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Abstract. We present a type and effect system for a multi-staged lan-
guage with exceptions. The proposed type and effect system checks if we
safely synthesize complex controls with exceptions in multi-staged pro-
gramming. The proposed exception constructs in multi-staged program-
ming has no artificial restriction. Exception-raise and -handle expressions
can appear in expressions of any stage, though they are executed only
at stage 0. Exceptions can be raised during code composition and may
escape before they are handled. Our effect type system support such fea-
tures. We prove our type and effect system sound: empty effect means
the input program has no uncaught exceptions during its execution.

1 Introduction

Staged computation, which explicitly divides a computation into separate stages,
is a unifying framework for existing program generation systems: partial evalu-
ation [5, 1], run-time code generation [7, 10], function inlining and macro ex-
pansion [11, 3] are all instances of staged computation. The stage levels are
determined by the nesting depth of program generations: stage 0 generates a
program of stage 1 that generates a program of stage 2, and so on. The key as-
pect of multi-staged language is to have code templates (program fragments) as
first-class objects. Code templates are freely passed, composed with code of other
stages, and executed. At stage 0, computation include all normal computation
plus generating code and executing generated code. At stage > 0, computation is
just code-composition: it just visits expression’s sub-expressions and substitutes
code into code when appropriate.

Example 1. As a specializer example in multi-stage programming, consider a
recursive map function:

fun map f nil = nil

| map f (x::r) = (f x) :: (map f r)
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The map function applies function f to each element in the input list, and builds
a list with the results returned by f. If we know which list is available, we
can specialize map function with the input list. For example, if input list is
1::2::nil, we specialize the map function to fn f => (f 1)::(f 2):::nil.
The specialized function is more efficient than the original map function because
it does not need to traverse the list structure. This specialization can be achieved
by the following two functions in Lisp’s quasi-quote syntax [11]:

fun map ls nil = ‘nil

| map ls (x::r) = ‘((f ,x) :: ,(map ls r))

fun smap ls = eval ‘(fn f => ,(map ls ls))

At stage 0, the function smap, along with map ls, traverses input list ls and
generates a specialized function of stage 1: the stage increases by the number
of surrounding backquotes (‘), and decreases by the number of commas (,).
Because the application (f ,x) in map ls is at stage 1 (surrounded by one
backquote), it will not be evaluated. However, the recursive call (map ls r) will
be evaluated because it is at stage 0 (surrounded by one backquote and one
comma). ¥

Exception handling allows the programmer to define, raise and handle excep-
tional conditions. Exceptional conditions are brought (by a raise expression) to
the attention of another expression where the raised exceptions may be handled.
Raised exceptions abort the usual program continuation, transfer (“long jump”)
the control to its handling point, and continue there with the handler expres-
sion. Hence by using exceptions programmers can divert any control structure
to a point where the corresponding exception is handled. The exception facili-
ties, however, can provide a hole for program safety. Programs can abruptly halt
when an exception is raised and never handled.

In this paper we extend the Lisp-like multi-staged language λsim
open [6] with

such exceptions and then present a sound type and effect system that statically
estimate may-uncaught exceptions in the input programs.

The proposed exception facility in the multi-staged language has no artificial
restriction. Lexically, exception-raise and -handle expressions can appear in ex-
pressions of any stage. Only restriction, which is natural, is on their dynamics:
exceptions must be raised and handled only at stage 0 (at normal computation).
Hence, the most interesting feature of our language is exceptions raised during
code composition. During computation at stage > 0 (during code composition)
an expression can be brought to stage 0 and evaluated there to return a code
to substitute for the expression at the code composition. During this stage-0
evaluation an exception can be raised. This raised exception can be caught by
a handler only at stage 0. Which handler is that? Any handler at stage 0 in
the continuation of the raised exception. A handler that is installed during the
stage-0 evaluation can catch it. Or, a handler that is installed at stage 0 before
the code composition can catch it and continue.

Example 2. We explain this staged exception semantics by an example. The
following function f gets a list ls and generates a code that multiplies free
variable a with every element in ls.



fun g nil = ‘1

| g x::r = ‘(,x * ,(g r))

fun f ls = ‘(a * ,(g ls))

When the input list ls is ‘2::‘0::‘3::nil, the result code will be ‘(a * 2
* 0 * 3 * 1). We can prepare a more efficient code by using exceptions. We
change g to raise Zero whenever an element of ls is ‘0.

fun g1 nil = ‘1

| g1 x::r = if x = ‘0 then raise Zero

else ‘(,x * ,(g1 r))

Then, to catch the raised exception Zero, we can install a handler during the
stage-0 evaluation inside the code composition:

fun f1 ls = ‘(a * ,((g1 ls) handle Zero => ‘0))

Or, we can install a handler at stage 0 before the code composition:

fun f2 ls = ‘(a * ,(g1 ls)) handle Zero => ‘0

Note that f1 and f2 behave differently. When the input ls has ‘0, f1 generates
‘(a * 0) while f2 generates ‘0. ¥

We extend the effect type system [12–14] for exception analysis of ML [4, 9]
to have staged effect types. The extension consists of annotating the box type
constructor 2 for the code type with the set of possible exceptions that may
be raised during the code execution. Every exception effect has an associated
non-negative integer that denotes the number of stages that the raised exception
must escape to be handled at stage 0. For example, Zeron in an effect means
that uncaught exception Zero can be handled at stage 0 after escaping n stages.

