Termination Analysis with Algorithmic
Learning*

Wonchan Lee!, Bow-Yaw Wang?, and Kwangkeun Yi'

1 Seoul National University, Korea
2 Academia Sinica, Taiwan

Abstract. An algorithmic-learning-based termination analysis technique
is presented. The new technique combines transition predicate abstrac-
tion, algorithmic learning, and decision procedures to compute transition
invariants as proofs of program termination. Compared to the previous
approaches that mostly aim to find a particular form of transition in-
variants, our technique does not commit to any particular one. For the
examples that the previous approaches simply give up and report failure
our technique can still prove the termination. We compare our technique
with others on several benchmarks from literature including POLYRANK
examples, SNU realtime benchmark, and Windows device driver exam-
ples. The result shows that our technique outperforms others both in
efficiency and effectiveness.

1 Introduction

Termination is a critical property of functions in program libraries. Invoking a
non-terminating library function may result in system lagging or even freezing.
Because of its importance, termination analysis has been studied extensively [2—
4,8,10-14,17,22,24-27] for the last decade and advanced to the level of indus-
trial uses [1,13].

Among various strategies for proving termination, we are most interested
in the transition invariant-based technique. A transition invariant for a transi-
tion relation is an over-approximation to the reachable transitive closure of the
transition relation [13,25,26]. Podelski and Rybalchenko [25] have shown that
the termination of a program amounts to the existence of a disjunctively well-
founded transition invariant for its transition relation. We therefore aim to find
a disjunctively well-founded transition invariant for the transition relation of a
program.

Though transition invariants can be defined as a fixpoint, they are not neces-
sarily computed by costly fixpoint iterations. Observe that it suffices to find one
disjunctively well-founded over-approxzimation to the least reachable transition

* This work was supported by the Engineering Research Center of Excellence Program
of Korea Ministry of Education, Science and Technology(MEST) / National Research
Foundation of Korea(NRF) (Grant 2012-0000468) and National Science Council of
Taiwan Grant Numbers 99-2218-E-001-002-MY3 and 100-2221-E-002-116-.

invariant. If there are lots of such over-approximations, we have only to design
an efficient algorithm to compute one. Indeed, several such algorithms have been
proposed to compute reachable transition invariants efficiently [2, 8,22, 27].

In this paper, we report the first algorithmic-learning-based technique for ter-
mination analysis. Recently, algorithmic learning is successfully applied to avoid
the costly fixpoint iteration in the context of loop invariant generation [19, 21,
20]. In the same spirit, the technique we propose in this paper finds disjunc-
tively well-founded transition invariants without the excessive cost of fixpoint
iterations by combining algorithmic learning, transition predicate abstraction,
decision procedures, and well-foundedness checkers. Through transition predi-
cate abstraction, we adopt a learning algorithm for Boolean formulae to infer
transition invariants over given atomic predicates. Using an SMT solver and
well-foundedness checker, we design a mechanical teacher to guide the learning
algorithm to find a disjunctively well-founded transition invariant. Randomness
is moreover employed to exploit the multitude of transition invariants.

The advantage of our technique is that it can be both efficient and effective,
compared to the previous works [2, 8,22, 27]. The key innovation of our technique
is that we decouple the construction of transition invariants from the transition
predicate generation. In previous works, the transition predicate generation is
tightly coupled with the transition invariant inference and the whole process
is optimized by committing to a particular form of transition invariants, which
might hurt the effectiveness. However, the following intuition from the years of
research on termination analysis teaches us that this is not necessarily the case;
termination arguments, or transition predicates, are evident in most cases [27],
but it is not so obvious how to combine those predicates to get a disjunctively
well-founded transition invariant [2]. To solve the “not-so-obvious” problem effi-
ciently, we use algorithmic learning which was proven to work well in a different
domain, inferring loop invariants out of atomic predicates. Being trained by me-
chanical teachers, learning algorithms become an efficient engine for exploring
possible combinations of predicates. For the atomic transition predicate genera-
tion, we employ a simple heuristic, which is turned out to be effective for most
of examples in the experiments. We can further improve the effectiveness with
additional predicates.

