
Soundness by Static Analysis and
False-alarm Removal by Statistical Analysis:

Our Airac Experience∗

Yungbum Jung, Jaehwang Kim, Jaeho Shin, Kwangkeun Yi
{dreameye,jaehwang,netj,kwang}@ropas.snu.ac.kr

Programming Research Laboratory
Seoul National University

ABSTRACT
We present our experience of combining, in a realistic set-
ting, a static analysis for soundness and a statistical analysis
for false-alarm removal. The static analyzer is Airac that
we have developed in the abstract interpretation framework
for detecting buffer overruns in ANSI + GNU C programs.
Airac is sound (finding all bugs) but with false alarms. Airac
raised, for example, 970 buffer-overrun alarms in commer-
cial C programs of 5.3 million lines and 233 among the 970
alarms were true. We addressed the false alarm problem by
computing a probability of each alarm being true. We used
Bayesian analysis and Monte Carlo method to estimate the
probabilities and their credible sets. Depending on the user-
provided ratio of the risk of silencing true alarms to that of
false alarming, the system selectively present the analysis
results (alarms) to the user. Though preliminary, the per-
formance of the combination lets us not hastefully trade the
analysis soundness for a reduced number of false alarms.

1. Introduction
When one company’s software quality assurance depart-

ment started working with us to build a static analyzer that
automatically detects buffer overruns1 in their C softwares,
they challenged us on three aspects: they hoped the ana-
lyzer 1) to be sound, detecting all possible buffer overruns;
2) to have a “reasonable” cost-accuracy balance; 3) not to
assume a particular set of programming style about the C
programs to analyze. Building a C buffer-overrun analyzer
that satisfies all the three requirements was a big challenge.
In the literature, we have seen impressive static analyzers,
but their application targets allow them to drop one of the
three aspects [6, 3, 9, 8].

In this article, we present our response that consists of
two things: a sound analyzer named Airac and a statisti-
cal analysis engine on top of it. Airac collects all the true
buffer-overrun points in C programs yet always with false

∗To be presented in BUGS 2005 Workshop on the Eval-
uation of Software Defect Detection Tools, Chicago,
June 2005. This work was supported by Brain Korea 21
of Korea Ministry of Education and Human Resource De-
velopment, and by National Security Research Institute of
Korea Ministry of Information and Communication.
1Buffer overruns happen when an index value is out of the
target buffer size. They are common bugs in C programs
and are main sources of security vulnerability. From 1/2[2]
to 2/3[1] of security holes are due to buffer overruns.

alarms. The soundness is maintained, and the analysis ac-
curacy is stretched to a point where the analysis cost remains
acceptable. The statistical engine, given the analysis results
(alarms), estimates the probability of each alarm being true.
Only the alarms that have true-alarm probabilities higher
than a threshold are reported to the user. The threshold is
determined by the user-provided ratio of the risk of silencing
true alarms to that of raising false alarms.

2. Airac, a Sound Analyzer
Automatically detecting buffer overruns in C programs is

not trivial. Arbitrary expressions from simple arithmetics
to values returned by function calls can be array indices.
Pointers pointing buffers can be aliased and they can be
passed over as function parameters and returned from func-
tion calls. Buffers and pointers are equivalent in C. Contents
of buffers themselves also can be used as indexes of arrays.
Pointer arithmetic complicates the problem once more.

Airac’s sound design is based on the abstract interpreta-
tion framework[4, 5]. To find out all possible buffer overruns
in programs, Airac has to consider all states which can occur
during programs executions. Airac computes sound approx-
imation of program state at every program point and reports
all possible buffer overruns by examining the approximate
program states.

