
A Polymorphic Modal Type System for Lisp-Like Multi-Staged
Languages ∗

Ik-Soon Kim
Seoul National University
iskim@ropas.snu.ac.kr

Kwangkeun Yi
Seoul National University
kwang@ropas.snu.ac.kr

Cristiano Calcagno
Imperial College

ccris@doc.ic.ac.uk

Abstract
This article presents a polymorphic modal type system and its prin-
cipal type inference algorithm that conservatively extend ML by
all of Lisp’s staging constructs (the quasi-quotation system). The
combination is meaningful because ML is a practical higher-order,
impure, and typed language, while Lisp’s quasi-quotation system
has long evolved complying with the demands from multi-staged
programming practices. Our type system supports open code, un-
restricted operations on references, intentional variable-capturing
substitution as well as capture-avoiding substitution, and lifting
values into code, whose combination escaped all the previous sys-
tems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—Type
structure

General Terms Languages, Theory

Keywords Multi-staged languages, Type systems, Polymorphic
types, Modal types, ML, Let-polymorphism, Quasi-quotation,
Lisp, Scheme, Record type, Type inference

1. Introduction
Staged computation, which explicitly divides a computation into
separate stages, is a unifying framework for the existing program-
generation systems. Partial evaluation [12, 5], runtime code genera-
tion [9, 19, 15, 16], function inlining, and macro expansion [23, 10]
are all instances of staged computation. The stage levels can be ar-
bitrarily large, determined by the nesting depth of program gen-
erations: stage 0 is for conventional non-staged programs, and a
program of stage 0 generates a program of stage 1 that generates a
program of stage 2, and so on.

The key aspect of multi-staged languages is to have code tem-
plates (program fragments) as first-class objects. Code templates

∗ This work is partially supported by Brain Korea 21 Project of Korea
Ministry of Education and Human Resources, by IT Leading R&D Support
Project of Korea Ministry of Information and Communication, and by
Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

are freely passed, stored, composed with code of other stages, and
executed when appropriate.

This article presents a polymorphic type system and its prin-
cipal type inference algorithm that conservatively extend ML by
all of Lisp’s multi-staged programming constructs. The combina-
tion is meaningful because ML is a practical higher-order, im-
pure, and typed language, while Lisp has long evolved to com-
ply with the demands from multi-staged programming practices.
Lisp’s staged programming features are all included in its so-called
“quasi-quote” system. This system supports open code templates,
imperative operations with code templates, intentional variable-
capturing substitution (at the sacrifice of alpha-equivalence) as well
as capture-avoiding substitution (as “gensym” does) of free vari-
ables in open code templates, and lifting values into code templates.
Our type system supports all of these features, allowing a program-
mer both type safety as well as the expressiveness that has so far
been only available using the quasi-quotation operators in Lisp (or
Scheme).

Contributions Our contributions are as follows.

• We present a polymorphic type system for a higher-order multi-
staged language that supports all features of Lisp’s quasi-quote
programming:

Open code: code with free variables can be constructed and
composed without restrictions.
Imperative operations with open code: open code can be
stored, dereferenced, and overwritten without restrictions.
Intentional variable-capturing substitution at stages > 0
(“unhygienic” macros): hence alpha-equivalence at stages
> 0 (i.e., during code definitions and expansions) is not
preserved. This sacrifice, which may be unacceptable to a
purely functional language, is a feature that Lisp’s quasi-
quote programmers have long enjoyed for efficiency and
programming convenience.
Capture-avoiding substitution at stages > 0 (“hygienic”
macros [14]): the target language has an explicit new-name
generation construct like Lisp’s “gensym.” Programmers
use this construct to rename bound variables at runtime in
order to avoid an unintentional variable-capture.

• Our type system conservatively extends ML with Lisp’s quasi-
quote system. ML’s let-polymorphism with the value restriction
is conservatively extended for imperative staged programs that
handle open code templates as first-class objects. Also, ML’s
let-polymorphism is orthogonally combined with a record poly-
morphism to allow a single open code template in multiple en-
vironments.

• We present the type system’s principal type inference algo-
rithm.

We believe our type system is the only one supporting open
code, unrestricted operations on references, both hygienic and un-
hygienic manipulation of code, and a type inference algorithm,
whose combination escaped all the previous systems.

This difference comes from three choices in our type system
design: each code template’s type includes a type environment
that constrains its free variables’ types; a record type for type
environment allows the polymorphic use of code templates; stages
are represented by stacks of type environments.

Comparisons Our type system differs from existing works as
follows.

• Davies and Pfenning’s system [7, 8] does not support open code
templates. Nanevski and Pfenning’s system [17, 18] supports
open code, but does not support more than two stages and has no
type inference algorithm. Calcagno et al.’s systems [3, 2] does
not support imperative operations for open code templates. The
environment classifiers [25, 3] allow restricted open code tem-
plates whose free variables’ binders should be lexically visible
at the same stage level. Chen and Xi’s system [4] does not sup-
port free named variables inside code templates, hence it does
not support hygienic manipulation of code templates. Ancona
and Moggi’s system [1] supports open code and imperative op-
erations, but it supports only two stages, does not support inten-
tional variable-capturing substitution and has no type inference
algorithm. Rhiger’s system [22] supports open code, intentional
variable-capturing substitution and imperative operations, but is
monomorphic.

• For programs that are accepted by existing multi-staged type
systems such as λ2 [7, 8], λ© [6], and λi [3] without its
cross-stage persistence, there exist their semantics-preserving,
translated versions that are accepted by our type system (See
Section 6).

• Alpha-equivalence in our language is preserved only for stage
0 (non-staged) expressions; we enforce only closed code to
be evaluated at stage 0. For higher stages alpha-equivalence is
not preserved. If name change occurs in expressions of stages
> 0, the result program’s semantics becomes different from the
original one.

This non alpha-equivalence at stages > 0 (i.e., “unhygienic”
manipulation of code) has been prevalent in macro program-
ming, hence, we think worthwhile to support it in our type sys-
tem.

• For alpha-equivalence at stages > 0 (i.e., for “hygienic” ma-
nipulation of code, or for staged programs that needs renaming
at runtime), programmers can always choose to use the explicit
new-name generation construct (“gensym” in Lisp, λ∗ in our
language). The construct λ∗x.e uniquely renames bound vari-
able x at runtime whenever a code is plugged inside e.

Examples Our type system’s ideas and notable features in con-
trast to existing systems are illustrated with examples as follows.
In examples, we use a mixed notation of Lisp’s quasi-quote syntax
[23] and ML-style expressions.

• Our type system allows open code templates irrespective of
surrounding environments. Code template

‘(x+1)

has type 2({x : int}ρ.int), meaning that the code template can
be executed or composed in any environment that has at least
program variable x of integer type. Environment {x : int}ρ
denotes a type environment that may have entries other than
{x : int}. The postfix ρ is a row variables in record typing [21]
that ranges over a finite set of field types.

• Our type system supports unrestricted imperative operations for
open code templates. Our type system accepts the following
program:

let val a = ref ‘1
val f = ‘(fn x -> ,(a := ‘(x + 1); ‘2))

in ! a end

where program variable a has type 2({x : int}ρ . int) ref.
This example is from Calcagno, Moggi and Sheard [2]

where it is untypable because their type system restricts im-
perative operations only to closed code.

• Our type system supports unhygienic manipulation of code,
where the programmers intentionally let code’s free variables be
captured at runtime. Unhygienic code templates are frequently
used for both programming brevity and performance.

Our type system, for example, accepts the following map
function that generates a specialized code for the list argument:

fun smap [] = ‘[]
| smap (x::r) = ‘((f ,x) :: ,(smap r))

fun map ls = eval ‘(fn f => ,(smap ls))

Note that the smap function generates open code whose free
variable f will be bound after smap’s recursive calls. When
using closed code only, we need as many extra closures and
applications as the length of ls.

• Our type system supports hygienic code manipulation [14] too
that avoids the capture of free variables of open code templates
during code composition. Suppose we define the or function as
follows. The definition does not work as expected because of
the variable-capture.

fun or a b =
‘(let val v = ,a in if v then v else ,b end)

When invoking (or ‘false ‘v), we obtain an unintended
code

‘(let val v = false in if v then v else v end).

Since the free variable v in the arguments is captured by v
declared in the or function, the residual code returns false,
not argument v.

To avoid such unintended variable-capture during code com-
position we use a new language construct to generate fresh vari-
able names: hygienic abstraction λ∗v.e that substitutes a fresh
name for v inside e before its application. Our type system ac-
cepts the following correct version of the or function:

fun or a b =‘((λ∗v.if v then v else ,b) ,a)

Similarly, the h2 function in Taha’s thesis [24] can be de-
fined and type-checked in our target language by using the hy-
gienic abstraction λ∗:

fun h2 n z =
if n=0 then z
else ‘((λ∗x. ,(h2 (n-1) ‘(x + ,z))) ,(lift n))

Note that call (h2 2 ‘4) evaluates to

‘((λx1.(λx2.x2+(x1+4)) 1) 2)

not to ‘((λx.(λx.x+(x+4)) 1) 2).
Note that h2’s unhygienic version is one where λx is used

instead of λ∗x. The programmer can choose between the two
versions of h2, depending on his/her intention, and our type
system accepts both.

• Our type system uses record subtypes for the types of free
variables in open code templates. For example,

if e then ‘(x+1) else ‘1

has type 2({x : int}ρ . int) because the else-branch’s type
2(ρ′ . int) is a record subtype of the then-branch’s type
2({x : int}ρ . int) (the type operator . is contravariant, like
→, over its left-hand side record type).

