
Access Analysis-Based Tight Localization of
Abstract Memories

Hakjoo Oh1, Lucas Brutschy2, and Kwangkeun Yi1

1 Seoul National University
2 RWTH Aachen University

Abstract. On-the-fly localization of abstract memory states is vital
for economical abstract interpretation of imperative programs. Such
localization is sometimes called “abstract garbage collection” or “framing”.
In this article we present a new memory localization technique that is
more effective than the conventional reachability-based approach. Our
technique is based on a key observation that collecting the reachable
memory parts is too conservative and the accessed parts are usually tiny
subsets of the reachable. Our technique first estimates, by an efficient pre-
analysis, the set of locations that will be accessed during the analysis of
each code block. Then the main analysis uses the access-set results to trim
the memory entries before analyzing code blocks. In experiments with an
industrial-strength global C static analyzer, the technique is applied right
before analyzing each procedure’s body and reduces the average analysis
time and memory by 92.1% and 71.2%, respectively, without sacrificing
the analysis precision. Localizing more frequently such as at loop bodies
and basic blocks as well as procedure bodies, the generalized localization
additionally reduces analysis time by an average of 31.8%.

1 Introduction

In global abstract interpretation of imperative programs, memory localization
(sometimes called “abstract garbage collection” or “framing”) is vital for reducing
analysis cost [5, 8, 14, 16, 24]. Not to mention the immediate benefit of the reduced
memory footprint, memory localization has other important impact on cost
reduction. In flow-sensitive, semantically dense global abstract interpretation, code
blocks such as procedure bodies are repeatedly analyzed (often needlessly) with
different input memory states. Localization makes input memory states smaller,
which results in more general summaries for the blocks. More general summaries
reduce re-computations of blocks by increasing the chance of reusing the previously
computed analysis results. For example, consider a code x=0;f();x=1;f(); and
assume that x is not used inside f. Without localization, f is analyzed twice
because the input state to f is changed at the second call. If x is removed from
the input state (localization), the analysis result of f for the first call can be
reused for the second call without re-analyzing the procedure.

The conventional localization scheme is reachability-based [5, 23, 24, 8, 21, 20,
14, 16]. When applied to procedure bodies, reachability-based approaches allow

2 Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi

Table 1. Reachability-based approach is too conservative. The table shows a comparison
of accessed and reachable (abstract) memory portions during abstract interpretations of
5 open-source programs. For each a/b (r%), a is the average number of memory entries
accessed in the called procedures, b is the average size of the reachable input state, and
r is their ratio.

Program LOC accessed memory
/ reachable memory

spell-1.0 2,213 5 / 453 (1.1%)
gzip-1.2.4a 7,327 22 / 1,002 (2.2%)
jwhois-3.0.1 9,344 28 / 830 (3.4%)
bc-1.06 13,093 24 / 824 (2.9%)
less-290 18,449 86 / 1,546 (5.6%)

a procedure to be analyzed with only a memory portion that is reachable from
actual parameters or global variables. Because the reachable portion is often
smaller than the entire memory state, analysis cost is reduced, both in time
and memory. The method is popular in various kinds of program analysis: for
example, in shape analysis [23, 8, 21, 14, 6] and higher-order flow analysis [16, 5].

However, the reachability-based approach has inefficient aspects especially in
analyzing real C programs. This is mainly because large parts of the reachable
portion of input states are not actually accessed, i.e. the values are neither read
nor written during the analysis. For example, Table 1 shows, given a reachability-
based localized input state to a procedure, how much is actually accessed inside
the (directly or transitively) called procedures.The results show that only few
reachable memory entries were actually accessed: procedures accessed only 1.1%–
5.6% of reachable memory states. Nonetheless, the reachability-based approach
propagates all the reachable parts to procedures. It is therefore possible for a
procedure body to be needlessly recomputed for input memory states whose only
differences lie in the reachable-but-non-accessed portions. This means that the
reachability-based approach can be too conservative for real C programs and
hence is inefficient in both time and memory cost. This observation was made
while investigating the reasons for the inefficiency of an industrial-strength static
analyzer [11–13, 18, 19] that uses the reachability-based localization.

In this paper, we present a localization technique that is more aggressive
than reachability-based approach. In addition to excluding unreachable memory
entries from the localized state, we also exclude memory entries that are reachable
but possibly not accessed. The main problem is to find the memory parts that
will be accessed during the analysis of a block before actually analyzing the
block. We solve the problem by staging: (1) the set of abstract locations that
will be used during the analysis of a code block is conservatively estimated by a
pre-analysis; (2) then, the actual analysis uses the information and filters out
memory parts that will not be accessed within the block. The pre-analysis applies
a conservative abstraction to the abstract semantics of the original analysis and
quickly finds an over-approximation of resources that the actual analysis requires.

Access Analysis-Based Tight Localization of Abstract Memories 3

This over-approximate nature of our pre-analysis ensures the correctness of our
approach (Section 3.2).

The time savings by our new localization method are significant: when applied
to each procedure’s body, our access-based localization reduces the analysis
time by on average 92.1% over reachability-based localization. We implemented
our approach inside an industrial-strength interval-domain-based abstract in-
terpreter [11–13, 18, 19]. In experiments, the technique reduces analysis time
by 78.5%–98.5%, on average 92.1%, and peak memory consumption by 33.0–
81.2%, on average 71.2%, over the reachability-based approach for a variety of
open-source C benchmarks (2K–100KLOC). Moreover, our technique enables
the largest four programs of our benchmarks to be analyzed, which could not be
analyzed with the reachability-based approach because of the analysis running
out of memory.