For a given program, Airac computes a map from flow
edges to abstract machine states. The abstract machine
state consists of abstract stack, abstract memory and ab-
stract dump. Abstract stack, abstract memory and abstract
dump are maps of which range domains consist of abstract

values. We use interval domain bZ for abstract numeric val-
ues. [a, b] ∈ bZ represents an integer interval that has a as
minimum and b as maximum. And this interval means a
set of numeric values between a and b. To represent infinite
interval, we use −∞ and +∞. [−∞,+∞] means all integer
values. An abstract array (an abstract pointer to an array)
is a triple which consists of its base location, its size interval,
and an offset interval. We use allocation sites to denote ab-
stract memory locations. An integer array which is allocated
at l and has size s is represented as 〈l, [s, s], [0, 0]〉.

2.1 Striking a Cost-Accuracy Balance
Airac has many features designed to decrease false alarms

or to speed-up analysis and all techniques don’t violate the
analysis soundness.

2.1.1 Accuracy Improvement

1

Time #Airac Alarms #Real
Software #Lines

(sec) #Buffers #Accesses bugs
GNU S/W tar-1.13 20,258 576.79s 24 66 1

bison-1.875 25,907 809.35s 28 50 0
sed-4.0.8 6,053 1154.32s 7 29 0
gzip-1.2.4a 7,327 794.31s 9 17 0
grep-2.5.1 9,297 603.58s 2 2 0

Linux kernel vmax302.c 246 0.28s 1 1 1
version xfrm user.c 1,201 45.07s 2 2 1
2.6.4 usb-midi.c 2,206 91.32s 2 10 4

atkbd.c 811 1.99s 2 2 2
keyboard.c 1,256 3.36s 2 2 1
af inet.c 1,273 1.17s 1 1 1
eata pio.c 984 7.50s 3 3 1
cdc-acm.c 849 3.98s 1 3 3
ip6 output.c 1,110 1.53s 0 0 0
mptbase.c 6,158 0.79s 1 1 1
aty128fb.c 2,466 0.32s 1 1 1

Commercial software 1 109,878 4525.02s 16 64 1
Softwares software 2 17,885 463.60s 8 18 9

software 3 3,254 5.94s 17 57 0
software 4 29,972 457.38s 10 140 112
software 5 19,263 8912.86s 7 100 3
software 6 36,731 43.65s 11 48 4
software 7 138,305 38328.88s 34 147 47
software 8 233,536 4285.13s 28 162 6
software 9 47,268 2458.03s 25 273 1

Table 1: Analysis speed and accuracy of Airac

We use the following techniques to improve the analysis
accuracy of Airac:

• Unique Renaming Memory locations are abstracted
by allocation sites. In Airac, sites of variable declara-
tions are represented by variable name and other sites
are assigned unique labels. So to prevent interferences
among variables, Airac renames all variables to have
unique names.

• Narrowing After Widening The height of integer
interval domain is infinite. Widening operator[4] is
essential for the analysis termination. But this opera-
tor decreases accuracy of analysis result. Narrowing is
used for recovering accuracy.

• Flow Sensitive Analysis Destructive assignment is
always allowed except for within cyclic flow graphs.

• Context Pruning We can confine interval values us-
ing conditional expressions of branch statements. Airac
uses these information to prune interval values and this
pruning improve analysis accuracy.

• Polyvariant Analysis Function-inlining effect by la-
beling function-body expressions uniquely to each call-
site: the number of different labels for an expression is
bound by a value from user. This method is weakened
within recursive call cycles.

• Static Loop Unrolling Loop-unrolling effect by la-
beling loop-body expressions uniquely to each itera-
tion: the number of different labels for an expression
is bound by a value from the user.

2.1.2 Cost Reduction
When the fixpoint iteration reaches the junction points,

we have to check the partial orders of abstract machines
and we also commit the join(t) operations. These tasks
take most of analysis time. The speed of the analysis highly
depends on how we handle such operations efficiently.

We developed techniques to reduce time required for par-
tial order checking and join operation.

• Stack Obviation We transform the original programs
whose effects on stack are reflected by the memory.
And this transformation makes Airac avoid scanning
abstract stacks during ordering abstract machines.