• Our type system orthogonally combines the let-polymorphism
with open code templates. Consider

let val x = ‘y in ‘(,x + 1); ‘((,x 1) + z) end

Our type system assigns to x a polymorphic open code type
∀α∀ρ.2({y : α}ρ.α), which is distinctly instantiated for each
occurrence of x. The first occurrence of x has 2({y : int} . int)
and the second has 2({y : int → int, z : int} . int → int).

Organization Section 2 introduces notation. Section 3 presents
a language λsim

open and its simple type system. Section 4 presents
a polymorphic extension λpoly

open of λsim
open and its polymorphic type

system. Section 5 presents a principal type inference algorithm for
λpoly

open. Section 6 shows the relation of our type system to other
existing ones. Section 7 concludes. Representative parts of the
proofs for key lemmas of this article appear in [13].

2. Notation
A ⊕ B is the union of disjoint sets A and B whereas A ∪ B is the
union of arbitrary sets A and B. [i..j] is the set of integers from i

to j, and is empty if i > j. {xi}
k
i=j is {xj , xj+1, . . . , xk}, and is

empty if j > k. {xi}
k
i=j is written {xi}

k
j without confusion.

A stage number n is a non-negative integer. We assume that any
expression for a stage number is always non-negative.

A relation R from set A to set B is any subset of the Cartesian
product of A and B, i.e. R ⊆ A × B. A relation F ⊆ A × B
is a (partial) function if for all a ∈ A, {b | a : b ∈ F} contains
at most one element. The set of functions from set A to set B is
denoted by A → B. The set of functions from finite subsets of A

to set B is denoted by A
fin
→ B. The empty function is denoted

by ∅. For a function F , dom(F) = {a | a : b ∈ F} and
range(F) = {b | a : b ∈ F}. F |A and F |−A are the restrictions
of a function F such that

F |A = {a : b ∈ F | a ∈ A} and F |−A = {a : b ∈ F | a 6∈ A}.

F1 :: F2 is the union of domain-disjoint functions F1 and F2:

F1 :: F2 = {a : b | a : b ∈ F1 or a : b ∈ F2},

where dom(F1) ∩ dom(F2) = ∅. F + a : b is the extension of
a function F with a : b such that F + a : b = F |−{a} :: {a : b}.
F1···Fm is the sequence of functions F1, . . . , Fm. F1···Fm+a : b
is the sequence of functions F1, ··· , Fm−1, Fm + a : b.

3. Simply-Typed Multi-Staged Language λ
sim
open

This section presents the multi-staged language λsim
open and its sim-

ple type system. λsim
open supports open code templates, unrestricted

operations on references, both hygienic and unhygienic code ma-
nipulation, and lifting values into code.

3.1 Syntax
e ∈ Exp ::= c | x | λx.e | e1e2

| box e | unboxk e | open e | lift e | λ∗x.e
| ref e | ! e | e1:= e2

| clos(x, e, E) | l

The syntax of λsim
open is based on the implicit λ2 language [7, 8],

and has additional expressions to manipulate code templates and
to support imperative operations. Expression c is a constant of

base type. Expressions box e and unboxk e are for manipulating
code templates, and respectively correspond to the backquote (‘),
comma (,) (k > 0) and the eval (k = 0) in Lisp’s quasi-quote
notation. Expression open e is useful for type inference by guiding
the places of subtyping, and has no effect on evaluation. Expression
lift e is for converting the value of e into its corresponding code
template. For hygienic code manipulation [14], expression λ∗x.e
renames x (of the same stage level) before a code is plugged inside
e at runtime. Unless inside code templates, λ∗x.e is not different
from λx.e. Expressions ref e, ! e and e1:= e2 are conventional for
imperative operations. Expression clos(x, e, E) is the closure of
λx.e in an environment E . Location l is a store location. Closures
and locations, which are values, are included as expressions for
convenience for the type soundness proof.

3.2 Operational Semantics
Multi-staged language λsim

open has a call-by-value semantics. Figure 1
shows the big-step operational semantics. For brevity we do not
present the error-generating rules, which are standard. Evaluation

E ,S,V ` e
n

−→ (r,S ′
,V ′)

means that expression e under environment E , store S and variables
V evaluates to result r, store S ′ and variables V ′ at stage n.

Values are expressions which cannot be reduced further. In
multi-staged languages, values exist at every stage. Values at each
stage are called staged values. A staged value vn (n > 0) is a
frozen expression that is to be evaluated later when it is demoted to
stage 0 by the unbox0 construct.

Staged Values vn ∈ V n

::= c | box v1 | clos(x, e, E) | l if n = 0
::= c | x | λx.vn | vnvn

| box vn+1 | unboxk vn−k

| open vn | lift vn | λ∗x.vn

| ref vn | ! vn | vn
1 := vn

2
| clos(x, e, E) | l if n > k ≥ 0

Variables x, y, z, w ∈ Var = VE ⊕ VI

Locations l ∈ Loc = a set of locations

Stores S ∈ Store = Loc fin
→ V 0

Environments E ∈ Env = Var fin
→ V 0

Closures clos(x, e, E) ∈ Clos = Var × Exp × Env
Results r ∈ Res =

S∞
n=0 V n ⊕ {err}

Var is a countable set of variable names and is the disjoint union
of VE and VI . VE is a set of external variable names that may
appear in the source program, while VI is a set of internal variable
names that λ∗x.e may generate at runtime. The disjointness of VI

and VE ensures that the internal variable names generated by λ∗x.e
are always different from the external variable names in the source
program. VI is simply denoted by V in the big-step operational
semantics of λsim

open. We use x, y, z, w for variable names, and w for
an internal variable name alone. A store S is a finite function from
locations to values of stage 0. An environment E is a finite function
from variables to values of stage 0. Expression clos(x, e, E) is the
closure of λx.e in an environment E . The result r is either a value
or err.

LEMMA 3.1. V n ⊂ V n+1 for n ≥ 0.

PROOF By induction on a staged value vn in V n. 2

LEMMA 3.2. (Result) If E ,S,V ` e
n

−→ (r,S ′,V ′) then r is in
V n ⊕ {err}.

PROOF By induction on the derivation of E ,S,V ` e
n

−→
(r,S ′,V ′). Lemma 3.1 is needed in cases of unboxk e and
lift e (n = 0). 2

(ECON) E,S,V ` c
n

−→ (c,S,V)

(EVAR)
x ∈ dom(E)

E,S,V ` x
0

−→ (E(x),S,V)
E,S,V ` x

n+1
−→ (x,S,V)

(EABS) E,S,V ` λx.e
0

−→ (clos(x, e, E),S,V)

E,S,V ` e
n+1
−→ (v,S′,V′)

E,S,V ` λx.e
n+1
−→ (λx.v,S′,V′)

(EAPP)

E,S,V ` e1
0

−→ (clos(x, e, E′),S1,V1)

E,S1,V1 ` e2
0

−→ (v2,S2,V2)

E′ + x : v2,S2,V2 ` e
0

−→ (v3,S3,V3)

E,S,V ` e1e2
0

−→ (v3,S3,V3)

E,S,V ` e1

n+1
−→ (v1,S1,V1) E,S1,V1 ` e2

n+1
−→ (v2,S2,V2)

E,S,V ` e1e2

n+1
−→ (v1v2,S2,V2)

(EBOX)
E,S,V ` e

n+1
−→ (v,S′,V′)

E,S,V ` box e
n

−→ (box v,S′,V′)

(EEVAL)
E,S,V ` e

0
−→ (box v1,S1,V1) E,S1,V1 ` v1 0

−→ (v0,S2,V2)

E,S,V ` unbox0 e
0

−→ (v0,S2,V2)

E,S,V ` e
n+1
−→ (v,S′,V′)

E,S,V ` unbox0 e
n+1
−→ (unbox0 v,S′,V′)

(EUNBOX)
E,S,V ` e

0
−→ (box v,S′,V′) k > 0

E,S,V ` unboxk e
k

−→ (v,S′,V′)

E,S,V ` e
n+1
−→ (v,S′,V′) k > 0

E,S,V ` unboxk e
n+1+k
−→ (unboxk v,S′,V′)

(EOPEN)
E,S,V ` e

0
−→ (v,S′,V′)

E,S,V ` open e
0

−→ (v,S′,V′)

E,S,V ` e
n+1
−→ (v,S′,V′)

E,S,V ` open e
n+1
−→ (open v,S′,V′)

(ELIFT)
E,S,V ` e

0
−→ (v,S′,V′)

E,S,V ` lift e
0

−→ (box v,S′,V′)

E,S,V ` e
n+1
−→ (v,S′,V′)

E,S,V ` lift e
n+1
−→ (lift v,S′,V′)

(EGENSYM)
E,S,V ` λw.([xn n

7→ w] e)
n

−→ (v,S′,V′)

E,S,V ⊕ {w} ` λ∗x.e
n

−→ (v,S′,V′)

(EREF)
E,S,V ` e

0
−→ (v,S′,V′) l 6∈ dom(S′)

E,S,V ` ref e
0

−→ (l,S′ + l : v,V′)

E,S,V ` e
n+1
−→ (v,S′,V′)

E,S,V ` ref e
n+1
−→ (ref v,S′,V′)

(EDEREF)
E,S,V ` e

0
−→ (l,S′,V′) l ∈ dom(S′)

E,S,V ` ! e
0

−→ (S′(l),S′,V′)

E,S,V ` e
n+1
−→ (v,S′,V′)

E,S,V ` ! e
n+1
−→ (! v,S′,V′)

(EASSIGN)
E,S,V ` e1

0
−→ (l,S1,V1) E,S1,V1 ` e2

0
−→ (v,S2,V2)

E,S,V ` e1:= e2
0

−→ (v,S2 + l : v,V2)

E,S,V ` e1

n+1
−→ (v1,S1,V1) E,S1,V1 ` e2

n+1
−→ (v2,S2,V2)

E,S,V ` e1:= e2

n+1
−→ (v1:= v2,S2,V2)

(ELOC) E,S,V ` l
n

−→ (l,S,V)

(ECLOS) E,S,V ` clos(x, e, E
′

)
n

−→ (clos(x, e, E
′

),S,V)

Figure 1. Big-step operational semantics of λsim
open: V means VI .