We generalize the idea of localization at procedure entries to localization of
arbitrary code blocks. When applying localization to such smaller code blocks,
we have to carefully select localization targets because localizing operations
introduce performance overhead. We present a block selection strategy that is
flexible to balance actual cost reduction against the overhead. The generalized
localization reduces the analysis time by 8.5–53.7%, on average 31.8%, on top of
the procedure-level localization.

This paper makes the following contributions.

– We present a new localization technique, access-based localization. We employ
a pre-analysis that is a conservative abstraction of the abstract semantics of
the actual analysis. As far as we know published program analyzers do not
perform access-based localization: previous analyses use reachability-based
techniques (e.g., [16, 8, 20]) or their variants (e.g., [5, 15]).

– We present a generalized localization algorithm that applies to arbitrary
code blocks as well as procedure bodies. As far as we know, other published
program analyzers apply localization only to procedures.

– We prove the effectiveness of our technique by experiments with industrial-
strength C static analyzer [11–13, 18, 19].

Example 1. Consider the C code in Fig. 1 and an interval analysis of the code.
The analysis begins with an empty memory state (λx.⊥). The abstract memory
state right before calling f at line 7 (after parameter bound) is represented by
Fig. 1(a). Here, s denotes a structure with fields {a, b} allocated at line 5. The
abstract locations of each field are represented by 〈l5, a〉 and 〈l5, b〉, which initially
have bottom values. p is a parameter of f and g is a global variable.

Reachability-based localization collects all reachable memory entries: global
variable g, parameter p, and structure fields 〈l5, a〉 and 〈l5, b〉 that are reachable
by dereferencing p. Fig. 1(b) shows the resulting localized memory.

Our approach additionally filters the memory entries for 〈l5, b〉 and g. Our
pre-analysis infers that only the abstract locations {p, 〈l5, a〉} could be accessed
during actual analysis of f. The actual analysis uses the results and trims memory
entries, resulting in the memory state shown in Fig. 1(c). Note that, because

4 Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi

1: struct S { int a; int b; }

2: int g = 0;

3: void f (S* p) { p->a = 1; }

4: void main() {

5: S *s = (S*)malloc(sizeof S);

6: s->a = 0;

7: s->b = 0; f(s); // first call to f

8: s->b = 1; f(s); } // second call to f

s 7→ 〈l5, {a, b}〉 p 7→ 〈l5, {a, b}〉 p 7→ 〈l5, {a, b}〉
p 7→ 〈l5, {a, b}〉 〈l5, a〉 7→ [0, 0] 〈l5, a〉 7→ [0, 0]

〈l5, a〉 7→ [0, 0] 〈l5, b〉 7→ [0, 0]
〈l5, b〉 7→ [0, 0] g 7→ [0, 0]

g 7→ [0, 0]

(a) Non-localized memory (b) Reachability-based localization (c) Access-based localization

Fig. 1. Example code and abstract memories right before calling procedure f at line 7

the localized memory (Fig. 1(c)) does not contain 〈l5, b〉, the update to location
〈l5, b〉 at line 8 does not cause f to be re-analyzed at the subsequent call to f (line
8). On the other hand, with reachability-based localization, f will be analyzed
again at the second call.

Outline. Section 2 presents our analysis framework. Section 3 develops our
approach on top of our analysis framework. Section 4 shows experimental results.
Section 5 presents related work and discussion.

2 Setting: Baseline Analyzer

We describe our localization technique on top of a flow-sensitive and context-
insensitive abstract interpreter of C programs, based on the interval abstract
domain. We present the representation of programs (Section 2), abstract domain,
and abstract semantics (Section 2).

Our abstract domain and semantics are rather conventional, similar to ones
used in other abstract interpretations for C or binary programs (e.g., [2]). Our
abstract semantics estimate numeric and pointer values within a monolithic
abstract interpretation.

Program Representation. We assume that a program is represented by a
supergraph. A supergraph consists of control flow graphs of all procedures with
interprocedural edges connecting each call-site to its callee and callees to return-
sites. Each command in a node n ∈ Node in the graph has one of the following
types:

set(lv,e) | alloc(lv,a) | call(fx,e)

Access Analysis-Based Tight Localization of Abstract Memories 5

where expression e, l-value expression lv , and allocation expression a are defined
as follows:

expression e → n | e + e | lv | &lv
l-value lv → x | *e | e[e] | e.x
allocation a → [e]l | {x}l

An expression may be a constant integer (n), a binary operation (e + e), an l-value
expression (lv), or an address-of expression (&lv). An l-value may be a variable
(x), a pointer dereference (*e), an array access (e[e]), or a field access (e.x).
Expressions and l-value expressions have no side-effects. All program variables,
including formal parameters, have unique names. The command set(lv,e) assigns
the value of e into the location of lv . The command alloc(lv,a) allocates an
array [e]l or a structure {x}l, where e is the size of the array, x is the field
name, and the subscript l is the label of the allocation site. For simplicity, we
only consider structures with one field in this explanation.

A call-site in a program is represented by a call node and its corresponding
return node. A call node call(fx,e) indicates that it invokes a procedure f ,
its formal parameter is x, and actual parameter is e. For simplicity, we assume
that there are no function pointers and only consider procedures with one
parameter. Edges are assembled by two functions predof ∈ Node→ 2Node and
succof ∈ Node→ 2Node, which map each node to its predecessors and successors,
respectively.

Static Analysis. In our analysis, the set of (possibly infinite) concrete memory
states are represented by an abstract memory state ˆMem = ˆAddr fin→ V̂al , denoting
a finite map from abstract locations (ˆAddr) to the abstract values (V̂al).