Example. Consider the following nested loop. We found that this simple nested
loop cannot be proven by any of the existing termination analysis tools [8,22,
27]:

while i < 10 do {j «+ O;while j < 10do {¢',j' < i+ 1,5+ 1}}

Our simple heuristic finds the set {i < 10,5 < 10,7 < ¢/,j < j'} of atomic
transition predicates. Then, our randomized technique first computes a transition
invariant for the inner loop, say, j < 10 Aj < j'. Since the transition invariant is
well-founded, it proves the termination of the inner loop. Next, we replace the
inner loop by its transition invariant and proceed to find a transition invariant
for the following simple loop:

while 7 < 10 do {j < 0;assume(j < 10Aj < j'); }

Since its loop body does not update the variable 4, it is impossible to prove the
termination of the loop. This is exactly what happens in some of the existing
tools [8,27]; after they compute j < 10 A j < j' as a transition invariant of the
inner loop, they simply report possible non-termination of the outer loop. The
other tool [22] fails because it uses a even more imprecise transition invariant,
true, as the summary of the inner loop; the tool unrolls and unions the transition
relation of a loop body until it reaches a transition invariant and when it unrolls
the outer loop, the tool can only assume that the inner loop can change variables
arbitrarily. However, there exists another transition invariant j < 10Aj < j'Ai <
7/ which are both expressible with the given predicates and precise enough to
prove the termination of the outer loop. As long as a transition invariant is
expressible with the given predicates, our randomized algorithm for termination
analysis can find it. Let us say our technique returns j < 10A j < 5/ A4 < ¢’ this
time. The new transition invariant is again well-founded. We proceed to replace
the inner loop by the new transition invariant:

while i < 10 do {j + O;assume(j < 10Aj < j Ai<i);}

Our termination analysis algorithm is now able to infer the transition invariant
1 < 10 Ai < 4’ for the simple loop. Since the transition invariant i < 10 A ¢ < @’
is well-founded, we conclude that the outer loop is terminating as well. a

Contributions.

— We design and implement an algorithmic-learning-based termination ana-
lyzer. As far as we know, our work is the first to apply the algorithmic
learning to termination analysis problem.

— We empirically show that the prototype implementation of our technique
outperforms the previous tools [8,22,27] both in efficiency and effectiveness.

Organization. Section 2 reviews termination analysis via transition invariants
and presents our formalism of transition invariants in intentional representation.
Section 3 explains algorithmic-learning-based inference approach and how to ap-
ply it to the problem of inferring disjunctively well-founded transition invariants.
Section 4 presents our experiment results. Section 5 discusses related work and
Section 6 concludes.

2 Termination Analysis via Transition Invariants

This section explains the termination analysis technique based on transition
invariants. The technique was first introduced by Podelski and Rybalchenko [25]
and later implemented on top of the SLAM model checker [13]. We first review
the original theory of transition invariants in an extensional view [18]. We then
present our formalism of transition invariants in an intensional view which we
compute via algorithmic-learning-based approach.

2.1 Program Termination and Transition Invariant

A program P = (Wp,Ip, Rp) consists of a set Wp of states, a set Ip C Wp of
initial states, and a transition relation Rp C Wp x Wp.

A program P terminates if there is no infinite sequence si, so, -+ of states
such that s; € Ip and (s;,8;4+1) € Rp. This condition is equivalent to the well-
foundedness of Rp N Reach(P) x Reach(P). Here, the set Reach(P) denotes the
set of reachable states.

Instead of showing Rp N Reach(P) x Reach(P) is well-founded, we prove the
termination by finding its disjunctively well-founded transition invariant [25]. A
transition invariant T of P is a relation that contains a reachable portion of the
transitive closure of Rp:

RE N Reach(P) x Reach(P) C T.

Furthermore, we say the transition invariant 7" is disjunctively well-founded when
it is a union of a finite number of well-founded relations 77, -- , T

Theorem 1 ([25]). A program P terminates if and only if there exists a dis-
junctively well-founded transition invariant T of P.

Thanks to Theorem 1, the problem of program termination now becomes finding
a disjunctively well-founded transition invariant for a given program P.

Cook et al. [13] showed that transition invariants can be reduced to reachabil-
ity analysis. The authors named the relation R}, N Reach(P) x Reach(P) binary
reachability relation, which is the least fixpoint of the following functional Fp
starting from the relation 1 p.

Fp(X) £ (X Uidg) (X)) o Rp
Zd(g)(X) e {(VQ,I/Q) Wp x Wp: 31/1.(1/1, VQ) S X}
XoY 2 {(v,v3) € Wp x Wp : Jvn.(v1,12) € X and (v,13) € Y}
Lp 2 {(v1,1) € Wp x Wp : 1y € Ip and (v1,1») € Rp}

S
S

In the next subsection, we show how to compute an over-approximation of this
binary reachability relation via intensional representations of transition invari-
ants.

2.2 Intensional Transition Invariants

Simple Loop Programs. For presentation, we consider a simple loop program
P with the following abstract syntax.

= {l} while I do S
n=v<e|v<+ nondet |assume [| S[] S| S; S
m=e<n|IAl]IVI

s=n|v|nxeletele—e (veVineZ)

® —~ '

where V' and Z is a set of variables and integers respectively, and [represents
quantifier-free formulae over integer affine predicates. A loop with a loop guard

is annotated with a formula specifying a precondition. We write kp for the loop
guard and Jp for the precondition. In the syntax, we have non-deterministic
assignments (v < nondet) to emulate the behaviors of unsupported features
such as arrays or function calls. For brevity, we use choice (S [] S) and assume
statements (assume [) instead of traditional if statements.