The type of a code with raise c (c for an exception name) would be:

‘(raise c) : 2(∅¤A, {c0}), ∅.

The box type 2(∅¤ A, {c0}) means that the above expression is a closed code
of type A, and may raise an exception c when evaluated. The empty effect ∅
means that this code does not raise any exception. The type of executing the
above code template by eval would be:

eval ‘(raise c) : A, {c0}.

The effect {c0} means that the above expression may raise exception c. The
superscript 0 means that the raised exception c can be handled by a proper
handler at the current stage.

Example 3. We will explain such exceptions and their corresponding types by
an example program in Fig. 1. The function codegen compiles a program in
language L into an ML program of int type. During compilation, it may raise
an exception CompileError. The type of codegen would be:

codegen : L
{CompileError0}→ 2(∅¤ int), ∅.



exception CompileError

type L = CONST of int | PLUS of L * L | · · ·

fun codegen e =

case e of

CONST x => ‘,x

| PLUS(e1,e2) => ‘(,(codegen e1) + ,(codegen e2))

· · ·
| => raise CompileError

fun compile program =

(codegen (parse program))

handle CompileError => print "Compile Error"; ‘0

Fig. 1. An example: compiling L into ML

It means that exception CompileError may be raised when we apply codegen.
Hence, the type of application (codegen e1) is:

(codegen e1) : 2(∅¤ int, ∅), {CompileError0}.
In order to plug the above code inside another code (i.e., inside a backquote ex-
pression), we have to comma it: ‘(,(codegen e1)). The type of ,(codegen e1)
is:

,(codegen e1) : int, {CompileError1}.
Because this expression is inside a code template (stage 1), the raised excep-
tion CompileError cannot be handled at the current stage: it can be handled
only after escaping 1 stage. The superscript 1 in CompileError1 describes this
situation. The type of the enclosing code template of the above expression is:

‘(,(codegen e1)) : 2(∅¤ int, ∅), {CompileError0}.
It means that the above expression may raise exception CompileError. The
superscript 0 in CompileError0 means that CompileError can be handled at
the current stage. Hence a handler at stage 0 can catch it

‘(,(codegen e1))
handle CompileError => ‘0

: 2(∅¤ int, ∅), ∅

while a handler inside code template (at stage > 0) cannot handle it

‘(,(codegen e1)
handle CompileError => 0)

: 2(∅¤ int, ∅), {CompileError0}

¥

Recently, Nanevski has proposed an exception type for staged language in a
different formulation [8]: his language requires programmer to explicitly name



each code composition, while our (in an implicit style) allows unnamed code
composition1. Though explicitly naming code composition may make type sys-
tem simple (such that it is not necessary to annotate effects with stage levels),
we chose to use the implicit style. Our reason is pragmatic: to have an exception
type system to support Lisp’s quasi-quote system. Lisp’s quasi-quote system is
an implicit multi-staged language that has evolved to comply with the demands
from multi-staged programming practices. Moreover, our type system enjoys the
advantage of [6] that supports open code as first-class objects.

In the rest of our paper, we introduce the syntax and semantics of our lan-
guage (Section 2), define the exception types and effects (Section 3.1), describe
typing rules (Section 3.2), and prove the soundness of our effect type system
(Section 3.3).

2 Language

2.1 Syntax

Our language λstage
exn has the staging constructs á la λsim

open [6] with the exception-
raise and -handle constructs. We exclude references and gensyms from λsim

open in
order to focus on exceptions.

e ∈ Exp ::= i | c | x | λx.e | e1e2
| box e | eval e | unboxk e
| raise e | handle e1 c e2

Expression i is an integer constant, c is an exception name. Expression box e,
unboxk e (k > 0), and eval e are for manipulating code templates that respec-
tively correspond to the backquote(‘), the comma(,) ........ k stages, and the
eval in Lisp’s quasi-quote notation. At stage 0, raise e raises an exception re-
turned from evaluating e. Handle expression handle e1 c e2 evaluates e1 first. If
it does not raise an exception, its result is the handle expression’s result. If it
raises exception c, then the handler catches it and evaluates e2. If it raises an
exception other than c, then the raised exception is the result.

2.2 Operational Semantics

Fig. 2 shows a big-step operational semantics of our language λstage
exn . Evaluation

e
n−→ r

denotes that expression e is evaluated to result r at stage n.
Values V n are the values of stage n. In multi-staged languages, values exists

at every stage. Values at stage 0 are normal ones plus code. Values at stages> 0
are code only. A staged value vn (n > 0) is an expression that is to be evaluated
1 Davies and Pfenning have shown that both explicit and implicit formulations are

inter-translatable [2].