ˆAddr = Var + AllocSite + AllocSite × FieldName
V̂al = Ẑ× 2 ˆAddr × 2AllocSite×Ẑ×Ẑ × 2AllocSite×2FieldName

Ẑ = {⊥} ∪ {[l, u] | l ∈ Z ∪ {−∞} ∧ u ∈ Z ∪ {+∞} ∧ l ≤ u}

An abstract location may be a program variable (Var), an allocation site
(AllocSite), or a structure field (AllocSite × FieldName). All elements of an
array allocated at l are abstracted by l. The abstract location for field x of a
structure allocated at l is represented by 〈l, x〉 (the analysis is field-sensitive). An
abstract value is a quadruple. Numeric values are tracked by the interval values
(Ẑ). Points-to information is kept by the second component (2 ˆAddr): it indicates
pointer targets an abstract locations may point to. Allocated arrays of memory
locations are represented by array blocks (2AllocSite×Ẑ×Ẑ): an array block 〈l, o, s〉
consists of abstract base address (l), offset (o), and size (s). A structure block
〈l, {x}〉 ∈ 2AllocSite×2FieldName

abstracts structure values that are allocated at l and
have a set of fields {x}.

We first define two functions V̂ and L̂ that compute abstract values and
locations, respectively. Given an expression e and an abstract memory state m̂,
V̂(∈ e → ˆMem → V̂al) evaluates the abstract value of e under m̂. Similarly,
L̂(∈ lv → ˆMem → 2 ˆAddr) evaluates the set of abstract locations of lv under m̂.

6 Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi

V̂(n)(m̂) = 〈[n, n],⊥,⊥,⊥〉 L̂(x)(m̂) = {x}
V̂(e1 + e2)(m̂) = V̂(e1)(m̂)+̂V̂(e2)(m̂) L̂(*e)(m̂) = V̂(e)(m̂).2 ∪ {l | 〈l, o, s〉 ∈ V̂(e)(m̂).3}

V̂(lv)(m̂) =
⊔
{m̂(ˆAddr) | ∪{〈l, x〉 | 〈l, {x}〉 ∈ V̂(e)(m̂).4}
ˆAddr ∈ L̂(lv)(m̂)} L̂(e1[e2])(m̂) = {l | 〈l, o, s〉 ∈ V̂(e1)(m̂).3}

V̂(&lv)(m̂) = 〈⊥, L̂(lv)(m̂),⊥,⊥〉 L̂(e.x)(m̂) = {〈l, x〉 | 〈l, {x}〉 ∈ V̂(e)(m̂).4}

where, V̂(e)(m̂).n indicates the n-th element of the tuple that V̂(e)(m̂) evaluates.
We skip the conventional definition of the abstract binary (+̂) and join (t)
operations. In our analysis, all of the array elements are smashed into a single
element, and hence, the definition of L̂(e1[e2]) does not involve e2.

For each node n, we define a transfer function f̂ : Node→ ˆMem → ˆMem that,
given an input memory state, computes the effect of the command in node n on
the input state :

f̂ n m̂ =

m̂{V̂(e)(m̂)//L̂(lv)(m̂)} if n = set(lv,e)
m̂{〈⊥,⊥, {〈l, [0, 0], V̂(e)(m̂).1〉},⊥〉//L̂(lv)(m̂)} if n = alloc(lv,[e]l)

m̂{〈⊥,⊥,⊥, {〈l, {x}〉}〉//L̂(lv)(m̂)} if n = alloc(lv,{x}l)
m̂{V̂(e)(m̂)//L̂(x)(m̂)} if n = call(fx,e)

where, m̂{v//{l1, . . . , lk}} means m̂{l1 7→ (m̂(l1) t v)} · · · {lk 7→ (m̂(lk) t v)}.
The effect of node set(lv,e) is to (weakly) assign the abstract value of e
into the locations in L̂(lv)(m̂).3 The array allocation command alloc(lv,[e]l)
creates a new array block with offset 0 and size e. The structure block command
alloc(lv,{x}l) creates a new structure block. In both cases, we use the allocation
site l as a base address, which means that many, possibly infinite, concrete
locations are summarized by finite abstract locations. The call node command
call(fx,e) binds the formal parameter x to the value of actual parameter e.
Please note that the output of the call node is the memory state that flows into
the body of the called procedure, not the memory state returned from the call.

Airac computes a fixpoint table T ∈ Node → ˆMem that maps each node in
the program to its output abstract memory state. The abstract memory state at
each program point approximates all the concrete memory states occurring at
the node in the concrete executions. The map is defined by the least fixpoint of
the following function:

F̂ : (Node→ ˆMem)→ (Node→ ˆMem)
F̂(T) = λn.f̂ n (

⊔
p∈predof(n) T (p))

Fig. 2(a) (without the shaded line) shows the worklist-based fixpoint algorithm. In
addition, we use widening and narrowing [7], the worklist order is weak topological
ordering [4].

3 For brevity, we consider only weak updates. Applying strong update is orthogonal to
our technique we present in this paper.

Access Analysis-Based Tight Localization of Abstract Memories 7

3 Memory Localization by Access Analysis

This section describes our localization technique. We first describe localization
for procedure bodies: Section 3.1 develops the reachability-based localization
on top of our analysis framework (Section 2) and Section 3.2 extends it to our
access-based approach for procedures. We then generalize the procedure-level
localization for arbitrary code blocks in Section 3.3.

