
A Polymorphic Modal Type System for Lisp-like
Multi-Staged Languages

Kwangkeun Yi

SNU 4541.780, Fall 2006

Lecture 1

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Outline

1. Introduction and Challenge

2. Contribution and Ideas

3. Simple Type System

4. Polymorphic Type System

5. Conclusion

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Multi-Staged Programming (1/2)

program texts (code) as first class objects
“meta programming”

A general concept that subsumes

macros

Lisp/Scheme’s quasi-quotation

partial evaluation

runtime code generation

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Multi-Staged Programming (2/2)

divides a computation into stages

program at stage 0: conventional program

program at stage n + 1: code as data at stage n

Stage Computation Value

0 usual + code + eval usual + code

> 0 code substitution code

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Multi-Staged Programming Examples (1/2)

In examples, we will use Lisp-style staging constructs + only 2
stages

e ::= · · ·
| ‘ e code as data
| , e code substitution
| eval e execute code

Code as data

let NULL = ‘0
let body = ‘(if e = ,NULL then abort() ...)
in eval body

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Multi-Staged Programming Examples (1/2)

In examples, we will use Lisp-style staging constructs + only 2
stages

e ::= · · ·
| ‘ e code as data
| , e code substitution
| eval e execute code

Code as data

let NULL = ‘0
let body = ‘(if e = ,NULL then abort() ...)
in eval body

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Multi-Staged Programming Examples (2/2)

Specializer/Partial evaluator

power(x,n) = if n=0 then 1 else x * power(x,n-1)

v.s. power(x,3) = x*x*x

prepared as

let spower(n) = if n=0 then ‘1 else ‘(x*,(spower (n-1)))
let fastpower10 = eval ‘(λx.,(spower 10))
in fastpower10 2

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Review: Practice of Multi-Staged Programming

open code
‘(x+1)

intentional variable-capturing substitution at stages > 0

‘(λx.,(spower 10))

capture-avoiding substitution

‘(λ∗x.,(spower 10) + x)

imperative operations with open code

cell := ‘(x+1); · · · cell := ‘(y 1);

Features of Lisp/Scheme’s quasi-quotation system

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Challenge

A static type system that supports the practice.

Should allow programmers both

type safety and

the expressivenss of Lisp/Scheme’s quasi-quote operators

Existing type systems support only part of the practice.

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Our Contribution

A type system for ML + Lisp’s quasi-quote system

supports multi-staged programming practice

open code: ‘(x+1)
unrestricted imperative operations with open code
intentional var-capturing substitution at stages > 0
capture-avoiding substitution at stages > 0

conservative extension of ML’s let-polymorphism

principal type inference algorithm

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Comparison

(1) closed code and eval (2) open code
(3) imperative operations (4) type inference
(5) var-capturing subst. (6) capture-avoiding subst.
(7) polymorphism (8) alpha equiv. at stage n + 1

Our system +1 +2 +3 +4 +5 +6 +7 −8
[Rhiger 2005] +1 +2 +3 −4 +5 −6 −7 −8
[Calcagno et al. 2004] +1 +2 −3 +4 −5 +6 +7 +8
[Ancona & Moggi 2004] +1 +2 +3 −4 −5 +6 −7 +8
[Taha & Nielson 2003] +1 +2 −3 −4 −5 +6 +7 +8
[Chen & Xi 2003] +1 +2 +3 −4 +5 −6 +7 −8
[Nanevsky & Pfenning 2002] +1 +2 +3 −4 −5 +6 −7 +8
MetaML/Ocaml[2000,2001] +1 +2 −3 +4 −5 +6 +7 +8
[Davies 1996] −1 +2 −3 −4 −5 +6 −7 +8
[Davies & Pfenning 1996,2001] +1 −2 +3 +4 −5 +6 −7 +8

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Ideas

code’s type: parameterized by its expected context

2(Γ . int)

view the type environment Γ as a record type

Γ = {x : int, y : int → int, · · · }

stages by the stack of type environments (modal logic S4)

Γ0···Γn ` e : A

with “due” restrictions
let-polymorphism for syntactic values
monomorphic Γ in code type 2(Γ . int)
monomorphic store types

Natural ideas worked.

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Multi-Staged Language

e ::= c | x | λx.e | e e
| box e code as data ‘ e
| unboxk e code substitution , . . . ,e
| eval e execute code
| λ∗x.e gensym
| · · ·

Evaluation
E ` e

n−→ r

where
E : value environment
n: a stage number
r: a value or err

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Operational Semantics (stage n ≥ 0)

at stage 0: normal evaluation + code + eval

at stage > 0: code substitution

(EBOX)
E ` e

n+1−→ v

E ` box e
n−→ box v

(EUNBOX)
E ` e

0−→ box v k > 0

E ` unboxk e
k−→ v

(EEVAL)
E ` e

0−→ box v E ` v
0−→ v′

E ` eval e
0−→ v′

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Simple Type System (1/2)

Type A,B ::= ι | A → B | 2(Γ . A)

code type
‘(x+1): 2({x : int, · · · } . int)

typing judgment
Γ0···Γn ` e : A

(TSBOX)
Γ0···ΓnΓ ` e : A

Γ0···Γn ` box e : 2(Γ . A)

(TSUNBOX)
Γ0···Γn ` e : 2(Γn+k . A)

Γ0···Γn···Γn+k ` unboxke : A

(TSEVAL)
Γ0···Γn ` e : 2(∅ . A)
Γ0···Γn ` eval e : A

(for alpha-equiv. at stage 0)

