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Programming Language Theory



Tour of OCaml Programming



OCaml and this course

The material in this course is mostly conceptual and mathematical.

However:

I some of the ideas we will encounter are easier to grasp if you
can “see them work”

I experimenting with small implementations of programming
languages is an excellent way to deepen intuitions

For these purposes, we will use the OCaml language.

OCaml is a large and powerful language. For present purposes,
though, we can concentrate just on the “core” of the language,
ignoring most of its features. In particular, we will not need
modules or objects.



Higher-order & Typed Programming

OCaml is a HOT programming language — i.e., a language in
which the functional programming style is the dominant idiom.

Other well-known higher-order languages include Lisp, Scheme,
Haskell, and Standard ML.



Higher-order & Typed Programming

The HOT style can be described as a combination of...

I persistent data structures (which, once built, are never
changed)

I recursion as a primary control structure

I heavy use of higher-order functions (functions that take
functions as arguments and/or return functions as results)

Imperative languages, by contrast, emphasize...

I mutable data structures

I looping rather than recursion

I first-order rather than higher-order programming (though
many object-oriented design patterns involve higher-order
idioms—e.g., Subscribe/Notify, Visitor, etc.)



Computing with Expressions

OCaml is an expression language. A program is an expression. The
“meaning” of the program is the value of the expression.

# 16 + 18;;

- : int = 34

# 2*8 + 3*6;;

- : int = 34



The top level

OCaml provides both an interactive top level and a compiler that
produces standard executable binaries. The top level provides a
convenient way of experimenting with small programs.

The mode of interacting with the top level is typing in a series of
expressions; OCaml evaluates them as they are typed and displays
the results (and their types). In the interaction above, lines
beginning with # are inputs, and lines beginning with - are the
system’s responses. Note that inputs are always terminated by a
double semicolon.



Giving things names

The let construct gives a name to the result of an expression so
that it can be used later.

# let inchesPerMile = 12*3*1760;;

val inchesPerMile : int = 63360

# let x = 1000000 / inchesPerMile;;

val x : int = 15



Functions

# let cube (x:int) = x*x*x;;

val cube : int -> int = <fun>

# cube 9;;

- : int = 729

We call x the parameter of the function cube; the expression
x*x*x is its body. The expression cube 9 is an application of
cube to the argument 9.
The type printed by OCaml, int->int (pronounced “int arrow
int”) indicates that cube is a function that should be applied to
an integer argument and that returns an integer.
Note that OCaml responds to a function declaration by printing
just <fun> as the function’s “value.”



Here is a function with two parameters:

# let sumsq (x:int) (y:int) = x*x + y*y;;

val sumsq : int -> int -> int = <fun>

# sumsq 3 4;;

- : int = 25

The type printed for sumsq is int->int->int, indicating that it
should be applied to two integer arguments and yields an integer
as its result.
Note that the syntax for invoking function declarations in OCaml is
slightly different from languages in the C/C++/Java family: we
write cube 3 and sumsq 3 4 rather than cube(3) and
sumsq(3,4).



The type boolean

There are only two values of type boolean: true and false.
Comparison operations return boolean values.

# 1 = 2;;

- : bool = false

# 4 >= 3;;

- : bool = true

not is a unary operation on booleans.

# not (5 <= 10);;

- : bool = false

# not (2 = 2);;

- : bool = false



Conditional expressions

The result of the conditional expression if B then E1 else E2

is either the result of E1 or that of E2, depending on whether the
result of B is true or false.

# if 3 < 4 then 7 else 100;;

- : int = 7

# if 3 < 4 then (3 + 3) else (10 * 10);;

- : int = 6

# if false then (3 + 3) else (10 * 10);;

- : int = 100

# if false then false else true;;

- : bool = true



Defining things inductively

In mathematics, things are often defined inductively by giving a
“base case” and an “inductive case.” For example, the sum of all
integers from 0 to n or the product of all integers from 1 to n:

sum(0) = 0
sum(n) = n + sum(n − 1) if n ≥ 1

fact(1) = 1
fact(n) = n ∗ fact(n − 1) if n ≥ 2

It is customary to extend the factorial to all non-negative integers
by adopting the convention fact(0) = 1.



