
SNU 4541.574
Programming Language Theory

Ack: from BCP’s slides

Any Questions?

Plan

“We have the technology...”

I In this lecture and the next, we’re going to cover some simple
extensions of the typed-lambda calculus (TAPL Chapter 11).

1. Products, records
2. Sums, variants
3. Recursion

I We’re skipping Chapters 10 and 12.

Erasure and Typability

Erasure

We can transform terms in λ→ to terms of the untyped
lambda-calculus simply by erasing type annotations on
lambda-abstractions.

erase(x) = x
erase(λx:T1. t2) = λx. erase(t2)
erase(t1 t2) = erase(t1) erase(t2)

Typability

Conversely, an untyped λ-term m is said to be typable if there is
some term t in the simply typed lambda-calculus, some type T,
and some context Γ such that erase(t) = m and Γ ` t : T.

This process is called type reconstruction or type inference.

Example: Is the term

λx. x x

typable?

Typability

Conversely, an untyped λ-term m is said to be typable if there is
some term t in the simply typed lambda-calculus, some type T,
and some context Γ such that erase(t) = m and Γ ` t : T.

This process is called type reconstruction or type inference.

Example: Is the term

λx. x x

typable?

On to real programming
languages...

Base types

Up to now, we’ve formulated “base types” (e.g. Nat) by adding
them to the syntax of types, extending the syntax of terms with
associated constants (zero) and operators (succ, etc.) and
adding appropriate typing and evaluation rules. We can do this for
as many base types as we like.

For more theoretical discussions (as opposed to programming) we
can often ignore the term-level inhabitants of base types, and just
treat these types as uninterpreted constants.
E.g., suppose B and C are some base types. Then we can ask
(without knowing anything more about B or C) whether there are
any types S and T such that the term

(λf:S. λg:T. f g) (λx:B. x)

is well typed.

The Unit type

t ::= ... terms
unit constant unit

v ::= ... values
unit constant unit

T ::= ... types
Unit unit type

New typing rules Γ ` t : T

Γ ` unit : Unit (T-Unit)

Sequencing

t ::= ... terms
t1;t2

t1 −→ t′1
t1;t2 −→ t′1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ ` t1 : Unit Γ ` t2 : T2

Γ ` t1;t2 : T2
(T-Seq)

Sequencing

t ::= ... terms
t1;t2

t1 −→ t′1
t1;t2 −→ t′1;t2

(E-Seq)

unit;t2 −→ t2 (E-SeqNext)

Γ ` t1 : Unit Γ ` t2 : T2

Γ ` t1;t2 : T2
(T-Seq)

Derived forms

I Syntatic sugar

I Internal language vs. external (surface) language

Sequencing as a derived form

t1;t2
def
= (λx:Unit.t2) t1

where x /∈ FV(t2)

Ascription

New syntactic forms

t ::= ... terms
t as T ascription

New evaluation rules t −→ t′

v1 as T −→ v1 (E-Ascribe)

t1 −→ t′1
t1 as T −→ t′1 as T

(E-Ascribe1)

New typing rules Γ ` t : T

Γ ` t1 : T

Γ ` t1 as T : T
(T-Ascribe)

Ascription as a derived form

t as T
def
= (λx:T. x) t

Let-bindings

New syntactic forms

t ::= ... terms
let x=t in t let binding

New evaluation rules t −→ t′

let x=v1 in t2 −→ [x 7→ v1]t2 (E-LetV)

t1 −→ t′1
let x=t1 in t2 −→ let x=t′1 in t2

(E-Let)

New typing rules Γ ` t : T

Γ ` t1 : T1 Γ, x:T1 ` t2 : T2

Γ ` let x=t1 in t2 : T2
(T-Let)

Pairs, tuples, and records

Pairs

t ::= ... terms
{t,t} pair
t.1 first projection
t.2 second projection

v ::= ... values
{v,v} pair value

T ::= ... types
T1× T2 product type

Evaluation rules for pairs

{v1,v2}.1 −→ v1 (E-PairBeta1)

{v1,v2}.2 −→ v2 (E-PairBeta2)

t1 −→ t′1
t1.1 −→ t′1.1

(E-Proj1)

t1 −→ t′1
t1.2 −→ t′1.2

(E-Proj2)

t1 −→ t′1
{t1,t2} −→ {t′1,t2}

(E-Pair1)

t2 −→ t′2
{v1,t2} −→ {v1,t′2}

(E-Pair2)

Typing rules for pairs

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1,t2} : T1× T2
(T-Pair)