Normal computations (at stage 0) and Propagation of
code compositions (at stage n > 0) raised exceptions

(EINT) i
n−→ i (n ≥ 0)

(EEXN) c
n−→ c (n ≥ 0)

(EVAR) x
n−→ x (n > 0)

(EABS) λx.e
0−→ λx.e

e
n−→ v

λx.e
n−→ λx.v

(n > 0)
e

n−→ c

λx.e
n−→ c

(n > 0)

(EAPP)
e1

0−→ λx.e e2
0−→ v2 [x

07→ v2]e
0−→ v

e1 e2
0−→ v

e1
n−→ c

e1 e2
n−→ c

(n ≥ 0)

e1
n−→ v1 e2

n−→ v2

e1 e2
n−→ v1 v2

(n > 0)
e2

n−→ c

e1 e2
n−→ c

(n ≥ 0)

(EBOX)
e

n+1−→ v

box e
n−→ box v

(n ≥ 0)
e

n+1−→ c

box e
n−→ c

(n ≥ 0)

(EUNBOX)
e

0−→ box v

unboxn e
n−→ v

(n > 0)

e
n−k−→ v

unboxk e
n−→ unboxk v

(n > k > 0)
e

n−k−→ c

unboxk e
n−→ c

(n ≥ k > 0)

(EEVAL)
e

0−→ box v1 v1 0−→ v0

eval e
0−→ v0

e
n−→ v

eval e
n−→ eval v

(n > 0)
e

n−→ c

eval e
n−→ c

(n ≥ 0)

(ERAISE)
e

0−→ c

raise e
0−→ c

e
n−→ v

raise e
n−→ raise v

(n > 0)
e

n−→ c

raise e
n−→ c

(n ≥ 0)

(EHANDLE)
e1

0−→ v

handle e1 c e2
0−→ v

e1
n−→ c

handle e1 c e2
n−→ c

(n > 0)

e1
0−→ c e2

0−→ v

handle e1 c e2
0−→ v

e1
n−→ c

handle e1 c′ e2
n−→ c

(n > 0)

e1
0−→ c

handle e1 c′ e2
0−→ c

e2
n−→ c

handle e1 c e2
n−→ c

(n > 0)

e1
n−→ v1 e2

n−→ v2

handle e1 c e2
n−→ handle v1 c v2

(n > 0)
e2

n−→ c

handle e1 c′ e2
n−→ c

(n > 0)

Fig. 2. Operational semantics of λstage
exn .



[x
n7→ v]i = i

[x
n7→ v]c = c

[x
n7→ v]y = v, if x = y and n = 0

= y, otherwise

[x
n7→ v](λy.e) = λy.e, if x = y and n = 0

= λy.([x
n7→ v]e), otherwise

[x
n7→ v](e1 e2) = ([x

n7→ v]e1) ([x
n7→ v]e2)

[x
n7→ v](box e) = box ([x

n+17→ v]e)

[x
n7→ v](unboxk e) = unboxk ([x

n−k7→ v]e)

[x
n7→ v](eval e) = eval ([x

n7→ v]e)

[x
n7→ v](raise e) = raise ([x

n7→ v]e)

[x
n7→ v](handle e1 c e2) = handle ([x

n7→ v]e1) c ([x
n7→ v]e2)

Fig. 3. Substituting v for free variable x of stage 0 at stage n.

later when it is demoted to stage 0 by the eval construct. Results Rn at stage
n are either values at stage n or raised exceptions. We write c for a raised c
exception.

vn ∈ V n ::= i | c | λx.e | box v1 if n = 0
::= i | c | x | λx.vn | vnvn

| box vn+1 | eval vn | unboxk v
n−k

| raise vn | handle vn
1 c v

n
2 if n > k ≥ 0

rn ∈ Rn ::= vn | c

Staging semantics of λstage
exn is the same as in λsim

open [6], conservatively extended
with exceptions.

At stage 0, computation include, in addition to normal computation, gener-
ating code and executing generated code. (EINT), (EEXN), (EABS), and (EAPP)
are as usual. (EAPP) defines the beta reduction. The definition of the staged sub-
stitution operator [x n7→ v] is in Fig. 3. (EBOX) defines code generation. (EEVAL)
at stage 0 executes generated code: a code template box v1 becomes an expres-
sion v1 then is evaluated. By the type system, v1 is restricted to closed code.
(See section 3). Because only closed code can be evaluated at stage 0, we don’t
have an evaluation rule for variable at stage 0.

At stage > 0, only meaningful computation is code substitution. It consists
of just visiting every sub-expressions and substitute code into code when appro-
priate. Code substitution is by the unboxk expression. At stage n, expression
unboxn e executes the sub-expression e at stage 0 then substitute its result code
for the unboxn expression: (EUNBOX).

(ERAISE) raises an exception only at stage 0. The right side of Fig. 2 shows
that the propagation of raised exception c. A raised exception c is propagated
to the nearest handler that handles exception c at stage 0: (EHANDLE). Raised
exceptions can escape any control structure including stages.



Example 4. In the following expression, an exception c is initially raised at stage
0, is “promoted” to stage 2 (by unbox2), and then escapes to stage 0 (by two
boxes).

c
0−→ c

raise c
0−→ c c is raised at stage 0

unbox2 raise c
2−→ c c is promoted to stage 2

box (unbox2 raise c)
1−→ c c is demoted to stage 1

box (box (unbox2 raise c))
0−→ c c is demoted to stage 0

¥
Like exceptions raised during normal computation, stage-escaping exceptions

(raised during code composition) are handled only at stage 0. Hence, handle
expressions at stage> 0 cannot handle a raised exceptions.