Recursive functions

We can translate inductive definitions directly into recursive

functions.

# let rec sum(n:int) = if n = 0 then 0 else n + sum(n-1);;

val sum : int -> int = <fun>

# sum(6);;

- : int = 21

# let rec fact(n:int) = if n = 0 then 1 else n * fact(n-1);;

val fact : int -> int = <fun>

# fact(6);;

- : int = 720

The rec after the let tells OCaml this is a recursive function —
one that needs to refer to itself in its own body.



Making Change

Another example of recursion on integer arguments. Suppose you
are a bank and therefore have an “infinite” supply of coins
(pennies, nickles, dimes, and quarters, and silver dollars), and you
have to give a customer a certain sum. How many ways are there
of doing this?
For example, there are 4 ways of making change for 12 cents:

12 pennies

1 nickle and 7 pennies

2 nickles and 2 pennies

1 dime and 2 pennies

We want to write a function change that, when applied to 12,
returns 4.



Making Change – continued

To get started, let’s consider a simplified variant of the problem
where the bank only has one kind of coin: pennies.
In this case, there is only one way to make change for a given
amount: pay the whole sum in pennies!

# (* No. of ways of paying a in pennies *)

let rec changeP (a:int) = 1;;

That wasn’t very hard.



Making Change – continued

Now suppose the bank has both nickels and pennies.
If a is less than 5 then we can only pay with pennies. If not, we
can do one of two things:

I Pay in pennies; we already know how to do this.

I Pay with at least one nickel. The number of ways of doing
this is the number of ways of making change (with nickels and
pennies) for a-5.

# (* No. of ways of paying in pennies and nickels *)

let rec changePN (a:int) =

if a < 5 then changeP a

else changeP a + changePN (a-5);;



Making Change – continued

Continuing the idea for dimes and quarters:

# (* ... pennies, nickels, dimes *)

let rec changePND (a:int) =

if a < 10 then changePN a

else changePN a + changePND (a-10);;

# (* ... pennies, nickels, dimes, quarters *)

let rec changePNDQ (a:int) =

if a < 25 then changePND a

else changePND a + changePNDQ (a-25);;



Finally:

# (* Pennies, nickels, dimes, quarters, dollars *)

let rec change (a:int) =

if a < 100 then changePNDQ a

else changePNDQ a + change (a-100);;

Some tests:

# change 5;;

- : int = 2

# change 9;;

- : int = 2

# change 10;;

- : int = 4



...

# change 29;;

- : int = 13

# change 30;;

- : int = 18

# change 100;;

- : int = 243

# change 499;;

- : int = 33995



Lists

One handy structure for storing a collection of data values is a list.
Lists are provided as a built-in type in OCaml and a number of
other popular languages (e.g., Lisp, Scheme, and Prolog—but not,
unfortunately, Java).
We can build a list in OCaml by writing out its elements, enclosed
in square brackets and separated by semicolons.

# [1; 3; 2; 5];;

- : int list = [1; 3; 2; 5]

The type that OCaml prints for this list is pronounced either
“integer list” or “list of integers”.
The empty list, written [], is sometimes called “nil.”



The types of lists

We can build lists whose elements are drawn from any of the basic
types (int, bool, etc.).

# ["cat"; "dog"; "gnu"];;

- : string list = ["cat"; "dog"; "gnu"]

# [true; true; false];;

- : bool list = [true; true; false]

We can also build lists of lists:

# [[1; 2]; [2; 3; 4]; [5]];;

- : int list list = [[1; 2]; [2; 3; 4]; [5]]

In fact, for every type t, we can build lists of type t list.



Lists are homogeneous

OCaml does not allow different types of elements to be mixed
within the same list:

# [1; 2; "dog"];;

Characters 7-13:

This expression has type string list but is here used

with type int list



Constructing Lists

OCaml provides a number of built-in operations that return lists.
The most basic one creates a new list by adding an element to the
front of an existing list. It is written :: and pronounced “cons”
(because it constructs lists).

