
Contents

Erlang
Plan
What is Erlang?
History
Essential Characteristics
Erlang - Background
Erlang - Properties
Sequential Erlang in 5 examples
Primitives for concurrency and distribution
Concurrent Erlang in 3 examples
Distributed Erlang in 1 example
Fault tolerant Erlang in 3 examples
Hot code replacement Erlang in 1 example
Generic Client-Server
Paramaterising the Server
Comments
Technique
Products in Erlang
OTP
Open Source Erlang
Development
Thoughts
The Bluetail Story

Contents

Next

Previous

Search

Exit

Marketing
Finally

Contents

Next

Previous

Search

Exit

Erlang 1

Erlang

Erlang Tutorial
Joe Armstrong (joe.armstrong@telia.com)

Florence
2 September 2001

(version 1.0)

Contents

Next

Previous

Search

Exit

Plan 2

Plan

• Erlang.

• Plan.

• What is Erlang?

• History.

• Essential Characteristics.

• Erlang - Background.

• Erlang - Properties.

• Sequential Erlang in 5 examples.

• Primitives for concurrency and distribution.

• Concurrent Erlang in 3 examples.

• Distributed Erlang in 1 example.

• Fault tolerant Erlang in 3 examples.

• Hot code replacement Erlang in 1 example.

• Generic Client-Server.

• Paramaterising the Server.

• Comments.

• Technique.

Contents

Next

Previous

Search

Exit

Plan 2

• Products in Erlang.

• OTP.

• Open Source Erlang.

• Development.

• Thoughts.

• The Bluetail Story.

• Marketing.

• Finally.

Contents

Next

Previous

Search

Exit

What is Erlang? 3

What is Erlang?

• The result of a technology transfer effort to transfer some of the best ideas in FP/Logic
programming into an industrial context.

• A language for programmingdistributed fault-tolerant soft real-time non-stop applications.

• A set of well-tested libraries for programmingdistributed...

• A set of programming patterns for programmingdistributed...

• A set of routines for programmingdistributed...

• An application OS for deliveringdistributed...

• A rapid application delivery platform for programmingdistributed...

• A functional programming language.

"functional" is deliberately last in this list :-)

What it is not

• A research vehicle.

• A language for efficient sequential computation.

Contents

Next

Previous

Search

Exit

History 4

History

• Pre 1986 - Programming experiments - how to program a telephone exchange.

• 1986 - Erlang emerges as dialect of Prolog. Implementation is a Prolog interpretor - 1
developer (Joe).

• 1989 - 3 developers (Mike, Robert, Joe), 10 Users. Own abstract machine (JAM)

• 1993 - Erlang systems founded (25 people).

• 1996 - OTP formed. AXD301 development starts.

• 1998 - Erlang banned within Ericsson for new products.

• 1998 - Open source Erlang.

• 1998 - Erlang "fathers" quit Ericsson. Starts Bluetail.

• 2000 - Blutail sold to Alteon Web systems.

• 2000 - Alteon web systems sold to Nortel Networks

• 2001 - Nortel produces SSL accelerator (best in test),

http://www.networkcomputing.com/1212/1212f46.html+ ISD platform.

• 2001 - Erlang (Alteon) group is "down-sized".

Contents

Next

Previous

Search

Exit

Essential Characteristics 5

Essential Characteristics

These are essential:

• Change code in a running system.

• Dynamic sizes of all objects.

• Fast context switching/message passing.

• Low memory overhead per process/task.

• Thousands of processes.

• No memory leaks/fragmentation.

• No "global" errors. Stop errors propagating.

• Methods to be able to recover from SW and HW errors.

• Simple language, easy to learn.

• Predictable performance.

• Easy to port/implement.

Non essential

• Static type system.

• "Pure".

• Lazy.

Contents

Next

Previous

Search

Exit

Erlang - Background 6

Erlang - Background

Background:

• Computer Science Lab founded 1983.

• Experiments with:Ada, C, concurrent Euclid, Eri-Pascal, CLU, ML, CML, LPL, PFL, Hope,
Prolog, OPS5,with real telecom hardware.

• Solve "essential characteristics".

• Use standard OS.