Example 5. The following expression evaluates to (box 0) because raised excep-
tion c is propagated to stage 0, and handled there to evaluate into code 0.

c
0−→ c

raise c
0−→ c

unbox1 raise c
1−→ c

box (unbox1 raise c)
0−→ c

0 1−→ 0

box 0 0−→ box 0

handle (box (unbox1 raise c)) c (box 0) 0−→ box 0 handle at stage 0 catches c

¥
Example 6. The following expression raises uncaught exception c because handle
expression inside the code template cannot handle c and just propagates it to
stage 0 escaping the code template of stage 1.

c
0−→ c

raise c
0−→ c

unbox1 (raise c) 1−→ c

handle (unbox1 (raise c)) c 0 1−→ c handle at stage 1 cannot catch c

box (handle (unbox1 (raise c)) c 0) 0−→ c

¥
As in λsim

open [6], at stages> 0 (at code composition stages) no alpha-equivalence
is supported, i.e., variable-capturing substitution is allowed. If we change a bound
name in expressions of stages> 0, the resulting program’s semantics changes. On
the other hand at stage 0 (at the normal computation stage) alpha-equivalence
is preserved as usual. (We enforce only closed code to be evaluated at stage 0.
See (TEVAL) in Section 3).



3 Effect Type System

3.1 Exception Types and Effects

We use A,B for types, ϕ for effects, and ψ for a set of exceptions.

A,B ∈ Type ::= int | exn(ψ) | A ϕ→ B | 2(Γ ¤A,ϕ)

Exception type exn(ψ) has a set of exceptions that an expression of that type can
have. As in usual effect systems, function type A

ϕ→ B has a latent effect ϕ that
describes exceptions that may be raised during the evaluation of the function’s
body. Code type 2(Γ ¤A,ϕ) is a conditional modal type in which condition Γ
specifies the types of free variables in the code template of type A. Our code
type is also annotated by a latent effect ϕ that describes exceptions that may
be raised when the code template of that type is evaluated by eval .

ϕ ∈ Effects = 2Exn×N

ψ ∈ Exceptions = 2Exn

c ∈ Exn = set of exception names

Effects in our types are sets of exceptions, where each exception has the number
of stages to escape. The stage-escaping numbers denote how many stages should
those exceptions escape to be handled at stage 0. For ψ ∈ Exceptions, ψn means
{cn | c ∈ ψ} ∈ Effects

Normal Exceptions vs. Stage-Escaping Exceptions

Normal exceptions, which may be raised during normal computation, and
stage-escaping exceptions, which may be raised during code composition, have
a different behavior. If they are in a code template, stage-escaping exceptions
can escape stages, while normal exceptions cannot. For example, raise c raises
a normal exception, while unbox1 (raise c) raises a stage-escaping exception.
Hence box (raise c) does not raise exception c, while box (unbox1 (raise c))
raises exception c.

Definition 1. For an effect ϕ, and a unary predicate P : N → {true, false},
we define P -restricted effect ϕ, denoted ϕP , as follows:

ϕP def= {cn | cn ∈ ϕ ∧ P (n)}

We can decompose an effect ϕ into a normal effect ϕ=0 and a stage-escaping
effect ϕ>0, where “= 0” is a unary predicate “is equal to 0” and “> 0” is a unary
predicate “is greater than 0”. Hence the normal effect ϕ=0 means exceptions
which escape 0 stages (cannot escape stages), and the stage-escaping effect ϕ>0

means exceptions which escape at least one stage.



Promotion and Demotion of Effects

As shown in Example 4, stage-escaping exceptions can cross stages upwards
(by unboxk ) or downwards (by box). When stage-escaping exceptions are pro-
moted or demoted to other stages, the effects that estimate those exceptions
should also be promoted or demoted, respectively.

Definition 2. A promotion ↑k is a function from Effects to Effects such that

↑k ϕ
def= {cn+k | cn ∈ ϕ}, where n ≥ 0 and k > 0.

A demotion ↓ is a function from Effects to Effects such that

↓ ϕ def= {cn−1 | cn ∈ ϕ}, where n > 0.

3.2 Typing Rules

The typing judgment
Γ0 · · ·Γn ` e : A,ϕ

means that an expression e, under type environment Γ0 · · ·Γn has type A and
effect ϕ at stage n. Γ0 · · ·Γn is a sequence of type environments Γ0, · · · , Γn. Γn

is the current type environment. Subscripts 0, · · · , n are stage numbers. Fig. 4
shows our typing rules for λstage

exn .
For exception name c, we include it inside its exception type exn. For in-

stance, the type of c must be of the form exn(ψ) such that c ∈ ψ:

c ∈ ψ
Γ0 · · ·Γn ` c : exn(ψ), ∅ (TEXN)

The type of raise expression raise e can be any arbitrary type A. Because
exceptions ψ are raised at the current stage, (TRAISE) collects ψ0 and the effect
ϕ of its sub-expression e.

Γ0 · · ·Γn ` e : exn(ψ), ϕ
Γ0 · · ·Γn ` raise e : A,ψ0 ∪ ϕ (TRAISE)

Handle expression handle e1 c e2 catches exception c of e1 only when the
handle expression is evaluated at stage 0, its effect catches only c0.

Γ0 · · ·Γn ` e1 : A,ϕ Γ0 · · ·Γn ` e2 : A,ϕ′ ϕ′′ = (ϕ \ {c0}) ∪ ϕ′
Γ0 · · ·Γn ` handle e1 c e2 : A,ϕ′′

(THANDLE)

For box expression box e, (TBOX) injects normal exceptions ϕ=0 of the sub-
expression e into the latent effect of the box type, because they can not escape
stages: the box expression would not raise them until unboxed or evaluated.