# 1 :: [2; 3];;

- : int list = [1; 2; 3]

# let add123 (l: int list) = 1 :: 2 :: 3 :: l;;

val add123 : int list -> int list = <fun>

# add123 [5; 6; 7];;

- : int list = [1; 2; 3; 5; 6; 7]

# add123 [];;

- : int list = [1; 2; 3]



Some recursive functions that generate lists

# let rec repeat (k:int) (n:int) = (* A list of n copies of k *)

if n = 0 then []

else k :: repeat k (n-1);;

# repeat 7 12;;

- : int list = [7; 7; 7; 7; 7; 7; 7; 7; 7; 7; 7; 7]

# let rec fromTo (m:int) (n:int) = (* The numbers from m to n *)

if n < m then []

else m :: fromTo (m+1) n;;

# fromTo 9 18;;

- : int list = [9; 10; 11; 12; 13; 14; 15; 16; 17; 18]



Constructing Lists

Any list can be built by “consing” its elements together:

-# 1 :: 2 :: 3 :: 2 :: 1 :: [] ;;;

- : int list = [1; 2; 3; 2; 1]

In fact, [ x1; x2; . . . ; xn ] is simply a shorthand for

x1 :: x2 :: . . . :: xn :: []

Note that, when we omit parentheses from an expression involving
several uses of ::, we associate to the right—i.e., 1::2::3::[]
means the same thing as 1::(2::(3::[])). By contrast,
arithmetic operators like + and - associate to the left: 1-2-3-4
means ((1-2)-3)-4.



Taking Lists Apart

OCaml provides two basic operations for extracting the parts of a
list.

I List.hd (pronounced “head”) returns the first element of a
list.

# List.hd [1; 2; 3];;

- : int = 1

I List.tl (pronounced “tail”) returns everything but the first
element.

# List.tl [1; 2; 3];;

- : int list = [2; 3]



More list examples

# List.tl (List.tl [1; 2; 3]);;

- : int list = [3]

# List.tl (List.tl (List.tl [1; 2; 3]));;

- : int list = []

# List.hd (List.tl (List.tl [1; 2; 3]));;

- : int = 3



More list examples

# List.hd [[5; 4]; [3; 2]];;

- : int list = [5; 4]

# List.hd (List.hd [[5; 4]; [3; 2]]);;

- : int = 5

# List.tl (List.hd [[5; 4]; [3; 2]]);;

- : int list = [4]



Modules – a brief digression

Like most programming languages, OCaml includes a mechanism
for grouping collections of definitions into modules.

For example, the built-in module List provides the List.hd and
List.tl functions (and many others). That is, the name List.hd

really means “the function hd from the module List.”



Recursion on lists

Lots of useful functions on lists can be written using recursion.
Here’s one that sums the elements of a list of numbers:

# let rec listSum (l:int list) =

if l = [] then 0

else List.hd l + listSum (List.tl l);;

# listSum [5; 4; 3; 2; 1];;

- : int = 15



Consing on the right

# let rec snoc (l: int list) (x: int) =

if l = [] then x::[]

else List.hd l :: snoc(List.tl l) x;;

val snoc : int list -> int -> int list = <fun>

# snoc [5; 4; 3; 2] 1;;

- : int list = [5; 4; 3; 2; 1]



Reversing a list

We can use snoc to reverse a list:

# (* Reverses l -- inefficiently *)

let rec rev (l: int list) =

if l = [] then []

else snoc (rev (List.tl l)) (List.hd l);;

val rev : int list -> int list = <fun>

# rev [1; 2; 3; 3; 4];;

- : int list = [4; 3; 3; 2; 1]

Why is this inefficient? How can we do better?



