
Static Program Analysis Overview

Kwangkeun Yi

Seoul National University, Korea

Kwangkeun Yi (Seoul National U) Program Analysis 1 / 51



1 Introduction

2 Static Analysis: a Gentle Introduction

Kwangkeun Yi (Seoul National U) Program Analysis 2 / 51



Introduction

Outline

1 Introduction

2 Static Analysis: a Gentle Introduction

Kwangkeun Yi (Seoul National U) Program Analysis 3 / 51



Introduction

Kwangkeun Yi (Seoul National U) Program Analysis 4 / 51



Introduction

Kwangkeun Yi (Seoul National U) Program Analysis 5 / 51



Introduction

The Common Goal

Computing area Other engineering areas
Object Software Machine/building/circuit/chemical pro-

cess design
Execution subject Computer runs it Nature runs it
Our question Will it work as intended? Will it work as intended?
Our knowledge Program analysis Newtonian mechanics, Maxwell equa-

tions, Navier-Stokes equations, thermo-
dynamic equations, and other principles

Kwangkeun Yi (Seoul National U) Program Analysis 6 / 51



Introduction

Our Interest

How to verify specific properties about program executions before
execution:

absence of run-time errors i.e., no crashes
preservation of invariants

Verification
Make sure that JP K ⊆ S where

the semantics JP K = the set of all behaviors of P
the specification S = the set of acceptable behaviors

Kwangkeun Yi (Seoul National U) Program Analysis 7 / 51



Introduction

Semantics JP K and Semantic Properties S

Semantics JP K:
compositional style (“denotational”)

I JABK = · · · JAK · · · JBK · · ·
transitional style (“operational”)

I JABK = {s0 ↪→ s1 ↪→ · · · , · · · }

Semantic properties S:
safety

I some behavior observable in finite time will never occur.
liveness

I some behavior observable after infinite time will never occur.

Kwangkeun Yi (Seoul National U) Program Analysis 8 / 51

Kwangkeun Yi
늘 유지되는 성질, 내내성질, 늘성질

Kwangkeun Yi
언젠가는 일어날 성질, 결국성질, 언젠간성질



Introduction

Safety Properties

Some behavior observable in finite time will never occur.

Examples:
no crashing error

I no divide by zero, no bus error in C, no uncaught exceptions
no invariant violation

I some data structure should never get broken
no value overrun

I a variable’s values always in a given range

Kwangkeun Yi (Seoul National U) Program Analysis 9 / 51



Introduction

Liveness Properties

Some behavior observable after infinite time will never occur.

Examples:
no unbounded repetition of a given behavior
no starvation
no non-termination

Kwangkeun Yi (Seoul National U) Program Analysis 10 / 51



Introduction

Soundness and Completeness

“Analysis is sound.” “Analysis is complete.”
Soundness: analysis(P ) = yes =⇒ P satisfies the specification
Completeness: analysis(P ) = yes ⇐= P satisfies the specification

Kwangkeun Yi (Seoul National U) Program Analysis 11 / 51



Introduction

Spectrum of Program Analysis Techniques

testing
machine-assisted proving
finite-state model checking
conservative static analysis
bug-finding

Kwangkeun Yi (Seoul National U) Program Analysis 12 / 51



Introduction

Testing

Approach
1 Consider finitely many, finite executions
2 For each of them, check whether it violates the specification

If the finite executions find no bug, then accept.
Unsound: can accept programs that violate the specification
Complete: does not reject programs that satisfy the specification

Kwangkeun Yi (Seoul National U) Program Analysis 13 / 51



Introduction

Machine-Assisted Proving

Approach
1 Use a specific language to formalize verification goals
2 Manually supply proof arguments
3 Let the proofs be automatically verified

tools: Coq, Isabelle/HOL, PVS, ...
Applications: CompCert (certified compiler), seL4 (secure
micro-kernel), ...
Not automatic: key proof arguments need to be found by users
Sound, if the formalization is correct
Quasi-complete (only limited by the expressiveness of the logics)

Kwangkeun Yi (Seoul National U) Program Analysis 14 / 51



Introduction

Finite-State Model Checking

Approach
1 Focus on finite state models of programs
2 Perform exhaustive exploration of program states

Automatic
Sound or complete, only with respect to the finite models
Software has ∼ ∞ states: the models need approximation or
non-termination (semi-algorithm)

Kwangkeun Yi (Seoul National U) Program Analysis 15 / 51



Introduction

Conservative Static Analysis

Approach
1 Perform automatic verification, yet which may fail
2 Compute a conservative approximation of the program semantics

Either sound or complete, not both
Sound & incomplete static analysis is common:

I optimizing compilers relies on it (supposed to)
I Astrée, Sparrow, Facebook Infer, ML type systems, ...