• Use standard processors.

• Distributed system.

• High level language.

Contents

Next

Previous

Search

Exit

Erlang - Properties 7

Erlang - Properties

• Functional/single assignment.

• Light weight processes.

• Asynchronous message passing (send and pray).

• OS independent.

• Special error handling primitives.

• Lists, tuples, binaries.

• Dynamic typing (an optional soft typing system is being developed).

• Real-time GC.

Contents

Next

Previous

Search

Exit

Sequential Erlang in 5 examples 8

Sequential Erlang in 5 examples

1 - Factorial

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

2 - Binary Trees

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key < Key1 ->
lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->
lookup(Key, B);

lookup(Key, nil) ->
not_found.

3 - Append

Contents

Next

Previous

Search

Exit

Sequential Erlang in 5 examples 8

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X <- Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Adder(10).
#Fun
> G(5).
15

Contents

Next

Previous

Search

Exit

Primitives for concurrency and distribution 9

Primitives for concurrency and distribution

spawn

Pid = spawn(fun() -> loop(0) end).

send and receive

Pid ! Message,
.....

receive
Message1 ->

Actions1;
Message2 ->

Actions2;
...

after Time ->
TimeOutActions

end

Distribution

Contents

Next

Previous

Search

Exit

Primitives for concurrency and distribution 9

...
Pid = spawn(Fun@Node)
...
alive(Node)
...
not_alive(Node)

Contents

Next

Previous

Search

Exit

Concurrent Erlang in 3 examples 10

Concurrent Erlang in 3 examples

1 - "area" server

-module(math).
-export([fac/1]).

start() ->
spawn(fun() -> loop(0) end).

loop(Tot) ->
receive

{Pid, {square, X}} ->
Pid ! X*X,
loop(Tot + X*X);

{Pid, {rectangle,[X,Y]}} ->
Pid ! X*Y,
loop(Tot + X*Y);

{Pid, areas} ->
Pid ! Tot,
loop(Tot)

end.

2 - Area client

Contents

Next

Previous

Search

Exit

Concurrent Erlang in 3 examples 10

Pid ! {self(), {square, 10}},
receive

Area ->
...

end

3 - Global Server

...
Pid = spawn(Fun),
register(bank, Pid),
...
bank ! ...

Contents

Next

Previous

Search

Exit

Distributed Erlang in 1 example 11

Distributed Erlang in 1 example

...
Pid = spawn(Fun@Node)
...
alive(Node)
...
not_alive(Node)

Contents

Next

Previous

Search

Exit

Fault tolerant Erlang in 3 examples 12

Fault tolerant Erlang in 3 examples

1 - catch

> X = 1/0.
** exited: {badarith, divide_by_zero} **
> X = (catch 1/0).
{’EXIT’,{badarith, divide_by_zero}}
> b().
X = {’EXIT’,{badarith, divide_by_zero}}

2 - Catch and throw

case catch f(X) ->
{exception1, Why} ->

Actions;
NormalReturn ->

Actions;
end,

f(X) ->
...
Normal_return_value;

f(X) ->
...
throw({exception1, ...}).

Contents

Next

Previous

Search

Exit

Fault tolerant Erlang in 3 examples 12

3 - Links and trapping exits

process_flag(trap_exits, true),
P = spawn_link(Node, Mod, Func, Args),
receive

{’EXIT’, P, Why} ->
Actions;

...
end

Contents

Next

Previous

Search

Exit

Hot code replacement Erlang in 1 example 13

Hot code replacement Erlang in 1 example

Here’s the server:

loop(Data, F) ->
receive

{request, Pid, Q} ->
{Reply, Data1} = F(Q, Data),
Pid ! Reply,
loop(Data1, F);

{change_code, F1} ->
loop(Data, F1)

end

To do a code replacement operation do something like:

Server ! {change_code, fun(I, J) ->
do_something(...)

end}

The (real-time) garbage collector removes F!