[xn m
7→ w] c = c

[xn m
7→ w] y = w, if x = y and m = n

= y, otherwise
[xn m

7→ w] λy.e = λy.e, if x = y and m = n

= λy.([xn m
7→ w] e), otherwise

[xn m
7→ w] (e1e2) = ([xn m

7→ w] e1) ([xn m
7→ w] e2)

[xn m
7→ w] box e = box ([xn m+1

7→ w] e)

[xn m
7→ w] unboxk e = unboxk ([xn m−k

7→ w] e)

[xn m
7→ w] open e = open ([xn m

7→ w] e)

[xn m
7→ w] lift e = lift ([xn m

7→ w] e)

[xn m
7→ w] λ∗y, e = λ∗y.e, if x = y and m = n

= λ∗y.([xn m
7→ w] e), otherwise

[xn m
7→ w] ref e = ref ([xn m

7→ w] e)

[xn m
7→ w] (! e) = ! ([xn m

7→ w] e)

[xn m
7→ w] (e1:= e2) = ([xn m

7→ w] e1):= ([xn m
7→ w] e2)

[xn m
7→ w] clos(y, e, E) = clos(y, e, E), if x = y and m = n

= clos(y, [xn m
→ w] e, E), otherwise

[xn m
7→ w] l = l

Figure 2. Substituting w for free variable x of stage n at stage m

λsim
open extends the traditional lambda calculus conservatively. At

stage 0, (ECON), (EVAR), (EABS) and (EAPP) are exactly the
same as the call-by-value semantics of lambda calculus. Alpha-
conversion and beta-reduction are available whenever necessary at
stage 0. (EREF), (EDEREF) and (EASSIGN) are for usual impera-
tive operations at stage 0.

λsim
open can construct, compose and evaluate code templates at

runtime. (EBOX) constructs a code template. λsim
open allows open

expressions inside a code template. The stage number increases by
one as we go inside a code template. If the stage number is positive,
we are inside a code template. (EUNBOX) merges code templates at
stage n − k into the current code at stage n. (EUNBOX) provides
a way to escape from a code template temporarily before the code
template ends. At stage 0, (EEVAL) converts a code template boxv1

into expression v1 and then evaluates v1, which is restricted to
closed code by the type system (See Subsection 3.3). No variable
in a code template is bound at stage 0 since v1 is always closed in
(EEVAL).

By default λsim
open does not perform alpha-conversion inside code

templates. To capture free variables at code composition, we need
to preserve the names of free variables inside code templates.
Note that the meaning of an expression may change after alpha-
conversion inside code templates. However, there is no restriction
on alpha-conversion at stage 0; as only closed code is evaluated
in (EEVAL), code templates cannot bind variables of stage 0. For
example, λx.unbox1 y and λz.unbox1 y are alpha congruent at
stage 1, but their meanings are different:

{y : box x},S,V ` λx.unbox1 y
1

−→ (λx.x,S,V)

whereas

{y : box x},S,V ` λz.unbox1 y
1

−→ (λz.x,S,V).

On the other hand, λx.unbox0y and λz.unbox0y are alpha con-
gruent at stage 0, and they have the same meaning since y is closed
code.

λsim
open provides support for explicit alpha-conversion inside code

templates for hygienic manipulation [14]. (EGENSYM) substitutes a
fresh variable w for variable x in λ∗x.e at stage n, and then evalu-
ates the renamed lambda expression. At stage 0, λ∗x.e has no effect
on evaluation since it is just alpha-conversion in normal lambda
calculus. For example, the following two expressions evaluate to

different results:

{y : box x},S,V ` λx.unbox1 y
1

−→ (λx.x,S,V)

whereas

{y : box x},S,V ` λ
∗
x.unbox1 y

1
−→ (λw.x,S,V)

for some fresh internal variable w. Figure 2 shows the definition of
the staged renaming operator [xn m

7→ w]. In (EGENSYM), only the
occurrences of x at stage n are replaced with w, because binders
only act at the current stage. For example, in λx.box x at stage n,
the binder acts at stage n but the occurrence of x in boxx is at stage
n + 1.

λsim
open has additional features to manipulate code templates.

(ELIFT) lifts values to corresponding code templates. (ELIFT)
is the reverse of (EEVAL). Note that a staged value vn can also be
vn+1 (Lemma 3.1). (EOPEN) has no effect on evaluation. The open
construct is a syntactic marker to which our type inference algo-
rithm applies subtyping (See Section 3.3). Inside a code template,
(EABS) reduces the body code in a lambda abstraction. Lambda
expressions are not values but expressions inside a code template.

3.3 Type System
The key idea of the type system of λsim

open is to include a type
environment in a code type. Type environments inside code types
enable us to type open code templates, avoiding the restriction of
Calcagno et al.’s systems [3, 2] that the types of free variables
(even inside code values) are always looked up in the current
type environment. Our type system supports imperative operations
for open code templates, and both hygienic and unhygienic code
manipulation.

Types A, B ∈ Type

Type Environments Γ ∈ TyEnv = Var fin
→ Type

Store Typings Σ ∈ ST = Loc fin
→ Type

Figure 3 shows a type system for λsim
open in the style of Harper [11];

all type rules need store typing in order to support imperative op-
erations. We use A, B for types. A type environment Γ is a finite
function from variables to types. A store typing Σ is a finite func-
tion from locations to types.

Types A, B ::= ι | A → B | 2(Γ . A) | A ref

We use ι for base type, A → B for function types, and 2(Γ . A)
for code template types. 2(Γ . A) is a conditional modal type in
which the condition Γ specifies the types of free program variables
in the code template of type A. We use A ref for types of store
locations having A-typed values.

DEFINITION 3.1. A store S is well typed with respect to a store
typing Σ, written |= S : Σ, if and only if dom(S) = dom(Σ) and
Σ; ∅ ` S(l) : Σ(l) for every l ∈ dom(S).

DEFINITION 3.2. An environment E is well typed with respect to
a store typing Σ and a type environment Γ, written Σ |= E : Γ, if
and only if dom(E) = dom(Γ) and Σ; ∅ ` E(x) : Γ(x) for every
x ∈ dom(E).

The typing judgment

Σ;Γ0···Γn ` e : A

means that an expression e, under store typing Σ and type environ-
ments Γ0···Γn, has type A at stage n. Γ0···Γn is a sequence of
type environments Γ0, . . . , Γn. Γn is the current type environment.
Subscripts 0, . . . , n are stage numbers.

(TSCON) Σ; Γ0···Γn ` c : ι

(TSVAR)
Γn(x) = A

Σ; Γ0···Γn ` x : A

(TSABS)
Σ; Γ0···Γn + x : A ` e : B

Σ; Γ0···Γn ` λx.e : A → B

(TSAPP)
Σ; Γ0···Γn ` e1 : A → B Σ; Γ0···Γn ` e2 : A

Σ; Γ0···Γn ` e1e2 : B

(TSBOX)
Σ; Γ0···ΓnΓ ` e : A

Σ; Γ0···Γn ` box e : 2(Γ . A)

(TSUNBOX)
Σ;Γ0···Γn ` e : 2(Γn+k . A) k > 0

Σ; Γ0···Γn···Γn+k ` unboxke : A

(TSEVAL)
Σ; Γ0···Γn ` e : 2(∅ . A)

Σ; Γ0···Γn ` unbox0 e : A

(TSLIFT)
Σ;Γ0···Γn ` e : A

Σ; Γ0···Γn ` lift e : 2(Γ . A)

(TSGENSYM)

Σ; Γ0···Γn + w : A ` [xn n
7→ w] e : B

w is a fresh prog. var. in (Σ, Γ0···Γn, λ∗x.e)

Σ; Γ0···Γn ` λ∗x.e : A → B

(TSOPEN)
Σ; Γ0···Γn ` e : 2(∅ . A)

Σ; Γ0···Γn ` open e : 2(Γ . A)

(TSREF)
Σ;Γ0···Γn ` e : A

Σ; Γ0···Γn ` ref e : A ref

(TSDEREF)
Σ; Γ0···Γn ` e : A ref

Σ; Γ0···Γn ` ! e : A

(TSASSIGN)
Σ; Γ0···Γn ` e1 : A ref Σ;Γ0···Γn ` e2 : A

Σ; Γ0···Γn ` e1:= e2 : A

(TSLOC)
Σ(l) = A

Σ; Γ0···Γn ` l : A ref

(TSCLOS)
Σ |= E : Γ Σ; Γ + x : A ` e : B

Σ;Γ0···Γn ` clos(x, e, E) : A → B

Figure 3. Type system for λsim
open

(TSBOX) makes open code template box e typable since

Σ; Γ0···ΓnΓ ` e : A

may hold for an open expression e. Type 2(Γ . A) is for code
template box e, indicating that e has type A in all accessible
stages satisfying Γ. Note that the code template type has a subtype
property: if Γ0···Γn ` box e : 2(Γ . A) holds, then Γ0···Γn `
box e : 2(Γ′ . A) also holds for Γ′ ⊇ Γ. (TSUNBOX) checks if a
code template from the previous stage is properly captured by the
type environment at the current stage. (TSUNBOX) shows that code
template types have the modal property: if e has type 2(Γ . A)
at stage Γn, then unboxk e has type A in an accessible stage
satisfying Γ. (TSEVAL) allows only closed code to be evaluated
by the eval construct. Type 2(∅ . A) is the same as type 2A in
Davies and Pfenning [7, 8]. (TSOPEN) relaxes closed code types
to behave as open ones. Expression open e, which is first used in
[3], induces a syntax-driven subtyping, by weakening the number
of free variables. Without open, closed code cannot be used both
in evaluation and composition if the composition context requires
a non-empty type environment. For instance, consider

let u = box 1 in

let v = box (λx.(unbox1(open u)) + x) in

(unbox0 u) + 1

While u’s type is 2(∅ . int) because u is used in evaluation
“(unbox0u)+1”, the “openu” relaxes u’s type to 2({x : int}.int)
so as to allow u to be composed into a place whose context has free
x. Such relaxation not only expands the set of typable expressions
but also enables a syntax-driven principal type inference algorithm
(See Section 5).