Automatic
Incompleteness: may reject safe programs (false alarms)
Analysis algorithms reason over program semantics

Kwangkeun Yi (Seoul National U) Program Analysis 16 / 51



Introduction

Bug Finding

Approach
Automatic, unsound and incomplete algorithms

commercial tools: Coverity, CodeSonar, SparrowFasoo, ...
Automatic and generally fast
No mathematical guarantee about the results

I may reject a correct program, and accept an incorrect one
I may raise false alarm and fail to report true violations

Used to increase software quality without any guarantee

Kwangkeun Yi (Seoul National U) Program Analysis 17 / 51



Introduction

High-level Comparison

automatic sound complete
testing yes no yes
machine-assisted proving no yes yes/no
finite-state model checking yes yes/no yes/no
conservative static analysis yes yes no
bug-finding yes no no

Kwangkeun Yi (Seoul National U) Program Analysis 18 / 51



Introduction

Focus of This Lecture: Conservative Static Analysis

A general technique, for any programming language L and safety property
S, that

checks, for input program P in L, if JP K ⊆ S,
automatic (software)
finite (terminating)
sound (guarantee)
malleable for arbitrary precision

A forthcoming framework
Will guide us how to design such static analysis.

Kwangkeun Yi (Seoul National U) Program Analysis 19 / 51



Introduction

Problem: How to Finitely Compute JP K Beforehand

Finite & exact computation Exact(P ) of JP K is impossible, in
general.

For a Turing-complete language L,
6 ∃algorithm Exact : Exact(P ) = JP K for all P in L.

Otherwise, we can solve the Halting Problem.
I Given P , see if Exact(P ; 1/0) has divide-by-zero.

Kwangkeun Yi (Seoul National U) Program Analysis 20 / 51



Introduction

Answers: Conservative Static Analysis

Technique for finite sound estimation JP K] of JP K
“finite”, hence

I automatic (algorithm) &
I static (without executing P )

“sound”
I over-approximation of JP K

Hence, ushers us to sound anaysis:

(analysis(P ) = check JP K] ⊆ S) =⇒ (P satisfies property S)

Kwangkeun Yi (Seoul National U) Program Analysis 21 / 51



Introduction

Need Formal Frameworks of Static Analysis (1/2)

Suppose that
We are interested in the value ranges of variables.
How to finitely estimate JP K for the property?

You may, intuitively:

Kwangkeun Yi (Seoul National U) Program Analysis 22 / 51



Introduction

Need Formal Frameworks of Static Analysis (2/2)

Kwangkeun Yi (Seoul National U) Program Analysis 23 / 51



Static Analysis: a Gentle Introduction

Outline

1 Introduction

2 Static Analysis: a Gentle Introduction

Kwangkeun Yi (Seoul National U) Program Analysis 24 / 51



Static Analysis: a Gentle Introduction

Example Language

p ::= init(R) initialization, with a state in R
| translation(u, v) translation by vector (u, v)
| rotation(u, v, θ) rotation by center (u, v) and angle θ
| p ; p sequence of operations
| {p}or{p} non-deterministic choice
| iter{p} non-deterministic iterations

Kwangkeun Yi (Seoul National U) Program Analysis 25 / 51



Static Analysis: a Gentle Introduction

Example (Semantics)

init([0, 1]× [0, 1]);
translation(1, 0);
iter{
{

translation(1, 0)
}or{

rotation(0, 0, 90◦)
}

}

x

y

x

y

x

y

Kwangkeun Yi (Seoul National U) Program Analysis 26 / 51



Static Analysis: a Gentle Introduction

Analysis Goal Is Safety Property: Reachability

Analyze the set of reachable points, to check if the set intersects with a
no-fly zone. Suppose that the no-fly zone is:

x

y

Kwangkeun Yi (Seoul National U) Program Analysis 27 / 51



Static Analysis: a Gentle Introduction

Correct or Incorrect Executions

x

y

(a) An incorrect execution

x

y

(b) Correct executions

Kwangkeun Yi (Seoul National U) Program Analysis 28 / 51



Static Analysis: a Gentle Introduction

An Example Safe Program

Example

init([0, 1]× [0, 1]);
iter{
{

translation(1, 0)
}or{

translation(0.5, 0.5)
}

}

x

y

Kwangkeun Yi (Seoul National U) Program Analysis 29 / 51



Static Analysis: a Gentle Introduction

How to Finitely Over-Approximate the Set of Reachable
Points?

Definition (Abstraction)

We call abstraction a set A of logical properties of program states, which
are called abstract properties or abstract elements. A set of abstract
properties is called an abstract domain.

Definition (Concretization)

Given an abstract element a of A, we call concretization the set of program
states that satisfy it. We denote it by γ(a).