• Selective Memory Join Airac keeps track of in-
formation that indicates changed entries in abstract
memory. Join operation is applied only to those changed
values.

• Wait-at-Join For program points where many data
flows join, Airac delays the computation for edges start-
ing from the current point until all computations for
the incoming edges are done.

3. Performance of Airac
This section presents Airac’s performance. Numbers that

are before the statistical engine sift out alarms that are prob-
ably false.

Airac is implemented in nML2 and tested to analyze GNU
softwares, Linux kernel sources and commercial softwares.

2Korean dialect of ML programming language.
http://ropas.snu.ac.kr/n

2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50000 100000 150000 200000 250000

A
na

ly
si

s
Ti

m
e(

se
c)

Size(# of lines)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

A
na

ly
si

s
Ti

m
e(

se
c)

Size(# of lines)
(a) (b)

Figure 1: Airac’s scalability

The commercial softwares are all embedded softwares. Airac
found some fatal bugs in these softwares which were under
development. Table 1 shows the result of our experiment.
“#Lines” is the number of lines of the C source files be-
fore preprocessing them. “Time” is the user CPU time in
seconds. “#Buffers” is the number of buffers those may
be overrun. “#Accesses” is the number of buffer-access ex-
pressions that may overrun. “#Real Bugs” is the number
of buffer accesses that are confirmed to be able to cause real
overruns. Two graphs in Figure 1 show Airac’s scalability
behavior. X axis is the size (number of lines) of the input
program to analyze and Y axis is the analysis time in sec-
onds. (b) is a microscopic view of (a)’s lower left corner.
Experiment was done in a Linux system with a Pentium4
3.2GHz CPU and 4GB of RAM.

We found some examples in real codes that Airac’s accu-
racy and soundness shines:

• In GNU S/W tar-1.13 program rmt.c source, Airac de-
tected the overrun point inside the get string func-
tion to which a buffer pointer is passed:

static void
get_string (char *string)
{

int counter;

for (counter = 0;
counter < STRING_SIZE;
counter++) {

.....
}
string[counter] = ’\0’;

// counter == STRING_SIZE
}

int
main (int argc, char *const *argv)
{

char device_string[STRING_SIZE];
......
get_string(device_string);
......

}

• Airac catched errors in the following simple cases, for
which syntactic pattern matching or unsound analyzer
are likely to fail to detect.

– Function pointer is used for calculating an index
value:

int incr(int i) { return i+1;}
int decr(int i) { return i-1;}

main() {
int (*farr[]) (int) = {decr, decr, incr};
int idx = rand()%3;
int arr[10];
int num = farr[idx](10);
arr[num] = 10; //index:[9, 11]

}

– Index variable is increased in an infinite loop:

main() {
int arr[10];
int i = 0;
while(1){

*(arr + i) = 10; //index:[0, +Inf]
i++;

}
}

– Index variable is passed to a function by param-
eter and updated in the function:

simpleCal(int idx) {
int arr[10];
idx += 5;
idx += 10;
arr[idx]; //index:[17, 17]

}
main() {

simpleCal(2);
}

4. Sifting-out False Alarms
By Statistical Post Analysis

We use Bayesian approach [7] to compute the probability
of alarms being true. Let ⊕ denote the event an alarm raised
is true and ª the event an alarm is false. Si denotes a single
symptom is observed in the raised alarm and ~S is a vector of
such symptoms. P (E) denotes the probability of an event
E, and P (A | B) is the conditional probability of A given
B. Bayes’ rule is used to predict the probability of a new
event from prior knowledge. In our case, we accumulate
the number of true and false alarms having each specific
symptom from alarms already verified and classified to be
true or false by humans. From this knowledge we compute

3

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

of

 a
la

rm
s

probability for an alarm to be true

of true alarms
of false alarms

Figure 2: Probability of alarms being true. False alarms are counted in negative numbers. 52% of false
alarms have probabilities under 0.14.

the probability of a new alarm with some symptoms being
a true one.