(TSGENSYM) says that the type of λ∗x.e is the same as the type
of the expression resulting from renaming its bound variable x by a
fresh program variable w. (TSGENSYM) requires the explicit alpha-
conversion hence the type of λ∗x.e can be different from that of
λx.e. For example,

∅; {y : 2({x : int} . int)} {x : int} ` λx.unbox1 y : int → int,

∅; {y : 2({x : int} . int)} {x : int} ` λ∗x.unbox1 y : A → int

for some A. Hence,

∅; {y : 2({x : int} . int)} {x : int} ` (λx.unbox1 y) true

is untypable, but

∅; {y : 2({x : int} . int)} {x : int} ` (λ∗x.unbox1 y) true : int.

(TSLIFT) allows typing the code template that corresponds to
the value of e. Lemma 3.1 shows that a value of stage n is also a
value of stage n+1. Hence, if e has type A, then e’s value is also an
A-typed value at a higher stage under any context, hence 2(Γ . A)
for an arbitrary Γ.

Unlike the type system of Calcagno et al. [2], (TSREF),
(TSDEREF) and (TSASSIGN) support imperative operations for
open code templates without any restriction. (TSCON), (TSVAR),
(TSABS) and (TSAPP) are as usual except for extending to multi-
staged setting.

3.4 Soundness of the Type System
First, consider (EEVAL) at stage 0. (EEVAL) converts box v1 into
v1 at stage 0. By the following demotion lemma, if

Σ; ∅ ` box v
1 : 2(Γ . A)

then Σ;Γ ` v1 : A because Σ; ∅Γ ` v1 : A by (TSBOX).
Hence, code template of type 2(Γ . A) can be safely converted
into expressions of type A under type environment Γ.

LEMMA 3.3. (Demotion) If Σ; ∅Γ1···Γn ` v : A for n > 0, then
Σ; Γ1···Γn ` v : A.

PROOF By induction on the type derivation of Σ; ∅Γ1···Γn ` v :
A. 2

Second, a well typed expression preserves its type after evalua-
tion in λsim

open. For the proof of the preservation lemma, we need the
result lemma (Lemma 3.2) and the demotion lemma (Lemma 3.3).

LEMMA 3.4. (Preservation) If |= S : Σ, Σ |= E : Γ0,

Σ; Γ0···Γn ` e : A and E ,S,V ` e
n

−→ (r,S ′
,V ′),

then Σ′; ∅Γ1···Γn ` r : A and |= S ′ : Σ′ for some Σ′ ⊇ Σ.

PROOF By induction on the type derivation Σ; Γ0···Γn ` e : A

and evaluation E ,S,V ` e
n

−→ (r,S ′,V ′). 2

Finally, the type system of λsim
open is sound. If a closed expression

is well typed, then it preserves the type after evaluation. Hence, the
evaluation result can not be err because err is not typable.

THEOREM 3.1. (Soundness) If

∅; ∅ ` e : A and ∅, ∅,V ` e
0

−→ (r,S,V ′),

then Σ; ∅ ` r : A where |= S : Σ.

PROOF Immediate from the preservation lemma. 2

[xn m
7→ w] let (y e1) e2

= let (y ([xn m
7→ w] e1)) e2, if x = y and m = n

= let (y ([xn m
7→ w] e1)) [xn m

7→ w] e2, otherwise

Other cases The same as λsim
open in Figure 2

Figure 4. Substitution at stage m of w for free variable x declared
at stage n

(ELET)

E,S,V ` e1
0

−→ (v1,S1,V1)

E + x : v1,S1,V1 ` e2
0

−→ (v2,S2,V2)

E,S,V ` let (x e1) e2
0

−→ (v2,S2,V2)

E,S,V ` e1

n+1
−→ (v1,S1,V1)

E,S1,V1 ` e2

n+1
−→ (v2,S2,V2)

E,S,V ` let (x e1) e2

n+1
−→ (let (x v1) v2,S2,V2)

Other rules The same as λsim
open in Figure 1

Figure 5. Big-step operational semantics of λpoly
open: V is a set of

internal program variables VI .

4. Polymorphic Multi-Staged Language λ
poly
open

This section presents a let-polymorphic multi-staged language
λpoly

open and its polymorphic type system. The type system adopts
the let-polymorphism where type generalization occurs only in
let expressions. This polymorphic generalization is applied to the
record types that are used for the type environments accompanying
code types. The record types are generalized in a different axis too,
in the sense of record subtyping in order to relax the constraints im-
posed by the type environment. Syntactic value restriction is used
to support imperative operations in the polymorphic type system.

4.1 Syntax
λpoly

open extends λsim
open by the let-binding expression let (x e1) e2 that

binds the value of e1 to x in e2.

e ∈ Exp ::= c | x | λx.e | e1e2 | let (x e1) e2

| box e | unboxk e | open e | lift e | λ∗x.e
| ref e | ! e | e1:= e2

| clos(x, e, E) | l

4.2 Operational Semantics
Figure 5 shows the big-step operational semantics of let(x e1) e2.
The other evaluation rules are the same as those for λsim

open. The error
generation rules are omitted.

Staged Values vn ∈ V n

::= c | box v1 | clos(x, e, E) | l if n = 0
::= c | x | λx.vn | vnvn

| box vn+1 | unboxk vn−k

| open vn | lift vn | λ∗x.vn

| ref vn | ! vn | vn
1 := vn

2
| let (x vn) vn

| clos(x, e, E) | l if n > k ≥ 0

λpoly
open has let (x vn) vn as additional staged values. Other staged

values are the same as in λsim
open. Except for staged values, the other

semantic domains Loc, Store, Var, Env, Clos and Res are the same
as in λsim

open (See Section 3.2).

LEMMA 4.1. V n ⊂ V n+1 for n ≥ 0.

PROOF By induction on a staged value vn in V n. 2

expansiven(c) = False
expansiven(x) = False
expansiven(λx.e) = False, if n = 0 ∨ e ∈ V 1

= True, otherwise
expansiven(e1e2) = True
expansiven(box e) = False, if e ∈ V 1

= True, otherwise
expansiven(unboxk e) = True, n ≥ k

expansiven(open e) = expansiven(e)
expansiven(lift e) = expansiven(e)
expansiven(λ∗x.e) = False, if n = 0 ∨ e ∈ V 1

= True, otherwise
expansiven(ref e) = True
expansiven(! e) = expansiven(e)
expansiven(e1:= e2) = expansiven(e1) ∨ expansiven(e2)
expansiven(let (x e1) e2) = expansiven(e1) ∨ expansiven(e2)
expansiven(clos(x, e, E)) = False
expansiven(l) = False

Figure 6. Staged predicate expansiven(e): a non-expansive ex-
pression at stage n is syntactically guaranteed never to expand the
store during its evaluation at stage m for every m ≤ n.

LEMMA 4.2. (Result) If E ,S,V ` e
n

−→ (r,S ′,V ′) then r is in
V n ⊕ {err}.

PROOF By induction on the derivation of E ,S,V ` e
n

−→
(r,S ′,V ′). 2

4.3 Staged, Syntactic Value Restriction
Let-polymorphic generalization is activated only when expression
e1 in let (x e1) e2 never expands the store. We need to statically
check whether an expression expands the store or not.

One thing we have to be careful in devising such a check is
that a non-expansive expression at stage n should not expand the
store during its evaluation at any stage m ≤ n. This demotion-
closedness is because any expression at stage n can be demoted by
the unbox0 construct to stage m for some m < n until it evaluates
to a value of stage 0.

Staged predicate expansiven(e) in Figure 6 is designed based
on Wright [27]: if an expression is a syntactic value, then it never
expands the store and hence it is a non-expansive expression. Note
that expansiven(e) satisfies the demotion-closedness. Consider the
cases of λx.e and λ∗x.e. If e is in V 1, then λx.e and λ∗x.e are
in V 1. Then, from Lemma 4.1, λx.e and λ∗x.e are in V n for
any n > 0 (and hence they never expand the store at stage n).
Meanwhile, at stage 0, λx.e and λ∗x.e never expand the store; they
just reduce to closures. Thus, if e is in V 1 or at stage 0, λx.e and
λ∗x.e never expand the store for any stage n. The box e case is
similar as follows. If e ∈ V 1, then, boxe ∈ V 0 by definition of V n.
By Lemma 4.1, box e ∈ V 0 ⊂ V n+1 for n ≥ 0. Hence, box e is a
value at any stage; it is a non-expansive expression. ref e expands
the store at stage 0. Hence, expansiven(ref e) is defined to be
true for any stage in order to satisfy demotion-closedness. e1e2

may expand the store at stage 0. Hence, expansiven(e1e2) is also
defined to be true for any stage. Expression unboxk e may expand
the store at stage k. Hence, expansiven(unboxke) is true for any
stage n ≥ k. At stage n < k, unboxk e is meaningless since stage
number is always non-negative. Expressions !e1, e1:= e2, opene1,
lift e1 and let (x e1) e2 expand the store if e1 or e2 expands
the store. Expressions c, x clos(x, e, E) and l do not expand
the store for any stage. Note that expansiven(clos(x, e, E)) and
expansiven(l) are not used in type inference because they are
values not occurring in the source program. They are included just
for our proofs.