3.1 Conventional Reachability-based Localization for Procedures

We first formalize the reachability-based approach on top of our baseline analyzer
Airac. We call our analyzer based on this approach AiracReach.

When calling a procedure, AiracReach passes the memory parts that are reach-
able from global variables or parameters. Formally, given a call node call(fx,e)
and its input memory state m̂ (parameter-bound), AiracReach computes the fol-
lowing set of abstract locations (let Globals be the set of global variables in the
program):

R(fx, m̂) = Reach(Globals, m̂) ∪ Reach({x}, m̂)

We use Reach(X, m̂) to denote the set of abstract locations in m̂ that are (directly
or transitively) reachable from a location set X.

Reach(X, m̂) = lfp(λY.X ∪ OneHop(Y, m̂))

OneHop(X, m̂) is the set of locations that are directly reachable from X:

OneHop(X, m̂) =
⋃

x∈X m̂(x).2 ∪ {l | 〈l, o, s〉 ∈ m̂(x).3} ∪ {〈l, f〉 | 〈l, {f}〉 ∈ m̂(x).4}

Given an input memory m̂ to a call node call(fx,e), the definition of the
transfer function f̂ is changed as follows:

f̂ call(fx,e) m̂ = m̂ ′|R(fx,m̂′) where m̂ ′ = m̂{V̂(e)(m̂)//{x}}

We also have to consider procedure returns. When a procedure returns to a
return node, in order to recover the local information from the corresponding
call node, we combine the returned memory with the memory parts that were
not propagated to called procedures from the call node. Note that the issue of
cutpoints [20] is not involved in our analysis because our semantics is store-based
and every object is represented by a fixed location.

3.2 Access-based Localization For Procedures

For performing the localization more aggressively, we separate the entire analysis
into two phases: (1) the set of abstract locations that are accessed by a procedure
during actual analysis is conservatively estimated by a pre-analysis; (2) then, the
actual analysis uses the access-information and filters out memory entries that
will definitely not be accessed by called procedures. The pre-analysis is derived
from the abstract semantics of the original analysis by applying conservative
abstractions. We call our analyzer based on the new technique AiracProcAcc.

8 Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi

Pre-analysis For ensuring the correctness of the actual analysis, the pre-analysis
should be an over-approximation of the actual analysis. The pre-analysis should
not only find locations that are accessed in real executions, but find a set of
abstract locations that contains all locations required by the actual analysis. For
example, consider an expression *p. Suppose p points to a variable a during real
execution. Suppose further, during actual analysis, p points to variables a and
b, where b is a by-product of abstraction. In this case, our pre-analysis results
should contain both a and b because both locations will be accessed in actual
analysis. Hence we derive the pre-analysis from actual analysis of interest rather
than using a separate pre-analysis such as an existing pointer analysis.

Our pre-analysis computes a map access ∈ ProcId → 2 ˆAddr that maps each
procedure to a set of abstract locations that are possibly accessed (directly or
transitively) during the actual analysis of the procedure body. In order to compute
such a map, we first instrument the analysis (Section 2) so that accessed locations
are collected during the course of the analysis. Then the abstract semantics of the
analysis is conservatively abstracted to a less precise but more efficient analysis,
the pre-analysis.

Fig. 2(a) shows how we collect abstract locations during the original analysis.
Without the shaded line, the algorithm is a normal fixpoint algorithm. With
the shaded line, the algorithm performs an analysis recording accessed locations.
After the effect of a node n is computed (using f̂), the abstract locations that
are accessed during the evaluation of n are collected by collect. Throughout the
analysis, the accessed locations for n are accumulated in A(n). When the analysis
terminates, all the abstract locations that have been accessed during the analyses
of n are collected by A(n).

In order to define function collect, we define two functions ÂV ∈ e → ˆMem →
2 ˆAddr and ÂL ∈ lv → ˆMem → 2 ˆAddr . Given an expression e (resp., lv) and a
memory state m̂, ÂV(e)(m̂) (resp., ÂL(lv)(m̂)) collects abstract locations that
are accessed during the evaluation of V̂(e)(m̂) (resp., L̂(lv)(m̂)). ÂV and ÂL are
naturally derived by examining the definition of V̂ and L̂.

ÂV(n)(m̂) = ∅ ÂL(x)(m̂) = ∅
ÂV(e1 + e2)(m̂) = ÂV(e1)(m̂) ∪ ÂV(e2)(m̂) ÂL(*e)(m̂) = ÂV(e)(m̂)

ÂV(lv)(m̂) = ÂL(lv)(m̂) ∪ L̂(lv)(m̂) ÂL(e1[e2])(m̂) = ÂV(e1)(m̂)
ÂV(&lv)(m̂) = ÂL(lv)(m̂) ÂL(e.x)(m̂) = ÂV(e)(m̂)

Consider ÂV (defined in the left column) first. When e = n, we see that the
definition of V̂ does not read (nor write to) any location, and hence there are no
accessed locations (∅). When e = e1 + e2, accessed locations are just collected
recursively. When an l-value lv is used as an r-value (the third case), from the
definition of V̂(lv)(m̂), we see that abstract locations of lv and abstract locations
that are accessed during the evaluation of L̂(lv)(m̂) are accessed, which are
collected by L̂(lv)(m̂) and ÂL(lv)(m̂), respectively. When an l-value lv is used
as an address-of expression (the last case), from the definition of V̂(&lv)(m̂), we
see that abstract locations that lv denotes (L̂(lv)(m̂)) are not accessed during
the evaluation of V̂(&lv)(m̂) and hence the fourth case only includes ÂL(lv)(m̂).