Kwangkeun Yi (Seoul National U) Program Analysis 30 / 51



Static Analysis: a Gentle Introduction

Abstraction Example 1: Signs Abstraction

x

y

(c) Concretization of [x ≤ 0, y ≥ 0]

x

y

(d) Concretization of [x ≥ 0]

Figure: Signs abstraction

Kwangkeun Yi (Seoul National U) Program Analysis 31 / 51



Static Analysis: a Gentle Introduction

Abstraction Example 2: Interval Abstraction

The abstract elements: conjunctions of non-relational inequality
constraints: c1 ≤ x ≤ c2, c′1 ≤ y ≤ c′2

x

y

(a) Concretization of
[1 ≤ x ≤ 3, 1 ≤ y ≤ 2]

x

y

(b) Concretization of
[1 ≤ x ≤ 2]

x

y

(c) Concretization of
[1 ≤ x, 1 ≤ y]

Figure: Intervals abstraction

Kwangkeun Yi (Seoul National U) Program Analysis 32 / 51



Static Analysis: a Gentle Introduction

Abstraction Example 3: Convex Polyhedra Abstraction

The abstract elements: conjunctions of linear inequality constraints:
c1x+ c2y ≤ c3

x

y

(a) Concretization of
a0

x

y

(b) Concretization of
a1

x

y

(c) Concretization of
a2

Figure: Convex polyhedra abstraction

Kwangkeun Yi (Seoul National U) Program Analysis 33 / 51



Static Analysis: a Gentle Introduction

An Example Program, Again

Example

init([0, 1]× [0, 1]);
iter{
{

translation(1, 0)
}or{

translation(0.5, 0.5)
}

}

x

y

Figure: Reachable states

Kwangkeun Yi (Seoul National U) Program Analysis 34 / 51



Static Analysis: a Gentle Introduction

Abstractions of the Semantics of the Example Program

x

y

(a) Reachable states

x

y

(b) Intervals abstraction

x

y

(c) Convex polyhedra ab-
straction

Figure: Program’s reachable states and abstraction

Kwangkeun Yi (Seoul National U) Program Analysis 35 / 51



Static Analysis: a Gentle Introduction

Sound Analysis Function for the Example Language

Input: a program p and an abstract area a (pre-state)
Output: an abstract area a′ (post-state)

Definition (sound analysis)
An analysis is sound if and only if it captures the real execuctions of
the input program.

If an execution of p moves a point (x, y) to point (x′, y′),
then for all abstract element a such that (x, y) ∈ γ(a),

(x′, y′) ∈ γ(analysis(p, a))

Kwangkeun Yi (Seoul National U) Program Analysis 36 / 51



Static Analysis: a Gentle Introduction

Sound Analysis Function as a Diagram

If

apre

(x, y) (x′, y′)

ab
st
ra
ct
io
n

run p

then

apre

(x, y) (x′, y′)

apost = analysis(p, apre)

ab
st
ra
ct
io
n

run p

ab
st
ra
ct
io
n

analyze p

Figure: Sound analysis of a program p

Kwangkeun Yi (Seoul National U) Program Analysis 37 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation

Recall the example language

p ::= init(R) initialization, with a state in R
| translation(u, v) translation by vector (u, v)
| rotation(u, v, θ) rotation defined by center (u, v) and angle θ
| p ; p sequence of operations
| {p}or{p} non-deterministic choice
| iter{p} non-deterministic iterations

Approach
A sound analysis for a program is constructed by computing sound abstract
semantics of the program’s components.

Kwangkeun Yi (Seoul National U) Program Analysis 38 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: init(R)

Select, if any, the best abstraction of the region R.
For the example program with the intervals or convex polyhedra
abstract domains, analysis of init([0, 1]× [0, 1]) is

x

y

analysis(init(R), a) = best abstraction of the regionR

Kwangkeun Yi (Seoul National U) Program Analysis 39 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: translation(u, v)

x

y

(a) Concrete seman-
tics

x

y

apre

apost

(b) Intervals

x

y

apre

apost

(c) Convex polyhedra

analysis(translation(u, v), a) =
{

return an abstract state that contains
the translation of a

Kwangkeun Yi (Seoul National U) Program Analysis 40 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: rotation(u, v, θ)

x

y

(d) Concrete seman-
tics

x

y

apre

apost

(e) Intervals

x

y

apre

apost

(f) Convex polyhedra

analysis(rotation(u, v, θ), a) =
{

return an abstract state that contains
the rotation of a

Kwangkeun Yi (Seoul National U) Program Analysis 41 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: {p}or{p}

x

y

(g) Concrete seman-
tics

apre

apost

x

y

(h) Intervals

apre

apost

x

y

(i) Convex polyhedra

analysis({p0}or{p1}, a) = union(analysis(p1, a), analysis(p0, a))

Kwangkeun Yi (Seoul National U) Program Analysis 42 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: p0 ; p1

analysis(p0; p1, a) = analysis(p1, analysis(p0, a))

Kwangkeun Yi (Seoul National U) Program Analysis 43 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (1/5)
iter{p} is equivalent to

{}
or{p}
or{p; p}
or{p; p; p}
or{p; p; p; p}
...