4.4 Type System
Our polymorphic type system extends λsim

open by ML’s let-polymorphism
and Rémy’s record type [21].

Types A, B ∈ Type
::= ι | A → B | 2(Γ . A) | A ref | α

Type Variables α, β ∈ TyVar
Fields F, G ∈ Field = Type ⊕ {⊥}
Field Variables θ ∈ FieldVar

Store Typings Σ ∈ StoTy = Loc fin
→ Type

Type Environments Γ ∈ TyEnv = Var fin
→ Field

::= {xi : Fi}
m
1 | {xi : Fi}

k
1ρL

where L = {xi}
k
1

Type Environments ρ ∈ TyEnvVar
Variables

We use A, B for types, and α, β for type variables. Field [21] is
either Type or ⊥. We use F , G for fields, and θ for field variables.
Store typing Σ is a finite function from locations to types. Type
environment Γ is a finite function from variables to fields, and can
be regarded as a record. We use ρ for type environment variables.
Type environment {xi : Fi}

m
1 ρL denotes a type environment

{xi : Fi}
m
1 :: {yi : Gi}

k
1 for some {yi : Gi}

k
1

and :: is a domain-disjoint union. Operator :: extends for type
environment variables as

{xi : Fi}
m
1 :: ρ = {xi : Fi}

m
1 ρ.

In a type environment, a field is a type or ⊥. If x : ⊥ in Γ, x is an
undefined variable in Γ. (Such extension to ⊥, following the idea
in Rémy’s record typing [21], allows the record field addition that
is necessary only for the type inference algorithm in Section 5.)
Hence,

{xi : Fi}
k
1 and {xi : Fi}

k
1 :: {y : ⊥}

are regarded as the same type environment. Similarly, for a field
variable θ,

ρL and {y : θ} :: ρL⊕{y}

are regarded as the same type environment. Without confusion, we
write {xi : Fi}

k
1ρ instead of {xi : Fi}

k
1ρL.

ξ, χ ∈ TyVar ⊕ TyEnvVar ⊕ FieldVar
X, Y ∈ Type ⊕ TyEnv ⊕ Field

Some symbols range over multiple sets: ξ, χ are used for type
variables, type environment variables, or field variables. X, Y are
used for types, type environments, or fields.

Type Schemes τ, σ ∈ TyScheme ::= ∀ξ.τ | A
Field Schemes µ, π ∈ FieldScheme = TypeScheme ⊕ {⊥}

Type Scheme Env ∆ ∈ TySchemeEnv = Var fin
→ FieldScheme

::= {xi : µi}
m
1 | {xi : µi}

k
1ρL

where L = {xi}
k
1

We use τ, σ for type schemes, and µ, π for field schemes. Type
schemes are in the prenex form, containing outermost quantifica-
tion only. ∀ξ.τ binds ξ in τ . A type variable α, field variable θ or
a type environment variable ρ is free in τ if it occurs in τ and is
not bound. A type scheme ∀ξ1 . . . ∀ξm.σ is written ∀ξ1 . . . ξm.σ.
Type scheme environment is a finite function from variables to
field schemes. Type scheme environment is an extension of type
environment using field schemes. Similarly to type environments,
type environment schemes may contain type environment vari-
ables. Type scheme environment {xi : µi}

m
1 ρL denotes a type

scheme environment

{xi : µi}
m
1 :: {yi : πi}

k
1 for some {yi : πi}

k
1 .

Note that a variable ρ is not for type scheme environments but
for type environments, which are monomorphic. Like type envi-
ronments,

{xi : µi}
k
1 and {xi : µi}

k
1 :: {y : ⊥}

are the same, and for a field variable θ,

ρL and {y : θ} :: ρL⊕{y}

are the same.

DEFINITION 4.1. (Free variables) FV(τ) is the set of free type
variables, free field variables and free type environment variables
occurring in τ . FV is abused for type schemes, field schemes, store
typings and type scheme environments:

FV(Σ) =
S

A∈range(Σ) FV(A)

and
FV(∆) =

Sm

i=1 FV(µi) ∪ {ρ}, if ∆ = {xi : µi}
m
1 ρ

=
Sm

i=1 FV(µi), if ∆ = {xi : µi}
m
1 .

DEFINITION 4.2. (Bound variables) BV(τ) is the set of bound
type variables, bound field variables and bound type environment
variables occurring in τ . BV is abused for type schemes, field
schemes and type scheme environments:

BV(∆) =
Sm

i=1 BV(µi)

where ∆ = {xi : µi}
m
1 ρ or ∆ = {xi : µi}

m
1 .

Substitutions R, S, T, U ∈ TySub

= (FieldVar fin
→ Field) :: (TyVar fin

→ Type) :: (TyEnvVar fin
→ TyEnv)

A substitution is a finite function from field variables to fields,
from type variables to types, and from type environment variables
to type environments. Applying substitution R to X is written RX .
The composition of substitutions S followed by R is written R · S
or RS, and is defined as
{ξ : R(S(ξ)) | ξ ∈ dom(S)} :: {ξ : R(ξ) | ξ ∈ dom(R) \ dom(S)}.

DEFINITION 4.3. (Type instantiation) A type scheme ∀ξ1 . . . ξm.A
instantiates to a type B, written ∀ξ1 . . . ξm.A Â B if and only if
there exists a substitution S with domain {ξi}

m
1 and SA = B.

DEFINITION 4.4. (Type environment instantiation) A type scheme
environment {xi : µi}

m
1 ρ instantiates to a type environment Γ,

written {xi : µi}
m
1 ρ Â Γ, if and only if Γ = {xi : Fi}

m
1 ρ and

µi Â Fi for i ∈ [1..m]. Likewise, {xi : µi}
m
1 instantiates to Γ if

and only if Γ = {xi : Fi}
m
1 and µi Â Fi for i ∈ [1..m].

DEFINITION 4.5. A store S is well typed with respect to a store
typing Σ, written |= S : Σ, if and only if dom(S) = dom(Σ) and
Σ; ∅ ` S(l) : Σ(l) for every l ∈ dom(S).

DEFINITION 4.6. An environment E is well typed with respect
to a store typing Σ and a type environment scheme ∆, written
Σ |= E : ∆, if and only if

dom(E) = dom(∆) and Σ; ∅ ` E(x) : A

for every x ∈ dom(∆) and every A where ∆(x) Â A.

Typing judgment

Σ; ∆0···∆n ` e : A

means that an expression e, under store typing Σ and type scheme
environments ∆0···∆n, has type A at stage n. ∆0···∆n is a se-
quence of type scheme environments ∆0, . . . , ∆n. ∆n is the cur-
rent type scheme environment. Subscripts 0, . . . , n are stage num-
bers.

(TCON) Σ; ∆0···∆n ` c : ι

(TVAR)
∆n(x) Â A

Σ; ∆0···∆n ` x : A

(TABS)
Σ; ∆0···∆n + x : A ` e : B

Σ; ∆0···∆n ` λx.e : A → B

(TAPP)
Σ; ∆0···∆n ` e1 : A → B Σ; ∆0···∆n ` e2 : A

Σ; ∆0···∆n ` e1e2 : B

(TBOX)
Σ; ∆0···∆nΓ ` e : A

Σ;∆0···∆n ` box e : 2(Γ . A)

(TUNBOX)
Σ; ∆0···∆n ` e : 2(Γ . A) ∆n+k Â Γ k > 0

Σ; ∆0···∆n···∆n+k ` unboxk e : A

(TEVAL)
Σ; ∆0···∆n ` e : 2(∅ . A)

Σ;∆0···∆n ` unbox0 e : A

(TOPEN)
Σ; ∆0···∆n ` e : 2(∅ . A)

Σ; ∆0···∆n ` open e : 2(Γ . A)

(TLIFT)
Σ; ∆0···∆n ` e : A

Σ; ∆0···∆n ` lift e : 2(Γ . A)

(TGENSYM)

Σ; ∆0···∆n + w : A ` [xn n
7→ w] e : B

w not in (Σ, ∆0···∆n, λ∗x.e′)

Σ;∆0···∆n ` λ∗x.e : A → B

(TREF)
Σ; ∆0···∆n ` e : A

Σ; ∆0···∆n ` ref e : A ref

(TDEREF)
Σ;∆0···∆n ` e : A ref

Σ; ∆0···∆n ` ! e : A

(TASSIGN)
Σ; ∆0···∆n ` e1 : A ref Σ; ∆0···∆n ` e2 : A

Σ;∆0···∆n ` e1:= e2 : A

(TLOC)
Σ(l) = A

Σ; ∆0···∆n ` l : A ref

(TCLOS)
Σ |= E : ∆ Σ; ∆ + x : A ` e : B

Σ; ∆0···∆n ` clos(x, e, E) : A → B

(TLETIMP)

expansiven(e1)
Σ; ∆0···∆n ` e1 : A Σ; ∆0···∆n + x : A ` e2 : B

Σ; ∆0···∆n ` let (x e1) e2 : B

(TLETAPP)

¬ expansiven(e1)
Σ; ∆0···∆n ` e1 : A
Σ; ∆0···∆n + x : GENA(Σ, ∆0···∆n) ` e2 : B

Σ; ∆0···∆n ` let (x e1) e2 : B

GENA(Σ, ∆0···∆n) = ∀ξ1 . . . ξm.A such that
{ξ1, . . . , ξm} = FV(A) \ (FV(Σ) ∪

Sn
i=0 FV(∆i))

Figure 7. Polymorphic type system for λpoly
open

(TBOX), (TOPEN) and (TLIFT) restrict code template type
2(Γ . A) to be conditioned by monomorphic type environ-
ment Γ. This restriction, which is analogous to rank-1 polymor-
phism, allows us to avoid the impossible principal typing in the
Hindley/Milner-style type inference [26].