Contents

Next

Previous

Search

Exit

Generic Client-Server 14

Generic Client-Server

start(Name, Data, Fun) ->
register(Name,

spawn(fun() ->
loop(Data, Fun)

end)).

rpc(Name, Q) ->
Tag = ref(),
Name ! {query, self(), Tag, Q},
receive

{Tag, Reply} -> Reply
end.

loop(Data, F) ->
receive

{query, Pid, Tag, Q} ->
{Reply, Data1} = F(Q, Data),
Pid ! {Tag, Reply},
loop(Data1, F)

end.

Contents

Next

Previous

Search

Exit

Paramaterising the Server 15

Paramaterising the Server

start() -> cs:start(keydb, [], fun handler/2).

add(Key, Val) -> cs:rpc(keydb, {add, Key, Val}).
lookup(Key) -> cs:rpc(keydb, {lookup, Key}).

handler({add, Key, Val}, Data) ->
{ok, add(Key,Data)}.

handler({lookup, Key}, Data) ->
{find(Key, Data), Data}.

add(Key,Val,[{Key, _}|T]) -> [{Key,Val}|T];
add(Key,Val,[_|T]) -> [H|add(Key,Val,T)];
add(Key,Val,[]) -> [{Key,Val}].

find(Key,[{Key,Val}|_]) -> {found, Val};
find(Key,[H|T]) -> find(Key, T);
find(Key,[]) -> error.

• Sequential.

• Can be typed.

• Isolates (concurrent + error handling + ...) code from sequential code.

Contents

Next

Previous

Search

Exit

Comments 16

Comments

Why is this nice?

• We can structure the system so that 95% of the code is written as client code and 5% as
“concurrency patterns”.

• We could type check the client code.

• We cannot type check the generic code.

• The generic code is written and tested by “experts”.

• Client code written by applications programmers.

• 10 patterns suffice for almost all know patterns of concurrency. Client-server, Worker-
supervisor, event-handler, upgrade-handler, keep-me-alive, hot-standby.

Contents

Next

Previous

Search

Exit

Technique 17

Technique

• 1986 - 1989 Prolog interpretor.

• 1988 - JAM.

• 1989 - Vee.

• 1992 - Beam.

• 1995 - Types.

• 1996 - Hype.

• 1997 - Erlang97, Standard.

• 1998? - FPGA.

Contents

Next

Previous

Search

Exit

Products in Erlang 18

Products in Erlang

• 1986 - 1988 ACS/Dunder (Ericsson).

• 1988 - 1993 Many small projects.

• 1992 - 1995 MOB (Ericsson).

• 1992 - 1994 A few medium projects (NetSim, Teletrain, ..) (Ericsson).

• 1996 - ATM, Elvira (MOB2)(Ericsson).

• 1998 - AXD301 (Ericsson).

• 1999 - GPRS (Ericsson).

• 2000 - Mail robustifier (Bluetail).

• 2001 - ISD platform, SSL accelerator (Nortel/Alteon).

Contents

Next

Previous

Search

Exit

OTP 19

OTP

What is OTP?

OTP stands forOpen Telecom Platform . OTP is a "middleware platform for building high-
availability, fault-tolerant, distributed, soft real-time, applications.

• A large number of libraries.

• A collection of behaviors(programming patterns) which encapsulate common behavorial
patterns. For example, client-server, supervision-tree, ...

• A set ofapplications- completed software components that can be plugged together to per-
form complex tasks. For example, eva - a distributed event and history logging infrastructure,
Corba, ...

• Similar in scope to.NET - but limited to one language (Erlang).

• Available fromhttp://www.erlang.org/.

• "Open source" license(do what you want).

Contents

Next

Previous

Search

Exit

Open Source Erlang 20

Open Source Erlang

• OSE - is thesameErlang release that Ericsson uses in its products. For example, AXD301
GRPS etc.

• Produced by Ericsson OTP group - with external inputs :-).

• Used in several Ericsson products (AXD301, GRPS etc.) - and in a number of new Nortel
products (SSL accelerator, ISD platform etc.).

• Highly mature implementation - i.e. thefirst public Erlang release (1998) had already been
proved in several commercial products (Mobility server etc.) - The ERTS (Erlang Run
Time System) might inspire anyone interested in implementation issues for systems offering
concurrency together with garbage collected languages (for example Java or CIL compiled
languages in.NET).