Access Analysis-Based Tight Localization of Abstract Memories 9

W ∈ Worklist = 2Node

T ∈ Table = Node → ˆMem old, new ∈ ˆMem

f̂ ∈ Node → ˆMem → ˆMem f̂ ′ ∈ Node → ˆMem → ˆMem

A ∈ Node → 2
ˆAddr A ∈ Node → 2

ˆAddr

FixpointIterate (W, T) = Preliminary (old, new) =
W := Node new := ⊥ ˆMem

T := λn.⊥ ˆMem repeat
repeat old := new

n := choose(W) for all n ∈ Node do

m := f̂ n (
F

p∈predof(n) T (p)) new := f̂ ′ n new

A(n) := A(n) ∪ collect(n,
F

p∈predof(n) T (p)) A(n) := A(n) ∪ collect(n, new)

if m 6v T (n) until new v old
W := W ∪ succof(n) return new
T (n) := T (n) tm

until W = ∅
return T
(a) The (worklist-based) analysis algorithm (b) The pre-analysis algorithm

Fig. 2. (a) Collecting accessed abstract locations during a (worklist-based) fixpoint
computation. Without the shaded line, it shows a normal worklist algorithm. The
shaded line collects abstract locations that are accessed by node n currently being
analyzed. (b) The pre-analysis performs flow-insensitive fixpoint computation.

Similarly, the definition of ÂL (defined in the right column) is derived from
the definition of L̂. For example, ÂL(x)(m̂) is ∅ because L̂(x)(m̂) just produces
a location x but does not read (resp., write) any value from (resp., to) x. Note
that, when lv = e1[e2] (the third case), we do not collect the locations accessed
during the evaluation of e1 because the definition of L̂ for this case does not
involve e2 (array elements are smashed into a single element in the analysis).

Using ÂV and ÂL, function collect collects abstract locations that are accessed
during the analysis of each command. collect is derived from the definition of the
transfer function f̂ , which is similar to the derivation of ÂV and ÂL.

collect(n, m̂) =

ÂL(lv)(m̂) ∪ ÂV(e)(m̂) ∪ L̂(lv)(m̂) if n = set(lv,e)
ÂL(lv)(m̂) ∪ ÂV(e)(m̂) ∪ L̂(lv)(m̂) if n = alloc(lv,[e]l)

ÂL(lv)(m̂) ∪ L̂(lv)(m̂) if n = alloc(lv,{x}l)
ÂV(e)(m̂) ∪ L̂(x)(m̂) if n = call(fx,e)

The problem now is to collect accessed locations in an efficient way. If we
used the algorithm of Fig. 2(a) as our pre-analysis, the pre-analysis would take
more time than the actual analysis. In order to get a more efficient pre-analysis,
we apply the following two abstractions to the analysis of Fig. 2(a): (1) we ignore
the orders of program statements, that is, we perform a flow-insensitive analysis;
(2) We ignore parts of the semantics that are not directly related to computing

10 Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi

abstract locations. In the abstract value V̂al , for example, the interval values (Ẑ)
have nothing to do with abstract locations. The flow function (f̂) and abstract
evaluation V̂ are changed so that interval values are not computed any more. We
call the changed functions f̂ ′ and V̂ ′, respectively.

In general, the pre-analysis can be derived using any conservative abstraction
of the original analysis. However, we chose the above two abstractions because it
is efficient enough in practice and it is precise enough to track reachability along
the dynamically allocated locations and structure fields. We believe that filtering
out not only unused variables but also unused allocated locations and fields is
vital for the performance of our localization technique.

Fig. 2(b) shows our pre-analysis algorithm. It uses a flow-insensitive fixpoint
computation. The analysis starts with a bottom memory state (⊥ ˆMem). The
state is iteratively updated by flow functions for all nodes in the program until
the resulting state is subsumed by the state of the previous iteration. After the
effect of a node n is computed (using f̂ ′), the abstract locations that are accessed
during the evaluation of n are collected using function collect.

The set access(f) of abstract locations that are (directly or transitively)
accessed by procedure f is defined as follows:

access(f) =
⋃

g∈callees(f)(
⋃

n∈nodesof(g)A(n))

where, callees(f) denotes the set of procedures, including f , that are reachable
from f via the call-graph and nodesof(f) the set of nodes in procedure f .

Actual Analysis The actual analysis is the same as AiracReach except that
AiracProcAcc uses access information (access) and additionally excludes non-accessed
memory parts. Given an input memory state m̂ to a call node call(fx,e), reach-
able locations R(fx, m̂), and accessed locations access(f), the transfer function
f̂ for the call statement call(fx,e) is changed as follows:

f̂ call(fx,e) m̂ = (m̂ ′|R(fx,m̂′))|access(f) where m̂ ′ = m̂{V̂(e)(m̂)//{x}}

After parameter binding (m̂ ′) the memory is first restricted to the reachable
locations (R(fx, m̂ ′)) and then the resulting memory is restricted to access(f).
The reason why we restrict the memory to R(fx, m̂ ′)∩ access(f) is that access(f)
may have locations that are unreachable, i.e., not contained in R(fx, m̂ ′), because
our pre-analysis is less precise than the actual analysis. Hence, the memory states
localized by our approach are always smaller than or equal to those localized by
the reachability-based approach. Procedure returns are handled as in AiracReach.