(TINT) Γ0 · · ·Γn ` i : int, ∅

(TEXN)

c ∈ ψ
Γ0 · · ·Γn ` c : exn(ψ), ∅

(TVAR)

Γn(x) = A

Γ0 · · ·Γn ` x : A, ∅

(TABS)

Γ0 · · ·Γn + x : A ` e : B,ϕ

Γ0 · · ·Γn ` λx.e : A
ϕ=0

→ B,ϕ>0

(TAPP)

Γ0 · · ·Γn ` e1 : A
ϕ′′→ B,ϕ Γ0 · · ·Γn ` e2 : A,ϕ′

Γ0 · · ·Γn ` e1 e2 : B,ϕ ∪ ϕ′ ∪ ϕ′′

(TBOX)

Γ0 · · ·ΓnΓ ` e : A,ϕ

Γ0 · · ·Γn ` box e : 2(Γ ¤A,ϕ=0), ↓ ϕ>0

(TUNBOX)

Γ0 · · ·Γn−k ` e : 2(Γn ¤A,ϕ), ϕ′ n ≥ k > 0

Γ0 · · ·Γn ` unboxk e : A,ϕ ∪ (↑k ϕ
′)

(TEVAL)

Γ0 · · ·Γn ` e : 2(∅¤A,ϕ), ϕ′

Γ0 · · ·Γn ` eval e : A,ϕ ∪ ϕ′

(TRAISE)

Γ0 · · ·Γn ` e : exn(ψ), ϕ

Γ0 · · ·Γn ` raise e : A,ψ0 ∪ ϕ

(THANDLE)

Γ0 · · ·Γn ` e1 : A,ϕ Γ0 · · ·Γn ` e2 : A,ϕ′ ϕ′′ = (ϕ \ {c0}) ∪ ϕ′
Γ0 · · ·Γn ` handle e1 c e2 : A,ϕ′′

(TSUB)

Γ0 · · ·Γn ` e : A,ϕ ϕ ⊆ ϕ′

Γ0 · · ·Γn ` e : A,ϕ′

Fig. 4. Typing rules of λstage
exn

Stage-escaping exceptions ϕ>0 of e can escape to the outside of the box ex-
pression, hence the effect of the box expression must include them. Because the
evaluation (box e) n−→ c and its premise e n+1−→ c imply that the raised exception
c escapes one stage (from n+1 to n), stage-escaping exceptions ϕ>0 of e should
be demoted to ↓ ϕ>0.

Γ0 · · ·ΓnΓ ` e : A,ϕ
Γ0 · · ·Γn ` box e : 2(Γ ¤A,ϕ=0), ↓ ϕ>0 (TBOX)

For unbox expression unboxk e (k > 0), the only normal exceptions the
unbox expression may have are exceptions in the latent effect ϕ of e. Note that
the evaluation (unboxk e)

n−→ c and its premise e n−k−→ c imply that the stage of
the raised exception c would be increased by k: from n − k to n. Hence, to be
handled, the uncaught exceptions of the unbox expression should escape k more



stages than those of its sub-expression. Hence we promote the effect ϕ′ of e to
↑k ϕ

′.

Γ0 · · ·Γn−k ` e : 2(Γn ¤A,ϕ), ϕ′ n ≥ k > 0
Γ0 · · ·Γn ` unboxk e : A,ϕ ∪ (↑k ϕ

′)
(TUNBOX)

For eval expression evale, (TEVAL) allows only closed code to be evaluated by
eval construct. When we evaluate a code with free variables, those free variables
may cause unintended variable capture, because of the alpha-conversion at stage
0. Recall that we assume that variables in a code template can not be alpha-
converted (for the sake of unhygienic macros), but variables at stage 0 can be
alpha-converted. Hence we force to evaluate only colosed code: the code template
type 2(∅ ¤ A,ϕ) of e should have empty environment. Like unbox expression,
the effect of eval expression should have both of the latent effect ϕ and the effect
ϕ′ of e. We don’t need to promote the effect ϕ′ because the stage of e and that
of eval e are the same.

Γ0 · · ·Γn ` e : 2(∅¤A,ϕ), ϕ′

Γ0 · · ·Γn ` eval e : A,ϕ ∪ ϕ′ (TEVAL)

Abstraction λx.e is a value at stage 0, while it can be an evaluable expression
at stage n > 0. Hence the normal exception ϕ=0 of e should be injected to the
latent effect of the function, and might be raised where the function is applied.
Stage-escaping exception ϕ>0 of e should be propagated to λx.e. Note that
c0 ∈ ϕ=0 means that e may raise exception c at stage 0 (e 0−→ c), and cn ∈ ϕ>0

means that e may be evaluated to the raised exception c at stage n > 0 (e n−→ c).

Γ0 · · ·Γn + x : A ` e : B,ϕ

Γ0 · · ·Γn ` λx.e : A
ϕ=0

→ B,ϕ>0
(TABS)

For application e1 e2, (TAPP) is conventional. All effects from evaluating e1,
e2, and the function’s body are collected. The function body’s effect is the latent
effect in the type of e1.

Γ0 · · ·Γn ` e1 : A
ϕ′′→ B,ϕ Γ0 · · ·Γn ` e2 : A,ϕ′

Γ0 · · ·Γn ` e1 e2 : B,ϕ ∪ ϕ′ ∪ ϕ′′
(TAPP)

The subsumption rule (TSUB) allows any expression to be treated as having
more effect than it actually does. By applying subsumption rule to the latent
effect, abstractions or the code templates can be treated as having more effect
than reality. Without the subsumption rule, a value of type 2(Γ ¤ A, ∅) and a
value of type 2(Γ ¤A, {c0}) could not both be passed as arguments to the same
function, because the function and argument types would have to match exactly.