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Simple Type System (1/2)

Type A,B ::= ι | A → B | 2(Γ . A)

code type
‘(x+1): 2({x : int, · · · } . int)

typing judgment
Γ0···Γn ` e : A

(TSBOX)
Γ0···ΓnΓ ` e : A

Γ0···Γn ` box e : 2(Γ . A)

(TSUNBOX)
Γ0···Γn ` e : 2(Γn+k . A)

Γ0···Γn···Γn+k ` unboxke : A

(TSEVAL)
Γ0···Γn ` e : 2(∅ . A)
Γ0···Γn ` eval e : A

(for alpha-equiv. at stage 0)

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Simple Type System (2/2)

(TSCON) Γ0···Γn ` c : ι

(TSVAR)
Γn(x) = A

Γ0···Γn ` x : A

(TSABS)
Γ0··· (Γn + x : A) ` e : B

Γ0···Γn ` λx.e : A → B

(TSGENSYM)
Γ0··· (Γn + w : A) ` [xn n7→ w] e : B fresh w

Γ0···Γn ` λ∗x.e : A → B

(TSAPP)
Γ0···Γn ` e1 : A → B Γ0···Γn ` e2 : A

Γ0···Γn ` e1e2 : B

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Polymorphic Type System (1/4)

A combination of

ML’s let-polymorphism

syntactic value restriction + multi-staged “expansiven(e)”
expansiven(e) = False
=⇒ e never expands the store during its eval. at ∀stages≤ n

e.g.) ‘(λx.,e) : can be expansive
‘(λx.eval y) : unexpansive

Rémy’s record types [Rémy 1993]

type environments as record types with field addition
record subtyping + record polymorphism

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Polymorphic Type System (2/4)

if e then ‘(x+1) else ‘1: 2({x : int}ρ . int)
then-branch: 2({x : int}ρ′ . int)
else-branch: 2(ρ′′ . int)

let x = ‘y in ‘(,x + w); ‘((,x 1) + z)

x: ∀α∀ρ.2({y : α}ρ . α)
first x: 2({y : int, w : int}ρ′ . int)
second x: 2({y : int → int, z : int}ρ′′ . int → int)

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Polymorphic Type System (3/4)

typing judgment
∆0···∆n ` e : A

(TBOX)
∆0···∆nΓ ` e : A

∆0···∆n ` box e : 2(Γ . A)

(TUNBOX)
∆0···∆n ` e : 2(Γ . A) ∆n+k � Γ k > 0

∆0···∆n···∆n+k ` unboxk e : A

(TEVAL)
∆0···∆n ` e : 2(∅ . A)
∆0···∆n ` eval e : A

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Polymorphic Type System (4/4)

(TVAR)
∆n(x) � A

∆0···∆n ` x : A

(TABS)
∆0··· (∆n + x : A) ` e : B

∆0···∆n ` λx.e : A → B

(TAPP)
∆0···∆n ` e1 : A → B ∆0···∆n ` e2 : A

∆0···∆n ` e1e2 : B

(TLETIMP)

expansiven(e1)
∆0···∆n ` e1 : A ∆0···∆n + x : A ` e2 : B

∆0···∆n ` let (x e1) e2 : B

(TLETAPP)

¬ expansiven(e1)
∆0···∆n ` e1 : A
∆0···∆n + x : GENA(∆0···∆n) ` e2 : B

∆0···∆n ` let (x e1) e2 : B

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Type Inference Algorithm

Unification:

Rémy’s unification for record type Γ
usual unification for new type terms such as 2(Γ .A) and A ref

Type inference algorithm:

the same structure as top-down version M [Lee and Yi 1998]
of the W
usual on-the-fly instantiation and unification

Sound If infer(∅, e, α) = S then ∅; ∅ ` e : Sα.
Complete If ∅; ∅ ` e : Rα then infer(∅, e, α) = S and R = TS for some

T .

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Type Inference Algorithm

Unification:

Rémy’s unification for record type Γ
usual unification for new type terms such as 2(Γ .A) and A ref

Type inference algorithm:

the same structure as top-down version M [Lee and Yi 1998]
of the W
usual on-the-fly instantiation and unification

Sound If infer(∅, e, α) = S then ∅; ∅ ` e : Sα.
Complete If ∅; ∅ ` e : Rα then infer(∅, e, α) = S and R = TS for some

T .

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Conclusion

A type system for ML + Lisp’s quasi-quote system

supports multi-staged programming practice

conservative extension to ML’s let-polymorphism

principal type inference algorithm

Exact details, lemmas, proof sketchs, and embedding relations in
the paper; full proofs in the technical report.

Staged programming “practice” has a sound static type system.

Thank you.

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Conclusion

A type system for ML + Lisp’s quasi-quote system

supports multi-staged programming practice

conservative extension to ML’s let-polymorphism

principal type inference algorithm

Exact details, lemmas, proof sketchs, and embedding relations in
the paper; full proofs in the technical report.

Staged programming “practice” has a sound static type system.

Thank you.

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

Conclusion

A type system for ML + Lisp’s quasi-quote system

supports multi-staged programming practice

conservative extension to ML’s let-polymorphism

principal type inference algorithm

Exact details, lemmas, proof sketchs, and embedding relations in
the paper; full proofs in the technical report.

Staged programming “practice” has a sound static type system.

Thank you.

Kwangkeun Yi A Polymorphic Type System for Multi-Staged Languages

