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Typing derivations

Exercise 9.2.2: Show (by drawing derivation trees) that the
following terms have the indicated types:

1. f:Bool→Bool ` f (if false then true else false) :
Bool

2. f:Bool→Bool `
λx:Bool. f (if x then false else x) : Bool→Bool



The two typing relations

Question: What is the relation between these two statements?

1. t : T

2. ` t : T

First answer: These two relations are completely different things.

I We are dealing with several different small programming
languages, each with its own typing relation (between terms in
that language and types in that language)

I For the simple language of numbers and booleans, typing is a
binary relation between terms and types (t : T).

I For λ→, typing is a ternary relation between contexts, terms,
and types (Γ ` t : T).

(When the context is empty — because the term has no free
variables — we often write ` t : T to mean ∅ ` t : T.)
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Conservative extension

Second answer: The typing relation for λ→ conservatively extends
the one for the simple language of numbers and booleans.

I Write “language 1” for the language of numbers and booleans
and “language 2” for the simply typed lambda-calculus with
base types Nat and Bool.

I The terms of language 2 include all the terms of language 1;
similarly typing rules.

I Write t :1 T for the typing relation of language 1.

I Write Γ ` t :2 T for the typing relation of language 2.

I Theorem: Language 2 conservatively extends language 1: If t
is a term of language 1 (involving only booleans, conditions,
numbers, and numeric operators) and T is a type of language
1 (either Bool or Nat), then t :1 T iff ∅ ` t :2 T.



Preservation (and Weakening,
Permutation, Substitution)



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Steps of proof:

I Weakening

I Permutation

I Substitution preserves types

I Reduction preserves types (i.e., preservation)



Weakening and Permutation

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.
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Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction

on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh. What do we need to know to make this case go through??
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The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the depth of a derivation of
Γ, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.
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Case T-Var: t = z
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There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x 7→ s]z = s. The required
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Proof: By induction on the depth of a derivation of
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Case T-Abs: t = λy:T2.t1 T = T2→T1

Γ, x:S, y:T2 ` t1 : T1

By our conventions on choice of bound variable names, we may
assume x 6= y and y /∈ FV(s). Using permutation on the given
subderivation, we obtain Γ, y:T2, x:S ` t1 : T1. Using weakening
on the other given derivation (Γ ` s : S), we obtain
Γ, y:T2 ` s : S. Now, by the induction hypothesis,
Γ, y:T2 ` [x 7→ s]t1 : T1. By T-Abs,
Γ ` λy:T2. [x 7→ s]t1 : T2→T1, i.e. (by the definition of
substitution), Γ ` [x 7→ s]λy:T2. t1 : T2→T1.
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