq y$ and $y \notin FV(s)$. Using *permutation* on the given subderivation, we obtain Γ , $y:T_2, x:S \vdash t_1 : T_1$. Using *weakening* on the other given derivation ($\Gamma \vdash s : S$), we obtain Γ , $y:T_2 \vdash s : S$. Now, by the induction hypothesis, Γ , $y:T_2 \vdash [x \mapsto s]t_1 : T_1$. By T-ABS, $\Gamma \vdash \lambda y:T_2$. $[x \mapsto s]t_1 : T_2 \rightarrow T_1$, i.e. (by the definition of substitution), $\Gamma \vdash [x \mapsto s]\lambda y:T_2$. $t_1 : T_2 \rightarrow T_1$.