Γ0 · · ·Γn ` e : A,ϕ ϕ ⊆ ϕ′

Γ0 · · ·Γn ` e : A,ϕ′
(TSUB)

Example 7. A code template box (raise c), which raises an exception c when
evaluated, has the following typing:

∅∅ ` c : exn({c}), ∅
∅∅ ` raise c : A, {c0}

∅ ` box (raise c) : 2(∅¤A, {c0}), ∅.

The empty effect ∅ implies that the code template will not raise any exception,
and the type 2(∅ ¤ A, {c0}) implies that the exception c may be raised when
we execute the code template. ¥

Example 8. Exceptions may be raised during code composition. Recall the ex-
pression in Example 4.

c
0−→ c

raise c
0−→ c c is raised at stage 0

unbox2 raise c
2−→ c c is promoted to stage 2

box (unbox2 raise c)
1−→ c c is demoted to stage 1

box (box (unbox2 raise c))
0−→ c c is demoted to stage 0

The above expression has the following typing:

∅ ` c : exn({c}), ∅
∅ ` raise c : 2(∅¤A, ∅), {c0}
∅∅∅ ` unbox2 raise c : A, {c2}

∅∅ ` box (unbox2 raise c) : 2(∅¤A, ∅), {c1}
∅ ` box (box (unbox2 raise c)) : 2(∅¤ 2(∅¤A, ∅), ∅), {c0}.

This typing means that the expression is a code template of a code template,
and may raise uncaught exception c. The stage-escaping numbers n of cn in the
proof tree exactly capture the dynamic stages of c (0 → 2 → 1 → 0). ¥

Example 9. An exception raised during code composition can be handled by a
proper handler installed at stage 0. Recall the expression in Example 5. A raised
exception c at stage 0 can be caught by a handler at stage 0:

handle (box (unbox1 raise c)) c (box 0) 0−→ box 0



Our effect type system decides that the above expression has no uncaught ex-
ception:

∅ ` c : exn({c}), ∅
∅ ` raise c : 2(∅¤ int, ∅), {c0}
∅∅ ` unbox1 raise c : int, {c1}

∅ ` box (unbox1 raise c) : 2(∅¤ int, ∅), {c0}
∅∅ ` 0 : int, ∅

∅ ` box 0 : 2(∅¤ int, ∅), ∅
∅ ` handle (box (unbox1 raise c)) c (box 0) : 2(∅¤ int, ∅), ∅

¥

Example 10. A raised exception c at stage 0 can not be caught by a handler
in a code template (at stage 1). Recall the expression in Example 6. It raises
exception c in the code template, and does not handle the exception because the
handler is inside the code template:

box (handle (unbox1 raise c) c 0) 0−→ c

Our effect type system safely estimates that the above expression may raise an
uncaught exception c:

∅ ` c : exn({c}), ∅
∅ ` raise c : 2(∅¤ int, ∅), {c0}
∅∅ ` unbox1 raise c : int, {c1} ∅∅ ` 0 : int, ∅
∅∅ ` handle (unbox1 raise c) c 0 : int, {c1}

∅ ` box (handle (unbox1 raise c) c 0) : 2(∅¤ int, ∅), {c0}
¥

Example 11. Let’s consider the following code template.

box (handle (raise c) c 0)

The handler inside the code template catches exception c when the code template
is executed. The above code template has the following typing:

∅∅ ` c : exn({c}), ∅
∅∅ ` raise c : int, {c0} ∅∅ ` 0 : int, ∅

∅∅ ` handle (raise c) c 0 : int, ∅
∅ ` box (handle (raise c) c 0) : 2(∅¤ int, ∅), ∅

Our system gives a correct effect typing for every stage. ¥

3.3 Soundness

In our evaluation rule (in Fig. 2), there are two rules which convert values at
stage n to values at another stage m. The eval at stage 0 converts box v1 into



v1 and evaluate v1 at stage 0; it demotes values at stage n > 0 to expressions at
stage (n − 1). The unboxk at stage k > 0 converts box v1 into vk; it promotes
values at stage (n+1) to values at stage (n+k). The following lemma shows that
such demotion and promotion preserve types and effects. We can freely promote
or demote values, because our types and effects only depend on the structure of
their sub-expressions and do not depend on the stages where they are. The only
restriction of demotion is that Γ1 should be ∅, because a value at stage 1 must
not have a free variable of stage 1 to be demoted (or to be evaluated by eval).

Lemma 1 (Demotion and Promotion). Suppose ∅Γ1 · · ·Γn ` v : A,ϕ.

1. If Γ1 = ∅ then Γ1 · · ·Γn ` v : A,ϕ.
2. ∅Γ ′1 · · ·Γ ′mΓ1 · · ·Γn ` v : A,ϕ for all Γ ′1 · · ·Γ ′m.

Proof. We prove the lemma by induction on the structure of v. ¥
Values at stage n > 0 may raise exceptions when demoted to stage 0 (or

evaluated by eval ). Hence we can not claim that values at any stage have
empty effect. However, any value v0 at stage 0 has an empty effect (does not
raise any exception):

Lemma 2 (Empty Effect of v0). If Γ0 ` v : A,ϕ then Γ0 ` v : A, ∅.
Proof. We first prove that Γ0 · · ·Γn ` v : A,ϕ<n, if Γ0 · · ·Γn ` v : A,ϕ. It can be
shown by induction on the structure of v. Then the lemma immediately follows
from ∀ϕ : (ϕ<0) = ∅. ¥

The soundness theorem shows that every exception that may be raised and
uncaught during the evaluation of an expression should be collected inside the
expression’s effect. For the proof of the soundness theorem, we need Lemma 1
and Lemma 2.