Γ ` t1 : T11× T12

Γ ` t1.1 : T11
(T-Proj1)

Γ ` t1 : T11× T12

Γ ` t1.2 : T12
(T-Proj2)

Tuples

t ::= ... terms
{ti

i∈1..n} tuple
t.i projection

v ::= ... values
{vi

i∈1..n} tuple value

T ::= ... types
{Ti

i∈1..n} tuple type

Evaluation rules for tuples

{vi
i∈1..n}.j −→ vj (E-ProjTuple)

t1 −→ t′1
t1.i −→ t′1.i

(E-Proj)

tj −→ t′j
{vi

i∈1..j−1,tj,tk
k∈j+1..n}

−→ {vi
i∈1..j−1,t′j,tk

k∈j+1..n}

(E-Tuple)

Typing rules for tuples

for each i Γ ` ti : Ti

Γ ` {ti
i∈1..n} : {Ti

i∈1..n}
(T-Tuple)

Γ ` t1 : {Ti
i∈1..n}

Γ ` t1.j : Tj
(T-Proj)

Records

t ::= ... terms
{li=ti

i∈1..n} record
t.l projection

v ::= ... values
{li=vi

i∈1..n} record value

T ::= ... types
{li:Ti

i∈1..n} type of records

Evaluation rules for records

{li=vi
i∈1..n}.lj −→ vj (E-ProjRcd)

t1 −→ t′1
t1.l −→ t′1.l

(E-Proj)

tj −→ t′j
{li=vi

i∈1..j−1,lj=tj,lk=tk
k∈j+1..n}

−→ {li=vi
i∈1..j−1,lj=t

′
j,lk=tk

k∈j+1..n}

(E-Rcd)

Typing rules for records

for each i Γ ` ti : Ti

Γ ` {li=ti
i∈1..n} : {li:Ti

i∈1..n}
(T-Rcd)

Γ ` t1 : {li:Ti
i∈1..n}

Γ ` t1.lj : Tj
(T-Proj)

Sums and variants

Sums – motivating example

PhysicalAddr = {firstlast:String, addr:String}
VirtualAddr = {name:String, email:String}
Addr = PhysicalAddr + VirtualAddr
inl : “PhysicalAddr → PhysicalAddr+VirtualAddr”
inr : “VirtualAddr → PhysicalAddr+VirtualAddr”

getName = λa:Addr.
case a of
inl x ⇒ x.firstlast

| inr y ⇒ y.name;

New syntactic forms

t ::= ... terms
inl t tagging (left)
inr t tagging (right)
case t of inl x⇒t | inr x⇒t case

v ::= ... values
inl v tagged value (left)
inr v tagged value (right)

T ::= ... types
T+T sum type

T1+T2 is a disjoint union of T1 and T2 (the tags inl and inr
ensure disjointness)

New evaluation rules t −→ t′

case (inl v0)
of inl x1⇒t1 | inr x2⇒t2

−→ [x1 7→ v0]t1 (E-CaseInl)

case (inr v0)
of inl x1⇒t1 | inr x2⇒t2

−→ [x2 7→ v0]t2 (E-CaseInr)

t0 −→ t′
0

case t0 of inl x1⇒t1 | inr x2⇒t2

−→ case t′
0 of inl x1⇒t1 | inr x2⇒t2

(E-Case)

t1 −→ t′
1

inl t1 −→ inl t′
1

(E-Inl)

t1 −→ t′
1

inr t1 −→ inr t′
1

(E-Inr)

New typing rules Γ ` t : T

Γ ` t1 : T1

Γ ` inl t1 : T1+T2
(T-Inl)

Γ ` t1 : T2

Γ ` inr t1 : T1+T2
(T-Inr)

Γ ` t0 : T1+T2

Γ, x1:T1 ` t1 : T Γ, x2:T2 ` t2 : T

Γ ` case t0 of inl x1⇒t1 | inr x2⇒t2 : T
(T-Case)

Sums and Uniqueness of Types

Problem:

If t has type T, then inl t has type T+U for every U.

I.e., we’ve lost uniqueness of types.

Possible solutions:

I “Infer” U as needed during typechecking

I Give constructors different names and only allow each name
to appear in one sum type (requires generalization to
“variants,” which we’ll see next) — OCaml’s solution

I Annotate each inl and inr with the intended sum type.

For simplicity, let’s choose the third.