A better rev

# (* Adds the elements of l to res in reverse order *)

let rec revaux (l: int list) (res: int list) =

if l = [] then res

else revaux (List.tl l) (List.hd l :: res);;

val revaux : int list -> int list -> int list = <fun>

# revaux [1; 2; 3] [4; 5; 6];;

- : int list = [3; 2; 1; 4; 5; 6]

# let rev (l: int list) = revaux l [];;

val rev : int list -> int list = <fun>



Tail recursion

The revaux function

let rec revaux (l: int list) (res: int list) =

if l = [] then res

else revaux (List.tl l) (List.hd l :: res);;

has an interesting property: the result of the recursive call to
revaux is also the result of the whole function. I.e., the recursive
call is the last thing on its “control path” through the body of the
function. (And the other possible control path does not involve a
recursive call.)
Such functions are said to be tail recursive.



Tail recursion

It is usually fairly easy to rewrite a recursive function in
tail-recursive style. For example, the usual factorial function is not
tail recursive (because one multiplication remains to be done after
the recursive call returns):

# let rec fact (n:int) =

if n = 0 then 1

else n * fact(n-1);;

We can transform it into a tail-recursive version by performing the
multiplication before the recursive call and passing along a
separate argument in which these multiplications “accumulate”:

# let rec factaux (acc:int) (n:int) =

if n = 0 then acc

else factaux (acc*n) (n-1);;

# let fact (n:int) = factaux 1 n;;



Basic Pattern Matching

Recursive functions on lists tend to have a standard shape: we test
whether the list is empty, and if it is not we do something involving
the head element and the tail.

# let rec listSum (l:int list) =

if l = [] then 0

else List.hd l + listSum (List.tl l);;

OCaml provides a convenient pattern-matching construct that
bundles the emptiness test and the extraction of the head and tail
into a single syntactic form:

# let rec listSum (l: int list) =

match l with

[] -> 0

| x::y -> x + listSum y;;



Pattern matching can be used with types other than lists. For
example, here it is used on integers:

# let rec fact (n:int) =

match n with

0 -> 1

| _ -> n * fact(n-1);;

The _ pattern here is a wildcard that matches any value.



Complex Patterns

The basic elements (constants, variable binders, wildcards, [], ::,
etc.) may be combined in arbitrarily complex ways in match

expressions:

# let silly l =

match l with

[_;_;_] -> "three elements long"

| _::x::y::_::_::rest ->

if x>y then "foo" else "bar"

| _ -> "dunno";;

val silly : int list -> string = <fun>

# silly [1;2;3];;

- : string = "three elements long"

# silly [1;2;3;4];;

- : string = "dunno"

# silly [1;2;3;4;5];;

- : string = "bar"



Type Inference

One pleasant feature of OCaml is a powerful type inference

mechanism that allows the compiler to calculate the types of
variables from the way in which they are used.

# let rec fact n =

match n with

0 -> 1

| _ -> n * fact(n-1);;

val fact : int -> int = <fun>

The compiler can tell that fact takes an integer argument because
n is used as an argument to the integer * and - functions.



Similarly:

# let rec listSum l =

match l with

[] -> 0

| x::y -> x + listSum y;;

val listSum : int list -> int = <fun>



Polymorphism (first taste)

# let rec length l =

match l with

[] -> 0

| _::y -> 1 + length y;;

val length : ’a list -> int = <fun>

The ’a in the type of length, pronounced “alpha,” is a type

variable standing for an arbitrary type.

The inferred type tells us that the function can take a list with
elements of any type (i.e., a list with elements of type alpha, for
any choice of alpha).

We’ll come back to polymorphism in more detail a bit later.



Tuples

Items connected by commas are “tuples.” (The enclosing parens
are optional.)

# "age", 44;;

- : string * int = "age", 44

# "professor","age", 33;;

- : string * string * int = "professor", "age", 33

# ("children", ["bob";"ted";"alice"]);;

- : string * string list =

"children", ["bob"; "ted"; "alice"]

# let g (x,y) = x*y;;

val g : int * int -> int = <fun>

How many arguments does g take?



Tuples are not lists

Please do not confuse them!