(TBOX), (TOPEN) and (TLIFT) are the rules that may introduce
type environment variables. Consider the (TBOX) case. Suppose
that

Σ;∆0···∆n{xi : Ai}
m
1 ` e : A.

Then,

Σ;∆0···∆n{xi : Ai}
m
1 :: {yi : Fi}

k
1 ` e : A for some {yi : Fi}

k
1 .

Hence, using a type environment variable ρ,

Σ;∆0···∆n{xi : Ai}
m
1 ρ ` e : A

or
Σ; ∆0···∆n ` box e : 2({xi : Ai}

m
1 ρ . A).

(TOPEN) and (TLIFT) also introduce type environment variables
as follows.

Σ;∆0···∆n ` open e : 2(ρ . A) for some ρ and
Σ;∆0···∆n ` lift e : 2(ρ . A) for some ρ.

In typing judgment Σ; ∆0···∆n ` e : A, ∆0 always has the
form of {xi : τi}

m
1 (not {xi : τi}

m
1 ρ) while ∆i (i > 0) may

be {yi : µi}
k
1ρ. This is because type environment variables are

introduced only into code template types (by (TBOX), (TOPEN)
and (TLIFT)) and the type environment {xi : Fi}

m
1 ρ in a code

template type 2({xi : Fi}
m
1 ρ . A) can be ∆i (i > 0) in a type

derivation.
(TLETAPP) allows the let-polymorphism in let (x e1) e2 if e1

guarantees not to expand the store (if expansiven(e1) is false).
Note that type environment variables and field variables, as well as
type variables, can be generalized in (TLETAPP). If the evaluation
of e1 does not expand the store, it is safe to generalize free type
variables, free type environment variables, or free field variables in
the type of e1. In (TVAR) and (TUNBOX), such generalized type
variables, type environment variables and field variables respec-
tively instantiate to some types, type environments and fields. For
example, the type environment variable ρ in ∀ρ.2({xi : Fi}

m
1 ρ .

A) can instantiate to some type environment {yi : Gi}
k
1 (or

{yi : Gi}
k
1ρ′) where {xi}

m
1 ∩ {yi}

k
1 = ∅. In (TLETIMP), e1

may expand the store, the type of e1 is not generalized. Other rules
are the same as in λsim

open except for this polymorphic extension.

4.5 Soundness of the Type System
(EEVAL) at stage 0 converts box v1 into v1 at stage 0; it demotes
values at stage n to expressions at stage (n − 1). The following
demotion lemma shows that demotion preserves types.

LEMMA 4.3. (Demotion) If Σ; ∅∆1···∆n ` v : A where n > 0 ,
then

Σ;∆1···∆n ` v : A.

PROOF By induction on the type derivation of Σ; ∅∆1···∆n `
v : A. Predicate expansiven(e)’s demotion-closedness is needed
in the proof. 2

An expression preserves its type after evaluation in λpoly
open. For

the proof of the preservation lemma, we need the result lemma
(Lemma 4.2) and the demotion lemma (Lemma 4.3).

LEMMA 4.4. (Preservation) If |= S : Σ, Σ |= E : ∆0, If

Σ; ∆0···∆n ` e : A, and E ,S,V ` e
n

−→ (r,S ′
,V ′),

then,

Σ′; ∅∆1···∆n ` r : A and |= S ′ : Σ′ for some Σ′ ⊇ Σ.

PROOF By induction on the type derivation of Σ;∆0···∆n ` e : A

and evaluation E ,S,V ` e
n

−→ (r,S ′,V ′). 2

Finally, the type system of λpoly
open is sound. If a closed expression

is well typed, then it preserves the type after evaluation. Hence, the
evaluation result can not be err. Note that err is not typable.

THEOREM 4.1. (Soundness) If ∅; ∅ ` e : A and ∅, ∅,V ` e
0

−→
(r,S,V ′), then Σ; ∅ ` r : A and |= S : Σ.

PROOF Immediate from the preservation lemma. 2

5. Type Inference Algorithm
This section presents a sound and complete type inference algo-
rithm that finds the principal types for λpoly

open. Figure 10 shows the
type inference algorithm for λpoly

open. Algorithm infer(∆0···∆n, e, A,Q)
takes as input a sequence of type scheme environments ∆0···∆n,
an expression e, a type A and a set Q of fresh type, type envi-
ronment or field variables to be used in the infer algorithm. The
infer algorithm finds the most general substitution R satisfying

∅; (R∆0)··· (R∆n) ` e : RA.

Figure 11 shows the extension of type environment or field
addition operation in record types. In ∅; ∆0···∆n ` e : A, ∆i is a
record type which may contain ρ variable for i > 0. In (IABS),
(IGENSYM) and (ILET), we need to extend ∆n with x : τ ,
meaning that ∆n + x : τ has x : τ whether ∆n already has some
x : θ or not. To support such field addition in record types, we
adopt Rémy’s record types [21] where a field variable can be ⊥.
Meanwhile, Rémy uses the different notion for the field in record
types such as x : pre(A) (not x : A) or x : abs (not x : ⊥).

unify(E,Q) =
We use Rémy’s unification algorithm [21, 20].
The only difference is:

For equation 2(Γ1 . A1) = 2(Γ2 . A2) during unification,
we convert it into Γ1 = Γ2 and A1 = A2.

For equation A1 ref = A2 ref during unification,
we convert it into A1 = A2.

Figure 8. Unification algorithm

Our unification algorithm (Figure 8) is basically the same as
Rémy’s [21, 20] except for the code and reference types. Remy’s
unification algorithm takes as input a set of equations for types,
fields or records (type environments). The second input Q is the
set of fresh variables that will be used during the unification. The
algorithm returns the most general unifier [21, 20].

(IBOX), (IOPEN) and (ILIFT) introduce type environment
variables into code template types. As mentioned in Section 4, in
a sequence of type scheme environments ∆0···∆n, ∆n (n > 0)
may be {xi : Fi}

m
1 ρ. Hence, to infer the type of x, (IVAR) checks

∆n Â {x : A}ρ (not ∆n(x) Â A) because it may be that
∆n = {xi : Fi}

m
1 ρ′ and x 6∈ {xi}

m
1 . (ILET) generalizes free

type environment variables and free field variables, as well as free
type variables. Such generalized type, field or type environment
variables instantiate to concrete types, fields or type environments
in (IVAR) and (IUNBOX). (IVAR) and (IUNBOX) need the instan-
tiation of type scheme environments, whose algorithm is presented
in Figure 9. (IBOX) and (IUNBOX) relate two different staged type
scheme environments with each other by making the sequence of
type scheme environments longer or shorter. (IGENSYM) executes
the explicit name change before type inference. (ICON), (IABS),
(IAPP), (IREF), (IDEREF) and (IASSIGN) are straightforward
except for multi-staged setting.

The infer algorithm is a sound and complete type inference
algorithm for λpoly

open. The completeness lemma (Lemma 5.2) estab-
lishes that the infer algorithm finds the principal types of λpoly

open.

LEMMA 5.1. (Soundness) Suppose that

Q∩ (FV(A) ∪

n
[

i=0

FV(∆i)) = ∅.

If infer(∆0···∆n, e, A,Q) succeeds with S, then

∅; (S∆0)··· (S∆n) ` e : SA.

PROOF By induction on each case of the infer algorithm. 2

(* inst(∆,Q) finds a type environment Γ that satisfies ∆ Â Γ
using fresh variables in Q. *)

inst(∆,Q) =
make distinct all bound variables in ∆ by renaming the bound variables
if ∆ = {xi : µi}

m
1 ρ then

let S be a substitution such that dom(S) =
Lm

i=1 BV(µi) and
range(S) ⊆ Q in

let µi Â Fi by S for i ∈ [1..m] in
{xi : Fi}

m
1 ρ

if ∆ = {xi : µi}
m
1 then

let S be a substitution such that dom(S) =
Lm

i=1 BV(µi) and
range(S) ⊆ Q in

let µi Â Fi by S for i ∈ [1..m] in
{xi : Fi}

m
1

Figure 9. Instantiation of type scheme environments

LEMMA 5.2. (Completeness) Suppose that

∅; (R∆0)··· (R∆n) ` e : RA

and Q∩(FV(A) ∪
Sn

i=0 FV(∆i)) = ∅.
Then, infer(∆0···∆n, e, A,Q) succeeds with S such that R|−Q =

TS|−Q for some T and RV(S) ⊆ Q ∪ FV(A) ∪
Sn

i=0 FV(∆i).

PROOF By induction on the derivation of ∅; (R∆0)··· (R∆n) `
e : RA. The equality R|−Q = TS|−Q is modulo the aforementioned
equivalence between type environments with the tailing ρ variables:
for a field variable θ, ρL and {y : θ} :: ρL⊕{y} are equivalent. 2

Suppose that a type variable α is not in a set of type and
type environment variables Q. Then infer(∅, e, α,Q) always
terminates for any expression e. If infer(∅, e, α,Q) succeeds
with S, then ∅; ∅ ` e : Sα. Moreover, if there is a substitution
R such that ∅; ∅ ` e : Rα, then R|−Q = TS|−Q for some T .
Hence, Sα is the principal type of e.