Kwangkeun Yi (Seoul National U) Program Analysis 44 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (2/5)
Example (Abstract iteration)

init({(x, y) | 0 ≤ y ≤ 2x and x ≤ 0.5});
iter{

translation(1, 0.5)
}

x

y

(j) Concrete seman-
tics

x

y

(k) Analysis of p0 (0
iteration)

x

y

(l) Analysis of p1
(up to 1 iteration)

x

y

(m) Analysis of p2
(up to 2 iterations)

x

y

(n) Analysis of p3
(up to 3 iterations)

x

y

(o) Expected result

Figure: Abstract iteration

Kwangkeun Yi (Seoul National U) Program Analysis 45 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (3/5)
Recall

iter{p} = {} or {p} or {p; p} or · · ·
= limi pi

where
p0 = {} pk+1 = pk or {pk; p}

Hence,

analysis(iter{p}, a) =



R← a;
repeat

T← R;
R← widen(R, analysis(p, R));

until inclusion(R, T)
return T;

operator widen
{

over approximates unions
enforces finite convergence

Kwangkeun Yi (Seoul National U) Program Analysis 46 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (4/5)

Example (Abstract iteration with widening)

init({(x, y) | 0 ≤ y ≤ 2x and x ≤ 0.5});
iter{

translation(1, 0.5)
}

The constraints 0 ≤ y and y ≤ 2x are stable after iteration 1; thus,
they are preserved.
The constraint x ≤ 0.5 is not preserved; thus, it is discarded.

x

y

(a) Iteration 0

x

y

(b) Iteration 1

x

y

(c) Iteration 2 and
limit

Figure: Abstract iteration with widening

Kwangkeun Yi (Seoul National U) Program Analysis 47 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Computation: iter{p} (5/5)

Example (Loop unrolling)

init({(x, y) | 0 ≤ y ≤ 2x and x ≤ 0.5});
{} or { translation(1, 0.5) };
iter{ translation(1, 0.5) }

x

y

(a) Iteration 0

x

y

(b) Iteration 1, union

x

y

(c) Iteration 2, widen, limit

Figure: Abstract iteration with widening and unrolling

Kwangkeun Yi (Seoul National U) Program Analysis 48 / 51



Static Analysis: a Gentle Introduction

Abstract Semantics Function analysis At a Glance
The analysis(p, a) is finitely computable and sound.

analysis(init(R), a) = best abstraction of the regionR

analysis(translation(u, v), a) =

{
return an abstract state that contains
the translation of a

analysis(rotation(u, v, θ), a) =

{
return an abstract state that contains
the rotation of a

analysis({p0}or{p1}, a) = union(analysis(p1, a), analysis(p0, a))
analysis(p0; p1, a) = analysis(p1, analysis(p0, a))

analysis(iter{p}, a) =



R← a;
repeat

T← R;
R← widen(R, analysis(p, R));

until inclusion(R, T)
return T;

Sound analysis

If an execution of p from a state (x, y) generates the state (x′, y′),
then for all abstract element a such that (x, y) ∈ γ(a),

(x′, y′) ∈ γ(analysis(p, a))

Kwangkeun Yi (Seoul National U) Program Analysis 49 / 51



Static Analysis: a Gentle Introduction

Verification of the Property of Interest

Does program compute a point inside no-fly zone D?
Need to collect the set of reachable points.
Run analysis(p,−) and collect all points R from every call to
analysis.
Since analysis is sound, the result is an over approx. of the
reachable points.
If R ∩D = ∅, then p is verified. Otherwise, we don’t know.

x

y

(a) An example R

x

y

(b) A more precise R

Kwangkeun Yi (Seoul National U) Program Analysis 50 / 51



Static Analysis: a Gentle Introduction

Semantics Style: Compositional Versus Transitional

Compositional semantics function analysis:
I Semantics of p is defined by the semantics of the sub-parts of p.

JABK = · · · JAK · · · JBK · · ·

I Proving its soundness is thus by structural induction on p.
For some realistic programming languages, even defining their
compositional (“denotational”) semantics is a hurdle.

I gotos, exceptions, function calls

Transitional-style (“operational”) semantics avoids the hurdle

JABK = {s0 ↪→ s1 ↪→ · · · , · · · }

Kwangkeun Yi (Seoul National U) Program Analysis 51 / 51


	Introduction
	Static Analysis: a Gentle Introduction