3.3 Access-based Localization for Arbitrary Code Blocks

We generalize the access-based, procedural localization (AiracProcAcc) for code
blocks smaller than procedures. Given a code block, it is straightforward to
collect accessed locations for the block because our pre-analysis provides access
information (A in Fig. 2) for each node in the control flow graph. We localize

Access Analysis-Based Tight Localization of Abstract Memories 11

the input memories to the block according to the access information for the
block, and analyze the block with the localized memory state, which avoids
re-computations and speeds up memory operations. We select localization target
blocks before starting the actual analysis.

For effectiveness, we have to carefully select blocks to apply localization.
Localization improves the analysis performance, but at the same time, introduces
a performance overhead. At the entry of a selected block, additional set-operations
to localize the input memory state have to be performed and at the exit of the
block, non-localized memory portions of the input memory have to be merged
with the output of the block. In order to balance against the localization overhead,
we select code blocks 〈entry, exit, B〉 that consists of one entry node, one exit
node, and a selected block B that satisfy the following properties:

– the entry (respectively, the exit) node strictly dominates (respectively, post-
dominates) all nodes in B, and B contains all nodes that are strictly domi-
nated and post-dominated by the entry and exit, respectively

– code block size |B| ≥ k for parameter k

Using the parameter k, we are able to find a balance between actual reduction
and overhead introduced by localizing operations. The above selection strategy
is applied recursively: a block satisfying the requirements can be selected inside
another selected block.

4 Experiments

We check the performance of our new localization technique by experiments with
Airac, a global abstract interpretation engine in an industrialized bug-finding
analyzer [11–13, 18, 19]. Because we focus on comparing the performance between
different localization schemes, we disabled some improvement techniques for
Airac. Specifically, we did not use context pruning, narrowing, and return-site
sensitivity [18, 19]. These techniques improve analysis’ precision and speed but
make it hard to only measure the net effect of respective localization schemes.

From our baseline analyzer Airac, which does not use localization, we have
made three analyzers AiracReach, AiracProcAcc, and AiracGenAcc that respectively
use procedure-level reachability-based, procedure-level access-based, and gen-
eralized access-based localization and differ from Airac only in their respective
localization schemes. Hence, performance differences, if any, are solely attributed
to the different localization methods. We set the minimum block size k to 6 for
AiracGenAcc, which was shown to be most efficient in our setting. The analyzers
are written in OCaml.

We have analyzed 15 software packages. Fig. 3 shows our benchmark programs.
All experiments were done on a Linux 2.6 system running on a Pentium4 3.2 GHz
box with 4 GB of main memory.

We use three performance measures: (1) #iters is the total number of iterations
during the worklist algorithm (the number of iterations of the outside loop in Fig.
2(a); (2) time is the CPU time spent; (3) MB is the peak memory consumption.

12 Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi

(a) Properties of the benchmarks and analysis results for Airac and AiracReach

Program LOC Proc BB Airac (w.o. localization) AiracReach

#iters time(sec) MB #iters time(sec) MB Save1
spell-1.0 2,213 31 782 37,085 46.1 29 23,249 53.0 23 -15.0%
barcode-0.96 4,460 57 2,634 38,742 105.7 291 17,997 92.6 125 12.4%
httptunnel-3.3 6,174 110 2,757 444,354 2808.9 284 201,046 1383.2 154 50.8%
gzip-1.2.4a 7,327 135 6,271 1,327,464 12,756.2 886 393,338 2,866.6 333 77.5%
jwhois-3.0.1 9,344 73 5,147 428,584 3,424.5 633 198,249 1,185.4 254 65.4%
parser 10,900 325 9,298 5,707,185 196,318.8 2,917 2,327,303 60,577.8 1,048 69.1%
bc-1.06 13,093 134 4,924 5,677,277 87,988.5 767 800,474 13,879.2 335 84.2%
twolf 19,700 222 14,610 ∞ ∞ ∞ 2,375,894 27,230.3 1,199 N/A
tar-1.13 20,258 222 10,800 6,244,121 157,545.0 2,916 3,819,726 113,061.4 1,797 28.2%
less-382 23,822 382 10,056 7,654,188 148,015.7 2,445 2,998,969 137,827.3 1,480 6.9%
make-3.76.1 27,304 191 11,061 6,162,145 126,908.8 2,757 4,013,647 142,325.6 1,954 -12.1%
wget-1.9 35,018 434 16,544 ∞ ∞ ∞ ∞ ∞ ∞ N/A
screen-4.0.2 44,734 589 31,792 ∞ ∞ ∞ ∞ ∞ ∞ N/A
bison-2.4 56,361 1,203 20,781 ∞ ∞ ∞ ∞ ∞ ∞ N/A
bash-2.05a 105,174 959 28,675 ∞ ∞ ∞ ∞ ∞ ∞ N/A

(b) Analysis results for AiracProcAcc and AiracGenAcc

Program AiracProcAcc AiracGenAcc(k = 6)
#iters time:total(pre) MB Save2 #iters time:total(pre) MB Save3

