SNU 4541.574
Programming Language Theory

Ack: from BCP’s slides



Typing derivations

Exercise 9.2.2: Show (by drawing derivation trees) that the
following terms have the indicated types:

1. £:Bool—Bool - f (if false then true else false) :
Bool

2. f:Bool—Bool +
Ax:Bool. f (if x then false else x) : Bool—Bool



The two typing relations

Question: What is the relation between these two statements?
1. t:T
2.Ft T
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Question: What is the relation between these two statements?
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First answer: These two relations are completely different things.

> We are dealing with several different small programming
languages, each with its own typing relation (between terms in
that language and types in that language)

» For the simple language of numbers and booleans, typing is a
binary relation between terms and types (t : T).

» For \_., typing is a ternary relation between contexts, terms,
and types ('t : T).

(When the context is empty — because the term has no free
variables — we often write -t : T to mean () - t : T.)



Conservative extension

Second answer: The typing relation for A_, conservatively extends
the one for the simple language of numbers and booleans.

> Write “language 1" for the language of numbers and booleans
and “language 2" for the simply typed lambda-calculus with
base types Nat and Bool.

» The terms of language 2 include all the terms of language 1;
similarly typing rules.

» Write t :1 T for the typing relation of language 1.

» Write I' = t :» T for the typing relation of language 2.

» Theorem: Language 2 conservatively extends language 1: If t
is a term of language 1 (involving only booleans, conditions,
numbers, and numeric operators) and T is a type of language
1 (either Bool or Nat), then t ;1 Tiff ) -t :» T,



Preservation (and Weakening,
Permutation, Substitution)



Preservation

Theorem: If Tt : Tandt — t/, then T -t/ : T.

Steps of proof:
» Weakening
» Permutation
» Substitution preserves types

» Reduction preserves types (i.e., preservation)



Weakening and Permutation

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If T =t : Tand x ¢ dom(l"), then I, x:SFt : T.
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Weakening and Permutation
Weakening tells us that we can add assumptions to the context
without losing any true typing statements.
Lemma: If T =t : Tand x ¢ dom(l"), then I, x:SFt : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) I
does not matter.

Lemma: If Tt : T and A is a permutation of I, then A+t : T.

Moreover, the latter derivation has the same depth as the former.
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Proof: By induction



Preservation

Theorem: If Tt : Tandt — t/, then T -t/ : T.
Proof: By induction on typing derivations.

Which case is the hard one??
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Preservation
Theorem: If Tt : Tandt — t/, then T -t/ : T.

Proof: By induction on typing derivations.
Case T-AppP: Given t =17 to
Mty @ T11—T1o
Mty @ T1q
T="T
Show [t/ : Ty
By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = Ax:Tq11. tio
to a value v»
t/ = [X — V2]t12
Uh oh. What do we need to know to make this case go through??



The “Substitution Lemma”

Lemma: f [, x:SFt :Tand ks : S, thenlF [x+— s]t : T.

l.e., “Types are preserved under substitition.”
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The “Substitution Lemma”

Lemma: f [, x:SFt :Tand ks : S, thenlF [x+— s]t : T.

Proof: By induction on the depth of a derivation of
I, x:Skt : T. Proceed by cases on the final typing rule used in
the derivation.
Case T-App: t =11 to
[ x:SkFty: Tr—Ty
I x:SkEty : To
T=T
By the induction hypothesis, I - [x — s]|t; : To—T; and
([ [X — S]t2 : To. By T-App, I - [X — S]‘tl [X — S]t2 : T, e,
I+ [X — S](tl tg) . T.



The “Substitution Lemma”

Lemma: If I x:SkFt :Tand s : S then - [x— s]t : T.

Proof: By induction on the depth of a derivation of
I, x:Skt : T. Proceed by cases on the final typing rule used in
the derivation.

Case T-VAR: t=z

with z:T € (I, x:8)
There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x + s]z = s. The required
result is then [ = s : S, which is among the assumptions of the
lemma. Otherwise, [x — s|z = z, and the desired result is
immediate.



The “Substitution Lemma”

Lemma: If I x:SkFt :Tand s : S then - [x— s]t : T.

Proof: By induction on the depth of a derivation of
I, x:Skt : T. Proceed by cases on the final typing rule used in
the derivation.
Case T-ABs: t=Ay:Ta.t1 T=Ty—T;

[ x:S,y:Tokty : Ty
By our conventions on choice of bound variable names, we may
assume x # y and y ¢ FV(s). Using permutation on the given
subderivation, we obtain I, y:To. x:SF t; : T1. Using weakening
on the other given derivation (I' - s : S), we obtain
[, y:To s : S. Now, by the induction hypothesis,
[ y:To b [x+ s]ty : T;. By T-ABs,
FEAy:To. [x+ sty @ Top—Ty, i.e. (by the definition of
substitution), ' [x +— s|Ay:To. t1 @ To—Tj.
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