Theorem 1 (Soundness). Suppose ∅Γ1 · · ·Γn ` e : A,ϕ.

1. If e n−→ v then ∅Γ1 · · ·Γn ` v : A,ϕ.
2. If e n−→ c then ϕ ⊇ {cn}.

Proof. We prove the theorem by induction on the proof tree size of evaluation
rule. We show the representative cases (EUNBOX), (EBOX), and (EHANDLE) in
Appendix A. ¥

4 Conclusion

We have presented type and effect system for multi-staged language with excep-
tions. The proposed type and effect system checks if we safely synthesize com-
plex controls with exceptions (long jumps) in multi-staged programming. The
proposed exception constructs in multi-staged programming has no artificial re-
striction. Exception-raise and -handle expressions can appear in expressions of
any stage. Exceptions can be raised during code composition and may escape
stages and can be handled only at stage 0. Our effect type system support such
features and is proven safe that empty effect means the input program has no
uncaught exceptions during its evaluation. The obvious next step is to extend
our system to support the let-polymorphism and imperative operations.
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A Proof of Soundness Theorem

Theorem 1 (Soundness). Suppose ∅Γ1 · · ·Γn ` e : A, ϕ.

1. If e
n−→ v then ∅Γ1 · · ·Γn ` v : A, ϕ.

2. If e
n−→ c then ϕ ⊇ {cn}.

Proof. By induction on the proof tree size of evaluation rule
n−→. We prove the representative cases

(EEVAL), (EUNBOX), (EBOX), and (EHANDLE). We can similarly prove other cases

– (EEVAL)



• Case for eval e
0−→ v0.

(1) ∅ ` eval e : A, ϕ ∪ ϕ′ Assumption

(2) e
0−→ box v1 By (EEVAL)

(3) v1 0−→ v0 By (EEVAL)
(4) ∅ ` e : 2(∅¤ A, ϕ), ∅ By (TEVAL),Lemma 2
(5) ∅ ` box v1 : 2(∅¤ A, ϕ), ∅ By I.H. (induction hypothesis)
(6) ∅∅ ` v1 : A, ϕ By (TBOX)

(7) ∅ ` v1 : A, ϕ By Lemma 1
(8) ∅ ` v0 : A, ϕ By I.H.
(9) ∅ ` v0 : A, ϕ ∪ ϕ′ By (TSUB)

• Case for eval e
n−→ eval v where n > 0.

(1) ∅Γ1 · · ·Γn ` eval e : A, ϕ ∪ ϕ′ Assumption

(2) e
n−→ v By (EEVAL)

(3) ∅Γ1 · · ·Γn ` e : 2(∅¤ A, ϕ), ϕ′ By (TEVAL)

(4) ∅Γ1 · · ·Γn ` v : 2(∅¤ A, ϕ), ϕ′ By I.H.
(5) ∅Γ1 · · ·Γn ` eval v : A, ϕ ∪ ϕ′ By (TEVAL)

• Case for eval e
n−→ c.

(1) ∅Γ1 · · ·Γn ` eval e : A, ϕ ∪ ϕ′ Assumption

(2) e
n−→ c By (EEVAL)

(3) ∅Γ1 · · ·Γn ` e : 2(∅¤ A, ϕ), ϕ′ By (TEVAL)

(4) ϕ′ ⊇ {cn} By I.H.
(5) ϕ ∪ ϕ′ ⊇ {cn} By (4)

– (EUNBOX)
• Case for unboxn e

n−→ v where n > 0.
(1) ∅Γ1 · · ·Γn ` unboxn e : A, ϕ ∪ (↑n ϕ′) Assumption

(2) e
0−→ box v By (EUNBOX)

(3) ∅ ` e : 2(Γn ¤ A, ϕ), ϕ′ By (TUNBOX)
(4) ∅ ` box v : 2(Γn ¤ A, ϕ), ∅ By I.H.,Lemma 2
(5) ∅Γn ` v : A, ϕ By (TBOX)
(6) ∅Γ1 · · ·Γn ` v : A, ϕ By Lemma 1
(7) ∅Γ1 · · ·Γn ` v : A, ϕ ∪ (↑n ϕ′) By (TSUB)

• Case for unboxk e
n−→ unboxk v where n > k ≥ 0.

(1) ∅Γ1 · · ·Γn ` unboxk e : A, ϕ ∪ (↑k ϕ′) Assumption

(2) e
n−k−→ v By (EUNBOX)

(3) ∅Γ1 · · ·Γn−k ` e : 2(Γn ¤ A, ϕ), ϕ′ By (TUNBOX)

(4) ∅Γ1 · · ·Γn−k ` v : 2(Γn ¤ A, ϕ), ϕ′ By I.H.
(5) ∅Γ1 · · ·Γn ` unboxk v : A, ϕ ∪ (↑k ϕ′) By (TUNBOX)

• Case for unboxk e
n−→ c.