spell-1.0 5,512 2.4 (0.2) 5 95.4% 4,857 2.1 (0.3) 5 13.5%
barcode-0.96 9,433 9.4 (0.6) 25 89.8% 7,213 5.5 (1.4) 21 41.6%
httptunnel-3.3 17,072 31.4 (1.3) 36 97.7% 14,824 21.6 (2.4) 24 31.0%
gzip-1.2.4a 78,471 94.8 (1.3) 73 96.7% 47,454 54.5 (8.0) 67 42.5%
jwhois-3.0.1 99,815 254.8 (1.2) 170 78.5% 73,000 188.1 (18.5) 148 26.2%
parser 206,173 890.0 (3.8) 224 98.5% 173,285 617.0 (9.2) 245 30.7%
bc-1.06 146,407 730.9 (4.1) 106 94.7% 123,398 542.7 (8.5) 116 25.8%
twolf 520,561 1,037.7 (7.5) 332 96.2% 337,837 480.4 (20.0) 260 53.7%
tar-1.13 360,009 2,524.0 (6.0) 338 97.8% 219,109 1,638.3 (15.9) 351 35.1%
less-382 1,223,535 26,817.6 (40.7) 466 80.5% 833,643 18,766.7 (95.0) 528 30.0%
make-3.76.1 1,149,151 19,015.2 (39.4) 580 86.6% 894,843 17,405.7 (75.9) 740 8.5%
wget-1.9 526,975 6,735.8 (20.8) 609 N/A 366,051 3,823.3 (48.5) 623 43.2%
screen-4.0.2 6,402,974 340,849.0 (281.5) 2,458 N/A 4,699,777 274,280.3 (667.1) 2,958 19.5%
bison-2.4 305,988 2,487.3 (13.1) 301 N/A 234,751 1,696.6 (37.7) 302 31.8%
bash-2.05a 379,429 2,011.3 (20.2) 439 N/A 251,175 1,142.7 (59.5) 416 43.2%

(c) Comparison of analysis time among AiracReach, AiracProcAcc and AiracGenAcc.

 0

 25

 50

 75

 100

spell barcode httptunnel gzip jwhois parser bc twolf tar less make AVERAGE

 Reach

100 100 100 100 100 100 100 100 100 100 100 100

ProcAcc

5
10

2 3

21

1
5 4 2

19
13

8

GenAcc

4 6
2 2

16

1 4 2 1

14 12
5

Fig. 3. Lines of code (LOC) are given before preprocessing. The number of procedures
(Proc), basic blocks in the supergraph (BB) in programs are given after preprocessing.
time for AiracProcAcc and AiracGenAcc is the total time that includes pre-analysis time. The
pre-analysis time is shown inside parentheses. Save1 shows time savings of AiracReach

against Airac. Save2 shows time savings of AiracProcAcc against AiracReach. Save3 shows
time savings of AiracGenAcc against AiracProcAcc. Entries with ∞ mean missing data
because of the analysis running out of memory.

Access Analysis-Based Tight Localization of Abstract Memories 13

Airac vs. AiracReach: The results show that the reachability-based localization
reduces the analysis time and memory for most programs. AiracReach consistently
reduces #iters of Airac by 54.9% on average and reduces the analysis time by
36.7% on average. The effectiveness is clear from the fact that AiracReach reduces
analysis time of Airac more than 50% for programs httptunnel, gzip, jwhois,
parser and bc. However, for some programs (spell and make), AiracReach took
more time than Airac. This is mainly because of the overhead of localizing
operations at procedure calls.

AiracReach vs. AiracProcAcc: Overall, AiracProcAcc saved 78.5%–98.5%, on
average 92.1%, of the analysis time of AiracReach. The analysis time of AiracProcAcc

includes pre-analysis time. The significant time savings are caused by the synergy
between reduction (on average 74.3%) in the number of iterations (#iters)
and improved speed (on average 4.0x) of memory operations. Iterations are
reduced because AiracProcAcc’s more general summaries more effectively avoid
re-computation of procedures at different call-sites. Speed is improved because
each procedure is analyzed with smaller memory states.

Moreover, our technique noticeably saves peak memory consumption by on
average 71.2%. The reduction enabled AiracProcAcc to analyze the largest four
programs (wget, screen, bison, bash) that cannot be analyzed by AiracReach.

AiracProcAcc is at least as precise as AiracReach. In principle, more aggressive
localization improves precision of our analysis because unnecessary memory
entries are not passed to procedures and needless widenings are avoided. In the
experiments (similar to one performed in [18]), AiracProcAcc’s precision was the
same with AiracReach or slightly improved.

AiracProcAcc vs. AiracGenAcc: AiracGenAcc additionally saved, on average 31.8%,
of the analysis time of AiracProcAcc. Memory costs between them is nearly the
same (1.9% is reduced). Memory costs for AiracGenAcc sometimes increase (e.g.,
parser), because we cache access sets for each localization block.

5 Related Work & Discussion

In static program analysis, localization is a well-known idea for reducing analysis
cost, however, research has been mainly focused on reachability-based approach.
For example, in shape analysis, reachability-based localization has been used to
improve the scalability of interprocedural analysis [6, 20, 21, 14, 8, 24, 23]. Rinetzky
et al. [20, 21] define a shape analysis in which called procedures are only passed
with reachable parts of the heap. Marron et al. [14] reformulate the idea of [20] for
graph-based heap models. In separation-logic-based program verification (both
by-hand and automatic checking [3]), one typically reasons about a command with
respect to its footprint (memory cells that the command accesses) in isolation.
However, (even) in separation-logic-based program analysis, the framing, which
is expressed in accessibility in logic, is conventionally implemented based on
reachability [8, 24, 23]: Gotsman et al. [8] and Yang et al. [24, 23] split states
based on reachability. Similar reachability-based techniques are also popular in
higher-order flow analyses [9, 10, 16]. Jagannathan et al. [10] use “an abstract

14 Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi

form of garbage collection” that removes unreachable bindings. Might et al. [16]
formalize the abstract-garbage-collecting control-flow analysis and show that
removing unreachable cells significantly improves the analysis performance.In
this paper, we present a new approach to localization that is access-based.