# let tuple = "cow", "dog", "sheep";;

val tuple : string * string * string =

"cow", "dog", "sheep"

# List.hd tuple;;

This expression has type string * string * string

but is here used with type ’a list

# let tup2 = 1, "cow";;

val tup2 : int * string = 1, "cow"

# let l2 = [1; "cow"];;

This expression has type string but is here

used with type int



Tuples and pattern matching

Tuples can be “deconstructed” by pattern matching:

# let lastName name =

match name with

(n,_,_) -> n;;

# lastName ("Pierce", "Benjamin", "Penn");;

- : string = "Pierce"



Example: Finding words

Suppose we want to take a list of characters and return a list of
lists of characters, where each element of the final list is a “word”
from the original list.

# split [’t’;’h’;’e’;’ ’;’b’;’r’;’o’;’w’;’n’;

’ ’;’d’;’o’;’g’];;

- : char list list =

[[’t’; ’h’; ’e’]; [’b’; ’r’; ’o’; ’w’; ’n’];

[’d’; ’o’; ’g’]]

(Character constants are written with single quotes.)



An implementation of split

# let rec loop w l =

match l with

[] -> [w]

| (’ ’::ls) -> w :: (loop [] ls)

| (c::ls) -> loop (w @ [c]) ls;;

val loop : char list

-> char list

-> char list list

= <fun>

# let split l = loop [] l;;

val split : char list -> char list list = <fun>

Note the use of both tuple patterns and nested patterns. The @

operator is shorthand for List.append.



Aside: Local function definitions

The loop function is completely local to split: there is no reason
for anybody else to use it — or even for anybody else to be able to
see it! It is good style in OCaml to write such definitions as local

bindings:

# let split l =

let rec loop w l =

match l with

[] -> [w]

| (’ ’::ls) -> w :: (loop [] ls)

| (c::ls) -> loop (w @ [c]) ls in

loop [] l;;



In general, any let definition that can appear at the top level

# let ...;;

# e;;;

can also appear in a let...in... form.

# let ... in e;;;



A Better Split

Our split function worked fine for the example we tried it on.
But here are some other tests:

# split [’a’;’ ’;’ ’;’b’];;

- : char list list = [[’a’]; []; [’b’]]

# split [’a’;’ ’];;

- : char list list = [[’a’]; []]

Could we refine split so that it would leave out these spurious
empty lists in the result?



Sure. First rewrite the pattern match a little (without changing its
behavior):

# let split l =

let rec loop w l =

match w,l with

_, [] -> [w]

| _, (’ ’::ls) -> w :: (loop [] ls)

| _, (c::ls) -> loop (w @ [c]) ls in

loop [] l;;



Then add a couple of clauses:

# let better_split l =

let rec loop w l =

match w,l with

[],[] -> []

| _,[] -> [w]

| [], (’ ’::ls) -> loop [] ls

| _, (’ ’::ls) -> w :: (loop [] ls)

| _, (c::ls) -> loop (w @ [c]) ls in

loop [] l;;

# better_split [’a’;’b’;’ ’;’ ’;’c’;’ ’;’d’;’ ’];;

- : char list list = [[’a’; ’b’]; [’c’]; [’d’]]

# better_split [’a’;’ ’];;

- : char list list = [[’a’]]

# better_split [’ ’;’ ’];;

- : char list list = []



Basic Exceptions

OCaml’s exception mechanism is roughly similar to that found in,
for example, Java.
We begin by defining an exception:

# exception Bad;;

Now, encountering raise Bad will immediately terminate
evaluation and return control to the top level:

# let rec fact n =

if n<0 then raise Bad

else if n=0 then 1

else n * fact(n-1);;

# fact (-3);;

Exception: Bad.



(Not) catching exceptions

Naturally, exceptions can also be caught within a program (using
the try...with... form), but let’s leave that for another day.



Defining New Types of Data



Predefined types

We have seen a number of data types:

int

bool

string

char

[x;y;z] lists

(x,y,z) tuples

Ocaml has a number of other built-in data types — in particular,
float, with operations like +., *., etc.