• Has demonstrated long term performance reliability. Possibly years of non-stop operation
(nobody really knows :-).

Contents

Next

Previous

Search

Exit

Development 21

Development

• 1986 – 1 developer, 0 users, 0 support.

• 1989 – 3 developers, 10 users, 0.5 support.

• 1991 – 4 developers, 40 users, 1.0 support.

• 1993 – Erlang systems founded. ES grows from 3 - 25 people in 3 years.

• 1996 – OTP founded. Grows to 30 in 2 years.

• 1997 – 10 developers. 300 Erlang programmers (1000 total project employed). 5 big (100+)
projects. Many small (< 20) projects.

Needed Erlang Systems to expand. Courses/consulting vital for first phase of expansion.

Needed OTP to get into Ericsson mainstream. Needed good documentation, professional project
management and revision control.

If it hasn’t got a part number it doesn’t exist.

We still did everything ourselves but we got more help.

Contents

Next

Previous

Search

Exit

Thoughts 22

Thoughts

• The “gap” – the best that research has to offer and the minimum acceptable by industry is
too large.

• You need good support. e-mail, telephone, consulting (days - years).

• Good documentation costs money.

• To displace an existing technology you have to wait for something to fail.

• Step into the vacuum after a crisis has occurred – look for the gaps.

• Use “satisfied users” to sell to new users (credibility).

• Don’t fight, you never win, you only loose.

• Ditch committees, pre-studies, reports – find the hero programmer.

• Talk, talk, talk, talk to the hero programmer (not telephone, e-mail etc.

• Put all development on one site (corridor).

Contents

Next

Previous

Search

Exit

The Bluetail Story 23

The Bluetail Story

• 1998 - Bluetail was formed by the Erlang "fathers" (except Mike Williams, who stayed on in
Ericsson and in now a "big boss") + Jane Walerud.

• Business idea -Bringing reliability to the Internet.

• 1999 - First product (BMR = Bluetail Mail Robustifier) - programmed in Erlang in three
months from scratch.

• BMR programmed using a generic "reliable, high-availability" behavior - a behavior that can
be paramaterised with 17 different funs.

• 1999 - BMR sold to Telnordia (Swedens 3’rd biggest ISP) handles all Telnordia e-mail.

• 2000 - Bluetail sold to Alteon web systems for 1.4B SEK. They were after the technology
(Erlang).

• 2000 - Alteon sold to Nortel networks for 7.8B USD.

• 2000 - Jane Walerud - Swedish "IT person of the year".

• 2001 - The death the the dotcoms - downsized. Nortel writes off 8B USD for the Alteon
purchase.

Contents

Next

Previous

Search

Exit

Marketing 24

Marketing

Don’t

• tell them its a PL.

• use the word declarative (they might ask you what it means!).

• use the word functional.

• confuse them with measurements and facts.

• claim you can do everything (you can’t).

Emphase

• time to market (it’s shorter).

• total life cycle costs (reduced).

• total cost of ownership (reduced).

• the IPSE, or IDE (don’t use the word “emacs”).

• the re-usable components, or API’s (don’t call them libraries).

Use latest buzzwords

There is a “performance gap” – but we try to run on the fastest available processors, then the gap is less of a problem. We are “sufficiently fast”

Contents

Next

Previous

Search

Exit

Finally 25

Finally

• Concentrate onessential features.

• You will never displace an existing technology if it works –Wait for the failures.

• Movequickly into the vacuum after a failure.

• Develop new unchallenged application areas.

• 5% of all real system software sucks – don’t worry. Ship it and improve it later.

• FP is ahere and now technology– companies using FP will demonstrate real commercial
advantage over those using conventional technology

• You need abusiness infrastructure(People expert in Business development, Marketing, Sales,
Lawyers, ...) to succeed.

• Writing a business plan is just like writing a research proposal.

• Writing a patent plan is just like writing a conference paper.

• Move towards the mainstream.

• Don’t be shy asking for money - remember it is the programmers who are the heros - we
invented the Internet.

• Nurture your VCs, lawyers, business people. Explain to them how it works, in terms that
they can understand. Be very patient.

• Do fun stuff.

• Have fun.

Contents

Next

Previous

Search

Exit