Chen et al. [5] use a mixture of reachability- and access-based localization, but,
their approach is more restricted than ours. During reachability-based localization,
they try to infer accessed locations by evaluating expressions two times. However,
because input states are not at a fixpoint during the course of the analysis, the
accessed locations cannot be completely determined. By contrast our approach
makes access-based localization always possible.

Might et al. [15] observes that reachability is overly conservative, and presents
a refined localization technique that is orthogonal to our method. From the
reachability-based localized state, they additionally exclude some resources that
are governed by unsatisfiable conditions. The resulting localized state may contain
non-accessed resources that are not governed by such conditions, which could be
filtered by our technique. And, since our technique does not consider unsatisfiable
conditions, their technique can improve ours.

We do not argue that our access-based localization is cost-effective in general.
Our abstract domain (numeric intervals) is non-relational and, consequently, par-
titioning of the memory states is relatively simple. But, the partitioning operation
will become costly when analysis’ abstract semantics involves relational informa-
tion such as in analysis with relational domain [17] or storeless semantics [20]. In
these cases, not only the resources that are directly accessed by a code block but
also resources that are indirectly required to keep relational information should
be considered. Hence, localizing operation gets more complicated. We have a
plan to investigate our technique for relational analysis.

It is also a well-known idea to scale an analysis by using an efficient pre-
analysis. For example, flow-insensitive pre-analysis has been used in dataflow
analysis [1], pointer analysis [22]. Our work is an instance of these lines of research:
we use a pre-analysis to localize memory states in actual analysis.

Lastly, one noteworthy point is that designing a correct pre-analysis with a
right balance of accuracy and cost was relatively easy in our case because the
underlying analysis was designed as an abstract interpretation. Our pre-analysis
was simply a further abstraction of the underlying (actual) abstract interpreter.

Acknowledgements. This work was supported by the Engineering Research
Center of Excellence Program of Korea Ministry of Education, Science and
Technology(MEST) / National Research Foundation of Korea(NRF) (Grant
2010-0001718) and the Brain Korea 21 Project, School of Electrical Engineering
and Computer Science, Seoul National University in 2010.

References

1. S. Adams, T. Ball, M. Das, S. Lerner, S. K. Rajamani, M. Seigle, and W. Weimer.
Speeding up dataflow analysis using flow-insensitive pointer analysis. In SAS, pages
230–246, 2002.

Access Analysis-Based Tight Localization of Abstract Memories 15

2. X. Allamigeon, W. Godard, and C. Hymans. Static analysis of string manipulations
in critical embedded C programs. In SAS, pages 35–51, 2006.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation
logic. In APLAS, pages 52–68, 2005.

4. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Int. Conf.
on Formal Methods in Prog. and their Appl., pages 128–141, 1993.

5. L. Chen and W. L. Harrison III. An efficient approach to computing fixpoints for
complex program analysis. In Int. Conf. on Supercomp., pages 98–106, 1994.

6. S. Chong and R. Rugina. Static analysis of accessed regions in recursive data
structures. In SAS, pages 463–482, 2003.

7. P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In PLILP, pages 269–295, 1992.

8. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with separated
heap abstractions. In SAS, pages 240–260, 2006.

9. W. L. Harrison III. The Interprocedural Analysis and Automatic Parallelization of
Scheme Programs. PhD thesis, Center for Supercomputing Research and Develop-
ment, University of Illinois at Urabana-Champaign, February 1989.

10. S. Jagannathan, P. Thiemann, S. Weeks, and A. Wright. Single and loving it:
must-alias analysis for higher-order languages. In POPL, pages 329–341, 1998.

11. Y. Jhee, M. Jin, Y. Jung, D. Kim, S. Kong, H. Lee, H. Oh, D. Park, and K. Yi.
Abstract interpretation + impure catalysts: Our Sparrow experience. Presenta-
tion at the Workshop of the 30 Years of Abstract Interpretation, San Francisco,
ropas.snu.ac.kr/~kwang/paper/30yai-08.pdf, January 2008.

12. Y. Jung, J. Kim, J. Shin, and K. Yi. Taming false alarms from a domain-unaware
C analyzer by a bayesian statistical post analysis. In SAS, pages 203–217, 2005.

13. Y. Jung and K. Yi. Practical memory leak detector based on parameterized
procedural summaries. In ISMM, pages 131–140, 2008.

14. M. Marron, M. Hermenegildo, D. Kapur, and D. Stefanovic. Efficient context-
sensitive shape analysis with graph based heap models. In CC, pages 245–259,
2008.

15. M. Might, B. Chambers, and O. Shivers. Model checking via ΓCFA. In VMCAI,
pages 59–73, 2007.

16. M. Might and O. Shivers. Improving flow analyses via ΓCFA: Abstract garbage
collection and counting. In ICFP, pages 13–25, 2006.

17. A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31–100, 2006.

18. H. Oh. Large spurious cycle in global static analyses and its algorithmic mitigation.
In APLAS, 2009.

19. H. Oh and K. Yi. An algorithmic mitigation of large spurious interprocedural cycles
in static analysis. Software: Practice and Experience, 2010.

20. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. In POPL, pages 296–309, 2005.

21. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In SAS, pages 284–302, 2005.

22. G. Xu, A. Rountev, and M. Sridharan. Scaling CFL-reachability-based points-to
analysis using context-sensitive must-not-alias analysis. In ECOOP, 2009.

23. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn.
Scalable shape analysis for systems code. In CAV, pages 385–398, 2008.

24. H. Yang, O. Lee, C. Calcagno, D. Distefano, and P. O’Hearn. On scalable shape
analysis. Technical Memorandum RR-07-10, Queen Mary University of London,
Department of Computer Science, November 2007.

