
SNU 4541.574
Programming Language Theory

Ack: from BCP’s slides



Typing derivations

Exercise 9.2.2: Show (by drawing derivation trees) that the
following terms have the indicated types:

1. f:Bool→Bool ` f (if false then true else false) :
Bool

2. f:Bool→Bool `
λx:Bool. f (if x then false else x) : Bool→Bool



The two typing relations

Question: What is the relation between these two statements?

1. t : T

2. ` t : T

First answer: These two relations are completely different things.

I We are dealing with several different small programming
languages, each with its own typing relation (between terms in
that language and types in that language)

I For the simple language of numbers and booleans, typing is a
binary relation between terms and types (t : T).

I For λ→, typing is a ternary relation between contexts, terms,
and types (Γ ` t : T).

(When the context is empty — because the term has no free
variables — we often write ` t : T to mean ∅ ` t : T.)



The two typing relations

Question: What is the relation between these two statements?

1. t : T

2. ` t : T

First answer: These two relations are completely different things.

I We are dealing with several different small programming
languages, each with its own typing relation (between terms in
that language and types in that language)

I For the simple language of numbers and booleans, typing is a
binary relation between terms and types (t : T).

I For λ→, typing is a ternary relation between contexts, terms,
and types (Γ ` t : T).

(When the context is empty — because the term has no free
variables — we often write ` t : T to mean ∅ ` t : T.)



Conservative extension

Second answer: The typing relation for λ→ conservatively extends
the one for the simple language of numbers and booleans.

I Write “language 1” for the language of numbers and booleans
and “language 2” for the simply typed lambda-calculus with
base types Nat and Bool.

I The terms of language 2 include all the terms of language 1;
similarly typing rules.

I Write t :1 T for the typing relation of language 1.

I Write Γ ` t :2 T for the typing relation of language 2.

I Theorem: Language 2 conservatively extends language 1: If t
is a term of language 1 (involving only booleans, conditions,
numbers, and numeric operators) and T is a type of language
1 (either Bool or Nat), then t :1 T iff ∅ ` t :2 T.



Preservation (and Weakening,
Permutation, Substitution)



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Steps of proof:

I Weakening

I Permutation

I Substitution preserves types

I Reduction preserves types (i.e., preservation)



Weakening and Permutation

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.



Weakening and Permutation

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.



Weakening and Permutation

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ ` t : T and x /∈ dom(Γ), then Γ, x:S ` t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ ` t : T and ∆ is a permutation of Γ, then ∆ ` t : T.

Moreover, the latter derivation has the same depth as the former.



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction

on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh. What do we need to know to make this case go through??



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.

Which case is the hard one??

Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh. What do we need to know to make this case go through??



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh. What do we need to know to make this case go through??



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...

Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh. What do we need to know to make this case go through??



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh. What do we need to know to make this case go through??



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh.

What do we need to know to make this case go through??



Preservation

Theorem: If Γ ` t : T and t −→ t′, then Γ ` t′ : T.

Proof: By induction on typing derivations.
Case T-App: Given t = t1 t2

Γ `t1 : T11→T12

Γ `t2 : T11

T = T12

Show Γ ` t′ : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t′ = [x 7→ v2]t12

Uh oh. What do we need to know to make this case go through??



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the depth of a derivation of
Γ, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the depth of a derivation of
Γ, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the depth of a derivation of
Γ, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the depth of a derivation of
Γ, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.

Case T-App: t = t1 t2

Γ, x:S ` t1 : T2→T1

Γ, x:S ` t2 : T2

T = T1

By the induction hypothesis, Γ ` [x 7→ s]t1 : T2→T1 and
Γ ` [x 7→ s]t2 : T2. By T-App, Γ ` [x 7→ s]t1 [x 7→ s]t2 : T, i.e.,
Γ ` [x 7→ s](t1 t2) : T.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the depth of a derivation of
Γ, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.

Case T-Var: t = z
with z:T ∈ (Γ, x:S)

There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x 7→ s]z = s. The required
result is then Γ ` s : S, which is among the assumptions of the
lemma. Otherwise, [x 7→ s]z = z, and the desired result is
immediate.



The “Substitution Lemma”

Lemma: If Γ, x:S ` t : T and Γ ` s : S, then Γ ` [x 7→ s]t : T.

Proof: By induction on the depth of a derivation of
Γ, x:S ` t : T. Proceed by cases on the final typing rule used in
the derivation.

Case T-Abs: t = λy:T2.t1 T = T2→T1

Γ, x:S, y:T2 ` t1 : T1

By our conventions on choice of bound variable names, we may
assume x 6= y and y /∈ FV(s). Using permutation on the given
subderivation, we obtain Γ, y:T2, x:S ` t1 : T1. Using weakening
on the other given derivation (Γ ` s : S), we obtain
Γ, y:T2 ` s : S. Now, by the induction hypothesis,
Γ, y:T2 ` [x 7→ s]t1 : T1. By T-Abs,
Γ ` λy:T2. [x 7→ s]t1 : T2→T1, i.e. (by the definition of
substitution), Γ ` [x 7→ s]λy:T2. t1 : T2→T1.


	Preservation (and Weakening, Permutation, Substitution)