6. Relation to Other Multi-Staged Languages
This section compares λpoly

open (or λsim
open) with other multi-staged lan-

guages such as the implicit λ2 [7, 8], λi
let [3], λ© [6] and λ+

code
[4].

6.1 Relation to the Implicit λ2

Typed expressions in the implicit λ2 [7, 8] can be embedded
into λsim

open. Figure 12 shows the type system of the implicit λ2.
The translation is straightforward because the implicit λ2 accepts
only closed code templates while λsim

open accepts code templates
containing free variables. Expression translation from the implicit
λ2 to λsim

open is:

JxK = x Jλx.eK = λx.JeK
Je1e2K = Je1KJe2K Jbox eK = box JeK

Junbox0 eK = unbox0JeK Junboxk eK = unboxk (open JeK)
where k > 0.

Type translation from the implicit λ2 to λsim
open is:

JιK = ι JA → BK = JAK → JBK J2AK = 2(∅ . JAK).

Type environment translation JΓK is point-wise:

J{x1 : A1, . . . , xn : An}K = {x1 : JA1K, . . . , xn : JAnK}.

LEMMA 6.1. If Γ0···Γn `i e : A in implicit λ2, then

∅; JΓ0K··· JΓnK ` JeK : JAK

in λsim
open.

infer(∆0···∆n, c, A,Q) = (ICON)
unify({A = ι},Q)

infer(∆0···∆n, x, A, {ρ} ⊕ Q1 ⊕Q2) = (IVAR)
let Γn = inst(∆n,Q1) in
unify({Γn = {x : A}ρ},Q2)

infer(∆0···∆n, λx.e, A, {α, β} ⊕ Q1 ⊕Q2 ⊕Q3) = (IABS)
let (S1, ∆′

1···∆
′
n) = add(∆0···∆n, {x : α},Q1) in

let S2 = infer(∆′
0···∆

′
n, e, S1β,Q2) in

let S3 = unify({S2S1A = S2S1α → S2S1β},Q3) in S3S2S1

infer(∆0···∆n, e1e2, A, {α} ⊕ Q1 ⊕Q2) = (IAPP)
let S1 = infer(∆0···∆n, e1, α → A,Q1) in
let S2 = infer((S1∆0)··· (S1∆n), e2, S1α,Q2) in S2S1

infer(∆0···∆n, box e, A, {ρ, α} ⊕ Q1 ⊕Q2) = (IBOX)
let S1 = infer(∆0···∆nρ, e, α,Q1) in
let S2 = unify({S1A = 2(S1ρ . S1α)},Q2) in S2S1

infer(∆0···∆n, unboxk e, A, {ρ} ⊕ Q1 ⊕Q2 ⊕Q3) = (IUNBOX)
let Γn = inst(∆n,Q1) in
let S2 = infer(∆0···∆n−k, e, 2(ρ . A),Q2) in
let S3 = unify({S2Γn = S2ρ},Q3) in S3S2

infer(∆0···∆n, unbox0 e, A,Q) = (IEVAL)
infer(∆0···∆n, e, 2(∅ . A),Q)

infer(∆0···∆n, open e, A, {ρ, α} ⊕ Q1 ⊕Q2) = (IOPEN)
let S1 = infer(∆0···∆n, e, 2(∅ . α),Q1) in
let S2 = unify({S1A = 2(ρ . S1α)},Q2) in S2S1

infer(∆0···∆n, lift e, A, {ρ, α} ⊕ Q1 ⊕Q2) = (ILIFT)
let S1 = infer(∆0···∆n, e, α,Q1) in
let S2 = unify({S1A = 2(ρ . S1α)},Q2) in S2S1

infer(∆0···∆n, λ∗x.e, A, {α, β} ⊕ Q1 ⊕Q2 ⊕Q3) = (IGENSYM)
w is a fresh internal program variable
let (S1, ∆′

0···∆
′
n) = add(∆0···∆n, {w : α},Q1) in

let S2 = infer(∆′
0···∆

′
n, [xn n

7→ w] e, S1β,Q2) in
let S3 = unify({S2S1A = S2S1α → S2S1β},Q3) in S3S2S1

infer(∆0···∆n, ref e, A, {α} ⊕ Q1 ⊕Q2) = (IREF)
let S1 = infer(∆0···∆n, e, α,Q1) in
let S2 = unify({S1A = (S1α) ref},Q2) in S2S1

infer(∆0···∆n, ! e, A,Q) = (IDEREF)
infer(∆0···∆n, e, A ref,Q)

infer(∆0···∆n, e1:= e2, A,Q1 ⊕Q2) = (IASSIGN)
let S1 = infer(∆0···∆n, e1, A ref,Q1) in
let S2 = infer((S1∆0)··· (S1∆n), e2, S1A,Q2) in S2S1

infer(∆0···∆n, let (x e1) e2, A, {α} ⊕ Q1 ⊕Q2 ⊕Q3) = (ILET)
if expansiven(e1)
then

let S1 = infer(∆0···∆n, e1, α,Q1) in
let (S2, ∆′

0···∆
′
n) = add((S1∆0)··· (S1∆n), {x : S1α},Q2) in

let S3 = infer(∆′
0···∆

′
n, e2, S2S1A,Q3) in S3S2S1

else
let S1 = infer(∆0···∆n, e1, α,Q1) in
let {ξ1, . . . , ξm} = FV(S1α) \

Sn
i=0 FV(S1∆i)

let (S2, ∆′
0···∆

′
n) =

add((S1∆0)··· (S1∆n), {x : ∀ξ1 . . . ξm.S1α},Q2) in
let S3 = infer(∆′

0···∆
′
n, e2, S2S1A,Q3) in S3S2S1

Figure 10. Type inference algorithm for λpoly
open

PROOF By induction on the type derivation of Γ0···Γn `i e : A in
the implicit λ2 language. 2

6.2 Relation to λi
let

λi
let [3] is not embedded in λpoly

open while its monomorphic version λi

[3] is embedded in λsim
open if its cross-stage persistence operator (%)

is removed. Figure 13 shows the type system of λi
let. We omit the

type system of λi, which is just a simply typed version of λi
let and

does not have expression let (x e1) e2.

add(∆0···∆n, {x : τ}, {θ, ρ′}) =
if ∆n = {x : µ} :: ∆′ then

(∅, ∆0···∆n−1 ({x : τ} :: ∆′))
else if ∆n = {xi : µi}

k
1 and x 6∈ {xi}

k
1 then

(∅, ∆0···∆n−1 ({x : τ} :: {xi : µi}
k
1))

else
let ∆n = {xi : µi}

k
1 :: ρ and x 6∈ {xi}

k
1 in

let S = {ρ : {x : θ} :: ρ′} in
(S, (S∆0)··· (S∆n−1) ({x : Sτ} :: {xi : Sµi}

k
1 :: ρ′))

Figure 11. Extension of type environments

Expressions e ::= x | λx.e | e e | box e | unboxk e
Types A, B ::= ι | A → B | 2A
Type Environments Γ ::= ∅ | Γ + x : A

Γn(x) = A

Γ0···Γn `i x : A

Γ0···Γn + x : A `i e : B

Γ0···Γn `i λx.e : A → B

Γ0···Γn `i e1 : A → B Γ0···Γn `i e2 : A

Γ0···Γn `i e1e2 : B

Γ0···Γn∅ `i e : A

Γ0···Γn `i box e : 2A

Γ0···Γn `i e : 2A

Γ0···Γn···Γn+k `i unboxk e : A

Figure 12. Type system for the implicit λ2

Expressions e ::= x | λx.e | e1e2

| 〈e〉 | ~e | % e | run e
| open e | close e
| let (x e1) e2

Types A, B ::= ι | A → B | 〈A〉α | 〈A〉
Type Schemes τ ::= A | ∀κ.τ

Type Environments Γ ::= ∅ | Γ + x : AL

Type Scheme Environments ∆ ::= ∅ | ∆ + x : τL

∆(x) = τL τ Â A

∆ `L x : A

∆ + x : AL `L e : B

∆ `L λx.e : A → B

∆ `L e1 : A → B ∆ `L e2 : A

∆ `L e1e2 : B

∆ `Lα e : A

∆ `L 〈e〉 : 〈A〉α
∆ `L e : 〈A〉α

∆ `Lα ~e : A

∆ `L e : 〈A〉

∆ `L run e : A

∆ `L e : A

∆ `Lα % e : A

∆ `L e : 〈A〉

∆ `L open e : 〈A〉α
∆ `L e : 〈A〉α α 6∈ FV(∆, L, A)

∆ `L close e : 〈A〉

∆ `L e1 : A

∆ + x : ∀κ1 . . . κm.AL `L e2 : B {κi}
m
1 = FV(A) \ FV(∆, L)

∆ `L let (x e1) e2 : B

Figure 13. Type system for λi
let

Expression translation from λi without % to λsim
open is straightfor-

ward. Because λi preserves alpha-equivalence, we assume without
loss of generality that all bound variables are distinct in λi before
execution.

JxK = x Jλx.eK = λ∗x.JeK
Je1e2K = Je1KJe2K J〈e〉K = box JeK

J~eK = unboxJeK Jrun eK = unbox0JeK
Jopen eK = open JeK Jclose eK = JeK

Note that because runtime renaming that happens implicitly in λi is
simulated by our hygienic abstraction λ∗x.e, the translated version
in λsim

open has the same semantics as the original one in λi.