New syntactic forms

t ::= ... terms
inl t as T tagging (left)
inr t as T tagging (right)

v ::= ... values
inl v as T tagged value (left)
inr v as T tagged value (right)

Note that as T here is not the ascription operator that we saw
before — i.e., not a separate syntactic form: in essence, there is an
ascription “built into” every use of inl or inr.

New typing rules Γ ` t : T

Γ ` t1 : T1

Γ ` inl t1 as T1+T2 : T1+T2
(T-Inl)

Γ ` t1 : T2

Γ ` inr t1 as T1+T2 : T1+T2
(T-Inr)

Evaluation rules ignore annotations: t −→ t′

case (inl v0 as T0)
of inl x1⇒t1 | inr x2⇒t2

−→ [x1 7→ v0]t1

(E-CaseInl)

case (inr v0 as T0)
of inl x1⇒t1 | inr x2⇒t2

−→ [x2 7→ v0]t2

(E-CaseInr)

t1 −→ t′1
inl t1 as T2 −→ inl t′1 as T2

(E-Inl)

t1 −→ t′1
inr t1 as T2 −→ inr t′1 as T2

(E-Inr)

Variants

Just as we generalized binary products to labeled records, we can
generalize binary sums to labeled variants.

New syntactic forms

t ::= ... terms
<l=t> as T tagging
case t of <li=xi>⇒ti

i∈1..n case

T ::= ... types
<li:Ti

i∈1..n> type of variants

New evaluation rules t −→ t′

case (<lj=vj> as T) of <li=xi>⇒ti
i∈1..n

−→ [xj 7→ vj]tj
(E-CaseVariant)

t0 −→ t′0
case t0 of <li=xi>⇒ti

i∈1..n

−→ case t′0 of <li=xi>⇒ti
i∈1..n

(E-Case)

ti −→ t′i
<li=ti> as T −→ <li=t

′
i> as T

(E-Variant)

New typing rules Γ ` t : T

Γ ` tj : Tj

Γ ` <lj=tj> as <li:Ti
i∈1..n> : <li:Ti

i∈1..n>
(T-Variant)

Γ ` t0 : <li:Ti
i∈1..n>

for each i Γ, xi:Ti ` ti : T

Γ ` case t0 of <li=xi>⇒ti
i∈1..n : T

(T-Case)

Example

Addr = <physical:PhysicalAddr, virtual:VirtualAddr>;

a = <physical=pa> as Addr;

getName = λa:Addr.
case a of
<physical=x> ⇒ x.firstlast

| <virtual=y> ⇒ y.name;

Options

Just like in OCaml...

OptionalNat = <none:Unit, some:Nat>;

Table = Nat→OptionalNat;

emptyTable = λn:Nat. <none=unit> as OptionalNat;

extendTable =
λt:Table. λm:Nat. λv:Nat.

λn:Nat.
if equal n m then <some=v> as OptionalNat
else t n;

x = case t(5) of
<none=u> ⇒ 999

| <some=v> ⇒ v;

Enumerations

Weekday = <monday:Unit, tuesday:Unit, wednesday:Unit,
thursday:Unit, friday:Unit>;

nextBusinessDay = λw:Weekday.
case w of <monday=x> ⇒ <tuesday=unit> as Weekday

| <tuesday=x> ⇒ <wednesday=unit> as Weekday
| <wednesday=x> ⇒ <thursday=unit> as Weekday
| <thursday=x> ⇒ <friday=unit> as Weekday
| <friday=x> ⇒ <monday=unit> as Weekday;

Recursion

Recursion in λ→

I In λ→, all programs terminate. (Cf. Chapter 12.)

I Hence, untyped terms like omega and fix are not typable.

I But we can extend the system with a (typed) fixed-point
operator...

Example

ff = λie:Nat→Bool.
λx:Nat.
if iszero x then true
else if iszero (pred x) then false
else ie (pred (pred x));

iseven = fix ff;

iseven 7;

New syntactic forms

t ::= ... terms
fix t fixed point of t

New evaluation rules t −→ t′

fix (λx:T1.t2)
−→ [x 7→ (fix (λx:T1.t2))]t2

(E-FixBeta)

t1 −→ t′1
fix t1 −→ fix t′1

(E-Fix)

New typing rules Γ ` t : T

Γ ` t1 : T1→T1

Γ ` fix t1 : T1
(T-Fix)

A more convenient form

letrec x:T1=t1 in t2
def
= let x = fix (λx:T1.t1) in t2

letrec iseven : Nat→Bool =
λx:Nat.
if iszero x then true
else if iszero (pred x) then false
else iseven (pred (pred x))

in
iseven 7;