(1) ∅Γ1 · · ·Γn ` unboxk e : A, ϕ ∪ (↑k ϕ′) Assumption

(2) e
n−k−→ c By (EUNBOX)

(3) ∅Γ1 · · ·Γn−k ` e : 2(Γn ¤ A, ϕ), ϕ′ By (TUNBOX)

(4) ϕ′ ⊇ {cn−k} By I.H.
(5) ↑k ϕ′ ⊇ {cn} By definition of ↑k

(6) ϕ ∪ (↑k ϕ′) ⊇ {cn} By (5)
– (EBOX)

• Case for box e
n−→ box v.

(1) ∅Γ1 · · ·Γn ` box e : 2(Γ ¤ A, ϕ=0), ↓ ϕ>0 Assumption

(2) e
n+1−→ v By (EBOX)

(3) ∅Γ1 · · ·ΓnΓ ` e : A, ϕ By (TBOX)
(4) ∅Γ1 · · ·ΓnΓ ` v : A, ϕ By I.H.
(5) ∅Γ1 · · ·Γn ` box v : 2(Γ ¤ A, ϕ=0), ↓ ϕ>0 By (TBOX)

• Case for box e
n−→ c.

(1) ∅Γ1 · · ·Γn ` box e : 2(Γ ¤ A, ϕ=0), ↓ ϕ>0 Assumption

(2) e
n+1−→ c By (EBOX)

(3) ∅Γ1 · · ·ΓnΓ ` e : A, ϕ By (TBOX)

(4) ϕ ⊇ {cn+1} By I.H.
(5) ϕ>0 ⊇ {cn+1} By definition of ϕ>0

(6) ↓ ϕ>0 ⊇ {cn} By definition of ↓
– (EHANDLE)

• Case for handle e1 c e2
0−→ v.

(1) ∅ ` handle e1 c e2 : A, ϕ Assumption
(2) ∅ ` e1 : A, ϕ1 By (THANDLE)
(3) ∅ ` e2 : A, ϕ2 By (THANDLE)

(4) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 By (THANDLE)



∗ e1
0−→ v.

(5) ∅ ` v : A, ϕ1 By I.H.
(6) ∅ ` v : A, ∅ By Lemma 2
(7) ∅ ` v : A, ϕ By (TSUB)

∗ e1
0−→ c and e2

0−→ v.
(5) ∅ ` v : A, ϕ2 By I.H.
(6) ∅ ` v : A, ϕ By (TSUB)

• Case for handle e1 c′ e2
0−→ c.

(1) ∅ ` handle e1 c′ e2 : A, ϕ Assumption

(2) e1
0−→ c By (EHANDLE)

(3) ∅ ` e1 : A, ϕ1 By (THANDLE)
(4) ∅ ` e2 : A, ϕ2 By (THANDLE)

(5) ϕ = (ϕ1 \ {c′0}) ∪ ϕ2 By (THANDLE)

(6) ϕ1 ⊇ {c0} By I.H.
(7) ϕ ⊇ (ϕ1 \ {c′0}) ∪ ϕ2 ⊇ {c0} By (6)

• Case for handle e1 c e2
n−→ v2 where n > 0.

(1) Γ0 · · ·Γn ` handle e1 c e2 : A, ϕ Assumption

(2) e1
n−→ v1 By (EHANDLE)

(3) e2
n−→ v2 By (EHANDLE)

(4) Γ0 · · ·Γn ` e1 : A, ϕ1 By (THANDLE)
(5) Γ0 · · ·Γn ` e2 : A, ϕ2 By (THANDLE)

(6) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 By (THANDLE)
(7) Γ0 · · ·Γn ` v1 : A, ϕ1 By I.H.
(8) Γ0 · · ·Γn ` v2 : A, ϕ2 By I.H.
(9) Γ0 · · ·Γn ` v2 : A, ϕ By (TSUB)

• Case for handle e1 c e2
n−→ c where n > 0.

(1) Γ0 · · ·Γn ` handle e1 c e2 : A, ϕ Assumption
(2) Γ0 · · ·Γn ` e1 : A, ϕ1 By (THANDLE)
(3) Γ0 · · ·Γn ` e2 : A, ϕ2 By (THANDLE)

(4) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 By (THANDLE)

∗ e1
n−→ c.

(5) ϕ1 ⊇ {cn} By I.H.
(6) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 ⊇ {cn} By (5)

∗ e2
n−→ c.

(5) ϕ2 ⊇ {cn} By I.H.
(6) ϕ = (ϕ1 \ {c0}) ∪ ϕ2 ⊇ {cn} By (5)

• Case for handle e1 c′ e2
n−→ c where n > 0.

(1) Γ0 · · ·Γn ` handle e1 c e2 : A, ϕ Assumption
(2) Γ0 · · ·Γn ` e1 : A, ϕ1 By (THANDLE)
(3) Γ0 · · ·Γn ` e2 : A, ϕ2 By (THANDLE)

(4) ϕ = (ϕ1 \ {c′0}) ∪ ϕ2 By (THANDLE)

∗ e1
n−→ c.

(5) ϕ1 ⊇ {cn} By I.H.
(6) ϕ = (ϕ1 \ {c′0}) ∪ ϕ2 ⊇ {cn} By (5)

∗ e2
n−→ c.

(5) ϕ2 ⊇ {cn} By I.H.
(6) ϕ = (ϕ1 \ {c′0}) ∪ ϕ2 ⊇ {cn} By (5) ¥