DEFINITION 6.1. (Collecting Type Environments) Let {Γi `Li

ei : Ai}
m
1 be a set of typing judgments occurring in λi’s type

derivation tree of Γ `L e : A

CTE(Γ `L e : A) =
Sm

i=1 Γi.

As we assume that all bound variables are distinct, if x : A
L1

1

and x : A
L2

2 are in CTE(Γ `L e : A), then A
L1

1 = A
L2

2 . In other
words, CTE(Γ `L e : A) is always a function. Let Φ be a function
satisfying Φ ⊇ CTE(Γ `L e : A). Then, type translation from λi

without % to λsim
open is:

Tr(Φ, ι, L) = ι
Tr(Φ, A → B, L) = Tr(Φ, A, L) → Tr(Φ, B, L)
Tr(Φ, 〈A〉α, L) = 2(JΦKLα

|Lα| . Tr(Φ, A, Lα))
Tr(Φ, 〈A〉, L) = 2(∅ . Tr(Φ, A, L′))

where L′ is any stage,

and environment translation is:

JΦKL
i = {x : Tr(Φ, A, L′) | L′ is a prefix of L, |L′| = i,

x : AL′

∈ Φ}

LEMMA 6.2. If Γ `L e : A in λi without %, then

JΦKL
0 ··· JΦKL

|L| ` JeK : Tr(Φ, A, L) in λ
poly
open,

for any function Φ ⊇ CTE(Γ `L e : A).

PROOF By induction on the type derivation of Γ `L e : A in λi

without the cross-stage persistence. 2

Although translation from λi
let to λpoly

open seems straightforward,
λi

let is not conservatively embedded in λpoly
open. The code template type

of 〈e〉 is not always translated into some modal type of box e. For
example, code template

〈 let x = λy.y in ~〈xx〉 〉

is admissible to λi
let’s type system as follows.

y : Bα `α y : B

∅ `α λy.y : B → B

x : ∀κ.κ → κα `α xx : A → A

x : ∀κ.κ → κα `ε 〈xx〉 : 〈A → A〉α

x : ∀κ.κ → κα `α ~〈xx〉 : A → A

∅ `α let x = λy.y in ~〈xx〉 : A → A

∅ `ε 〈 let x = λy.y in ~〈xx〉 〉 : 〈A → A〉α

In the above type derivation tree, code template 〈xx〉 is typable
in λi

let. However, code template box (xx) is not typable in λpoly
open

because λpoly
open allows only monomorphic type environment inside

the code template types (i.e., 2(Γ . A) not 2(∆ . A)). Note that
xx is not typable under any monomorphic type environment.

On the other hand, free variables of 〈e〉 should be lexically
bound at the same stage level, which makes it difficult to support
imperative operations for open code templates. For example, sup-
pose that open code template 〈x〉 is stored at a stage L under some
∆ where x : ALα ∈ ∆. The stored open code template may be
later dereferenced at a stage L under some ∆′ (x : ALα 6∈ ∆′).
This example is typable in λpoly

open and not in λi
let.

6.3 Relation to λ©

λ© [6] is embedded in λi [3], and does not have the cross-stage
persistence operator (%). Because λi without % is embedded in λsim

open

(Section 6.2), λ© is thus embedded in λsim
open.

6.4 Relation to λ+
code

Unlike ours, λ+
code [4]’s polymorphic generalization is not allowed

inside code templates, and no free named variables can occur inside
code templates.

λ+
code’s use of deBruijn indices for program variables conflicts

with imperative multi-staged programming practice. When an open
code template escapes from its lexical scope by some imperative
operations, its free variables’ deBruijn indices can denote different
variables from those in the original program with named variables.
For example, consider the following code that is admissible to
λ+

code’s type system:

let val a = ref ‘1
val f = ‘(fn x -> fn y -> ,(a := ‘(x + y); ‘2))
val g = ‘(fn y -> fn z -> ,(!a))

in ... end

When the stored open code ‘(x+y) is plugged inside ‘(fn y ->
fn z -> ,(!a)), the programmer intends that the x remains free
and y is bound to y. If we replace every variable by its deBruijn in-
dex, the resulting program becomes a completely different one. The
x and y in ’(x+y) will have deBruijn indices 2 and 1, respectively.
Thus in ‘(fn y -> fn z -> ,(!a)), the x is bound with y and
the y with z.

7. Conclusion
We have presented a polymorphic modal type system and its
principal type inference algorithm that conservatively extend ML
by all of Lisp’s staging constructs (the quasi-quotation system).
Our type system supports open code, unrestricted operations on
references, intentional variable-capturing substitution as well as
capture-avoiding substitution of free variables in open code, and
lifting values into code, whose combination escaped all the previ-
ous systems.

Type-checked programs preserve alpha-equivalence only at
stage 0. This may be unacceptable in a purely functional language,
but it is frequently practiced in Lisp’s staged programming, hence,
we think worthwhile to support it in our type system.

For programs that are accepted by existing multi-staged type
systems such as λ2 [7, 8], λ© [6], and λi without its cross-stage
persistence [3], there exist their semantics-preserving, translated
versions that are accepted by our type system.

Acknowledgments
We thank the anonymous referees and Stephanie Weirich for their
helpful comments that improved the presentation of this article.

References
[1] D. Ancona and E. Moggi. A fresh calculus for name management.

In Proceedings of the International Conference on Generative
Programming and Component Engineering, October 2004.

[2] Cristiano Calcagno, Eugenio Moggi, and Tim Sheard. Closed types
for a safe imperative MetaML. Journal of Functional Programming,
13(3), 2003.

[3] Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like
inference for classifiers. In Proceedings of the European Symposium
on Programming 2004, pages 79–93. Springer, 2004.

[4] Chiyan Chen and Hongwei Xi. Meta-programming through typeful
code representation. In Proceedings of the International Conference
on Functional Programming (ICFP ’02), pages 275–286. ACM,
August 2003.

[5] Olivier Danvy. Type-directed partial evaluation. In Proceedings
of the Symposium on Principles of Programming Languages, pages
242–257. ACM, Jan 1996.

[6] Rowan Davies. A temporal-logic approach to binding-time analysis.
In Proceedings of the Symposium on Logic in Computer Science
(LICS ’96), pages 184–195. IEEE Computer Society Press, 1996.

[7] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. In Proceedings of the Symposium on Principles of
Programming Languages (POPL ’96), pages 258–270. ACM, 1996.

[8] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. Journal of the ACM, 48(3):555–604, 2001.

[9] Dawson R. Engler. VCODE:A retargetable, extensible, very fast
dynamic code generation system. In Proceedings of the Conference
on Programming Language Design and Implementation, pages 160–
170, New York, 1996. ACM.

[10] Paul Graham. On Lisp: an advanced techniques for Common Lisp.
Prentice Hall, 1994.

[11] Robert Harper. A simplified account of polymorphic references.
Information Processing Letters, 51:201–206, 1994.

[12] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial
evaluation and automatic program generation. Prentice-Hall, 1993.

[13] Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymor-
phic modal type system for Lisp-like multi-staged languages. Techni-
cal Report ROPAS-2005-26, (ropas.snu.ac.kr/lib/dock/KiYiCa2005.pdf),
2005.

[14] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and
Bruce Duba. Hygienic macro expansion. In Proceedings of the
1986 ACM Conference on LISP and functional programming, pages
151–161. ACM, August 1986.

[15] M. Leone and Peter Lee. Optimizing ML with run-time code
generation. In Proceedings of the ACM SIGPLAN’96 Conference
on Programming Language Design and Implementation, pages 137–
148. ACM Press, June 1996.

[16] H. Massalim. An Efficient Implementation of Functional Operating
System Services. PhD thesis, Columbia University, 1992.

[17] Aleksandar Nanevski. Meta-programming with names and necessity.
In Proceedings of the International Conference on Functional
Programming (ICFP ’02), pages 206–217. ACM, October 2002.

[18] Aleksandar Nanevski and Frank Pfenning. Staged computation
with names and necessity. to appear in Journal of Functional
Programming.

[19] Massimilian Poletto, Wilson C. Hsieh, Dawson R. Engler, and
M. Frans Kasshoek. C and tcc:a language and compiler for dynamic
code generation. ACM Transactions on Programming Languages and
Systems, 21:324–369, March 1999.

[20] Didier Rémy. Syntactic theories and the algebra of record terms. Re-
search Report 1869, Institut National de Recherche en Informatique
et Automatisme, Rocquencourt, BP 105, 78 153 Le Chesnay Cedex,
France, 1993.

[21] Didier Rémy. Type inference for records in a natural extension of ML.
In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects
Of Object-Oriented Programming. Types, Semantics and Language
Design. MIT Press, 1993.

[22] Morten Rhiger. First-class open and closed code fragments. In
Proceedings of the Sixth Symposium on Trends in Functional
Programming, September 2005.

[23] Guy L. Steele. Common Lisp the Language, 2nd edition. Digital
Press, 1990.

[24] Walid Taha. Multi-Stage Programming: Its Theory and Applications.
PhD thesis, Oregon Graduate Institute of Science and Technology,
November 1999.

[25] Walid Taha and Michael Florentin Nielsen. Environment classifiers.
In Proceedings of the Symposium on Principles of Programming
Languages (POPL ’03). ACM, 2003.

[26] J. B. Wells. The essence of principal typings. In Proceedings of
the 29th International Colloquium on Automata, Languages and
Programming, pages 913–925. Springer-Verlag, 2002.

[27] Andrew K. Wright. Simple imperative polymorphism. Lisp and
Symbolic Computation, 8(4):343–355, Dec 1995.