To compute the Bayesian probability, we need to define
symptoms featuring alarms and gather them from already
analyzed programs and classified alarms. We defined symp-
toms both syntactically and semantically. Syntactic symp-
toms describe the syntactic context before the alarmed ex-
pressions. The syntactic context consists of program con-
structs used before the alarmed expressions. Semantic symp-
toms are gathered during Airac’s fixpoint computation phase.
For such symptoms, we defined symptoms representing whether
context pruning was applied, whether narrowing was ap-
plied, whether an interval value has infinity and so forth.

From the Bayes’ theorem, probability P (⊕ | ~S) of an

alarm being true that has symptoms ~S can be computed
as the following:

P (⊕ | ~S) =
P (~S | ⊕)P (⊕)

P (~S)
=

P (~S | ⊕)P (⊕)

P (~S | ⊕)P (⊕) + P (~S | ª)P (ª)
.

By assuming each symptom in ~S occurs independently under
each class, we have

P (~S | c) =
Y

Si∈
~S

P (Si | c) where c ∈ {⊕,ª}.

Here, P (Si | c) is estimated by Bayesian analysis from our
empirical data. We assume prior distributions are uniform
on [0, 1]. Let p be the estimator of the probability P (⊕) of
an alarm being true. P (Si | ⊕) and P (Si | ª) are estimated
by θi and ηi respectively. Assuming that each Si are inde-
pendent in each class, the posterior distribution of P (⊕ | ~S)
taking our empirical data into account is established as fol-
lowing:

ψ̂j =
(
Q

Si∈
~S θi) · p

(
Q

Si∈
~S θi) · p+ (

Q
Si∈

~S ηi) · (1 − p)

where p, θi and ηi have beta distributions as

p ∼ Beta(N(⊕) + 1, n−N(⊕) + 1)
θi ∼ Beta(N(⊕, Si) + 1, N(⊕,¬Si) + 1)
ηi ∼ Beta(N(ª, Si) + 1, N(ª,¬Si) + 1)

and N(E) is the number of events E counted from our em-
pirical data.

Now the estimation of p, θi,ηi are done by Monte Carlo
method. We randomly generate pi, θij , ηij values N times
from the beta distributions and compute N instances of ψj .

We take the mean ψ̄j for ψ̂. Then the 100(1−2α)% credible

set of ψ̂ is (ψjα·N
, ψj(1−α)·N

) where ψj1 < ψj2 < · · · < ψjN
.

After obtaining the probability ψ̂ for each alarm to be true,
we have to decide whether we should report the alarm or
not. To choose a reasonable threshold, the user supplies
two parameters defining the magnitude of risk: a1 for not
reporting true alarms and a2 for reporting false alarms.

⊕ ª
risk of reporting 0 a2

risk of not reporting a1 0

Since the probability of an alarm being true error is ψ̂, the
expectation value of risk when we raise an alarm is a2·(1−ψ̂),

and a1·ψ̂ when we don’t raise. To minimize the risk, we must
choose the smaller side. Hence, the threshold of probability
for reporting can be chosen as:

a1 · ψ̂ > a2 · (1 − ψ̂) ⇐⇒ ψ̂ >
a2

a1 + a2

.

For example, user can supply a1 = 9, a2 = 1 if he or she
believes that not alarming for true errors have risk 9 times
greater than raising false alarms. Then the threshold for
the probability being true to report becomes 1/10 = 0.1
and whenever the probability of an alarm is greater than
0.1, we should report it. For a sound analysis, to miss a

4

true alarm is considered much riskier than to report a false
alarm, so it is recommended to choose the two risk values
a1 À a2 to keep more soundness.

We have done some experiments with our samples of pro-
grams and alarms. Samples were first divided into learn-
ing set and testing set. 50% of the alarms were randomly
selected and their symptoms were counted based on their
classes. With these precalculated numbers, ψ̂ for each re-
maining alarm was computed by taking the mean of 2000
ψj ’s which was computed from p and each θi and ηi of its
symptoms, all randomly generated. We can view alarms in
the testing set as new alarms, since their symptoms didn’t
contribute to the numbers used for the calculation of ψ̂.