One can also create completely new data types.



The need for new types

The ability to construct new types is an essential part of most
programming languages.

For example, suppose we are building a (very simple) graphics
program that displays circles and squares. We can represent each
of these with three real numbers...



A circle is represented by the co-ordinates of its center and its
radius. A square is represented by the co-ordinates of its bottom
left corner and its width. So we can represent both shapes as
elements of the type:

float * float * float

However, there are two problems with using this type to represent
circles and squares. First, it is a bit long and unwieldy, both to
write and to read. Second, because their types are identical, there
is nothing to prevent us from mixing circles and squares. For
example, if we write

# let areaOfSquare (_,_,d) = d *. d;;

we might accidentally apply the areaOfSquare function to a circle
and get a nonsensical result.
(Recall that numerical operations on the float type are written
differently from the corresponding operations on int — e.g., +.
instead of +. See the OCaml manual for more information.)



Data Types

We can improve matters by defining square as a new type:

# type square = Square of float * float * float;;

This does two things:

I It creates a new type called square that is different from any
other type in the system.

I It creates a constructor called Square (with a capital S) that
can be used to create a square from three floats. For
example:

# Square(1.1, 2.2, 3.3);;

- : square = Square (1.1, 2.2, 3.3)



Taking data types apart

We take types apart with (surprise, surprise...) pattern matching.

# let areaOfSquare s =

match s with

Square(_, _, d) -> d *. d;;

val areaOfSquare : square -> float = <fun>

# let bottomLeftCoords s =

match s with

Square(x, y, _) -> (x,y);;

val bottomLeftCoords : square -> float * float

= <fun>

So we can use constructors like Square both as functions and as
patterns.



These functions can be written a little more concisely by
combining the pattern matching with the function header:

# let areaOfSquare (Square(_, _, d)) = d *. d;;

# let bottomLeftCoords (Square(x, y, _)) = (x,y);;



Continuing, we can define a data type for circles in the same way.

# type circle = Circle of float * float * float;;

# let c = Circle (1.0, 2.0, 2.0);;

# let areaOfCircle (Circle(_, _, r)) =

3.14159 *. r *. r;;

# let centerCoords (Circle(x, y, _)) = (x,y);;

# areaOfCircle c;;

- : float = 12.56636

We cannot now apply a function intended for type square to a
value of type circle:

# areaOfSquare c;;

This expression has type circle but is here used

with type square.



Variant types

Going back to the idea of a graphics program, we obviously want
to have several shapes on the screen at once. For this we’d
probably want to keep a list of circles and squares, but such a list
would be heterogenous. How do we make such a list?

Answer: Define a type that can be either a circle or a square.

# type shape = Circle of float * float * float

| Square of float * float * float;;

Now both constructors Circle and Square create values of type
shape. For example:

# Square (1.0, 2.0, 3.0);;

- : shape = Square (1.0, 2.0, 3.0)

A type that can have more than one form is often called a variant

type.



Pattern matching on variants

We can also write functions that do the right thing on all forms of
a variant type. Again we use pattern matching:

# let area s =

match s with

Circle (_, _, r) -> 3.14159 *. r *. r

| Square (_, _, d) -> d *. d;;

# area (Circle (0.0, 0.0, 1.5));;

- : float = 7.0685775



Here is a heterogeneous list:

# let l = [Circle (0.0, 0.0, 1.5);

Square (1.0, 2.0, 1.0);

Circle (2.0, 0.0, 1.5);

Circle (5.0, 0.0, 2.5)];;

# area (List.hd l);;

- : float = 7.0685775



Mixed-mode Arithmetic

Many programming languages (Lisp, Basic, Perl, database query
languages) use variant types internally to represent numbers that
can be either integers or floats. This amounts to tagging each
numeric value with an indicator that says what kind of number it is.

# type num = Int of int | Float of float;;

# let add r1 r2 =

match (r1,r2) with

(Int i1, Int i2) -> Int (i1 + i2)

| (Float r1, Int i2) -> Float (r1 +. float i2)

| (Int i1, Float r2) -> Float (float i1 +. r2)

| (Float r1, Float r2) -> Float (r1 +. r2);;

# add (Int 3) (Float 4.5);;

- : num = Float 7.5



More Mixed-Mode Functions

# let unaryMinus n =

match n with Int i -> Int (- i)

| Float r -> Float (-. r);;

# let minus n1 n2 = add n1 (unaryMinus n2);;

# let rec fact n =

if n = Int 0 then Int 1

else mult n (fact (minus n (Int 1)));;

# fact (Int 7);;

- : num = Int 5040

What will happen if we write fact 7?



A Data Type for Optional Values

Suppose we are implementing a simple lookup function for a
telephone directory. We want to give it a string and get back a
number (say an integer). We expect to have a function lookup

whose type is

lookup: string -> directory -> int

where directory is a (yet to be decided) type that we’ll use to
represent the directory.
However, this isn’t quite enough. What happens if a given string
isn’t in the directory? What should lookup return?
There are several ways to deal with this issue. One is to raise an
exception. Another uses the following data type:

# type optional_int = Absent | Present of int;;



To see how this type is used, let’s represent our directory as a list
of pairs:

# let directory = [("Joe", 1234); ("Martha", 5672);

("Jane", 3456); ("Ed", 7623)];;

# let rec lookup s l =

match l with

[] -> Absent

| (k,i)::t -> if k = s then Present(i)

else lookup s t;;

# lookup "Jane" directory;;

- : optional_int = Present 3456

# lookup "Karen" directory;;

- : optional_int = Absent



Built-in options

Because options are often useful in HOT programming, OCaml
provides a built-in type t option for each type t. Its constructors
are None (corresponding to Absent) and Some (for Present).

# let rec lookup s l =

match l with

[] -> None

| (k,i)::t -> if k = s then Some(i)

else lookup s t;;

# lookup "Jane" directory;;

- : optional_int = Some 3456



Enumerations

The option type has one variant, None, that is a “constant”
constructor carrying no data values with it. Data types in which all

the variants are constants can actually be quite useful...

# type color = Red | Yellow | Green;;

# let next c =

match c with Green -> Yellow | Yellow -> Red

| Red -> Green;;

# type day = Sunday | Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday;;

# let weekend d =

match d with

Saturday -> true

| Sunday -> true

| _ -> false;;



A Boolean Data Type

A simple data type can be used to replace the built-in booleans.
We use the constant constructors True and False to represent
true and false. We’ll use different names as needed to avoid
confusion between our booleans and the built-in ones:

# type myBool = False | True;;

# let myNot b =

match b with False -> True | True -> False;;

# let myAnd b1 b2 =

match (b1,b2) with

(True, True) -> True

| (True, False) -> False

| (False, True) -> False

| (False, False) -> False;;

Note that the behavior of myAnd is not quite the same as the
built-in &&!



Recursive Types

Consider the tiny language of arithmetic expressions defined by the
following (BNF-like) grammar:

exp ::= number

( exp + exp )

( exp - exp )

( exp * exp )

(We’ll come back to these grammars in more detail next week...)



We can translate this grammar directly into a datatype definition:

type ast =

ANum of int

| APlus of ast * ast

| AMinus of ast * ast

| ATimes of ast * ast;;

Notes:

I This datatype (like the original grammar) is recursive.

I The type ast represents abstract syntax trees, which capture
the underlying tree structure of expressions, suppressing
surface details such as parentheses



An evaluator for expressions

Goal: write an evaluator for these expressions.

val eval : ast -> int = <fun>

# eval (ATimes (APlus (ANum 12, ANum 340), ANum 5));;

- : int = 1760



The solution uses a recursive function plus a pattern match.

let rec eval e =

match e with

ANum i -> i

| APlus (e1,e2) -> eval e1 + eval e2

| AMinus (e1,e2) -> eval e1 - eval e2

| ATimes (e1,e2) -> eval e1 * eval e2;;
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