The histogram in Figure 2 was constructed from the data
of 3 runs of the experiment previously described. Dark bars
indicate true alarms and white ones are false. Although
probability of true alarms range from 0.14 to 0.78, 52%
(=100 * 92/(92+82)) of false alarms have probability less
than 0.14. If we had assumed the risk of missing true error
is about 6 times greater than false alarming, then we could
choose 0.143 as a threshold. Using this threshold, more than
half of false alarms can be filtered, or deferred. We believe
we will be able to distinguish true and false alarms even
better than we do currently, if we extract better symptoms
coupled with the weak points of Airac.

5. Conclusion
Our Airac experience encourages us to conclude that it

is not inevitable to trade the soundness for a reduced num-
ber of false alarms. By striking a cost-accuracy balance of
a sound analyzer, we can first achieve an analyzer that is
itself useful with small false-alarm rate in most cases (as
the experiment numbers showed for analyzing Linux ker-
nels). Then, by a careful design of a Bayesian analysis of
the analyzer’s false-alarm behaviors, we can achieve a post-
processing engine that sifts out false alarms from the analy-
sis results. For the Bayesian analysis engine to be effective
the analyzer designer must be able to pin-point the exact
symptoms for false alarms. This ability comes from a deep
understanding of the analyzer’s weaknesses.

Though the Bayesian analysis phase still has the risk of
sifting out true alarms, it can reduce the risk at the user’s
desire. Given the user-provided ratio of the risk of silenc-
ing true alarms to that of false alarming, a simple decision
theory determines the threshold probability that an alarm
with a lower probability is silenced as a false one. Because
the underlying analyzer is sound, if the user is willing to,
(s)he can receive a report that contain all the real alarms.
For Airac, when the risk of missing true alarms is six times
greater than that of false alarming, all the real alarms are
reported with the half of false alarms sifted out.

Acknowledgements We thank Jaeyong Lee for the design
of the statistical analysis. We thank Hakjoo Oh and Yik-
won Hwang for helping our experiment by selecting sample
programs and manually classifying alarms.

6. References
[1] bugtraq. www.securityfocus.com.

[2] CERT/CC advisories. www.cert.org/advisories.

[3] Bruno Blanchet, Patric Cousot, Radhia Cousot, Jerome
Feret, Laurent Mauborgne, Antonie Mine, David

Monnizux, and Xavier Rival. A static analyzer for large
safety-critical software. In Proceedings of the SIGPLAN
Conference on Programming Language Design and
Implementation, pages 196–207, June 2003.

[4] Patrick Cousot and Radhia Cousot. Abstract
interpretation: a unified lattice model for static
analysis of programs by construction or approximation
of fixpoints. In Proceedings of ACM Symposium on
Principles of Programming Languages, pages 238–252,
January 1977.

[5] Patrick Cousot and Radhia Cousot. Systematic design
of program analysis frameworks. In Proceedings of
ACM Symposium on Principles of Programming
Languages, pages 269–282, 1979.

[6] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cssv:
towards a realistic tool for statically detecting all buffer
overflows in c. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language
design and implementation, pages 155–167. ACM Press,
2003.

[7] Andrew Gelman, John B. Carlin, Hal S. Stern, and
Donald B. Rubin. Bayesian Data Analysis. Textx in
Statistical Science. Chapman & Hall/CRC, second
edition edition, 2004.

[8] David Hovemeyer and William Pugh. Finding bugs is
easy. SIGPLAN Not., 39(12):92–106, 2004.

[9] Yichen Xie, Andy Chou, and Dawson Engler. Archer:
using symbolic, path-sensitive analysis to detect
memory access errors. In ESEC/FSE-11: Proceedings
of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering,
pages 327–336. ACM Press, 2003.

5