A program state v € Wp of the program P is a map from V to Z. Given a
formula I, we write v gt [when v satisfies [. We write g, [if there exists a
state that satisfies [. When the formula is satisfied by all states, we write = [.
We define the set W(I) to be {v € Wp : v |=gat 1}. For a simple loop program
P, the set Ip of initial states is the same as W(dp).

To describe the transition relation Rp for a simple loop program, we define
transition semantics [P] of P. The transition semantics is a quantifier-free for-
mula over sets V' and V' describing the current state and the state after the
transition, respectively. The transition semantics is defined as follows:

[{6p} while kp do S] £ & [[]]
v<e] = w =w
[] £ '
weV\{v
[v + nondet] £ v A) X } w =w (v" : fresh)
weV\{v}
assume [] = w =w
[1] £ '
wEV\Vms(l)
[So] S1] = [So] V [S1]
[[S(), Sﬂ] é 0]] V’ V”] AN [[Sl]][V — V”} (V” : fresh)

where Vars(l) is the set of variables appeared in [and f[v; — v9] is the formula
obtained by substituting the variable vy for v; in f. Given a formula f over V'
and V', we write v,1’ |Egat f when the formula obtained by replacing v € V' in
f with v(v) and v' € V' in f with v/(v') is satisfiable. The notations =g, f and
= f are defined accordingly. The notation R(f) denotes the relation {(v,v’) €
Wp x Wp : v,V Egt f}. Thus the transition relation Rp of a simple loop
program P is R([P]).
In summary, a simple loop program P defines the program (Wp, W(dp), R([P]))-

Intensional Transition Invariants. For a simple loop program P, we define

the intensional representations of the functional Fp and the relation L p (written
Flnj and J_iip respectively) as follows:

FR(f) 2 (f videy () o [P]
zdﬁg)(HEFVVIAV =V (V" : fresh)
fotg= fIV/ = VIAg[V = V"] (V": fresh)
15250 AP

where f[{vy, - ,v,} = {0}, v} & flvr =)] [v, = v),]. The following
lemmas show that Flu;. and J_ﬂp correspond to F'p and L p respectively.

Lemma 1. For any simple loop program P, W(J_gg) =1p.

Lemma 2. Let [be a quantifier-free formula over V and V'. For any simple
loop program P, R(F}(f)) = Fp(R(f)).

From the properties of F 1113 and J_gg, we compute a transition invariant of
a simple loop program P by finding a formula 7 that satisfies the following
conditions:

L1 =T
2. ':T — Kp;
3. EFLT) = T.

The first condition is to guarantee that 7 subsumes the first iteration starting
from the initial state. The second condition is to guarantee that 7 expresses
only the iterations within the loop. The last condition is to guarantee that 7T is
a fixpoint. Note that this fixpoint is not necessarily a least fixpoint. We call the
formula 7 intensional transition invariant which is an intensional representation
of a transition invariant.

Lemma 3. Let T be an intensional transition invariant of a simple loop program
P. Then R(T) is a transition invariant; i.e. R(T) 2 RN Reach(P)x Reach(P).

We say T is disjunctively well-founded when R(T) is disjunctively well-founded.
Disjunctively well-founded intensional transition invariants are proofs of program
termination.

Theorem 2. A simple loop program P terminates if there exists a disjunctively
well-founded intensional transition invariant T of P.

In the rest of the paper, transition invariants mean intensional transition
invariants unless stated otherwise.

3 Algorithmic-Learning-based Inference of Transition
Invariants

The key idea of the algorithmic-learning-based framework [19, 21, 20] is to apply
CDNF algorithm [7] to infer a formula with a mechanical teacher. CDNF algo-
rithm is an exact learning algorithm for Boolean formulae. It infers an arbitrary
Boolean formula over fixed variables by interacting with a teacher. In our case,
we are particularly interested in finding transition invariants over the given set
of atomic transition predicates. In order to apply CDNF algorithm, we will de-
sign a mechanical teacher to guide the learning algorithm to infer a transition
invariant for a simple loop program.

In this section, we explain our design of the mechanical teacher in details. We
first introduce CDNF algorithm for Boolean formulae. Through transition pred-
icate abstraction, the correspondence between Boolean formulae and quantifier-
free formulae over atomic transition predicates is explained. Lastly, we present
our design of the mechanical teacher.

3.1 CDNF Learning Algorithm

CDNF algorithm is an exact learning algorithm for Boolean formulae. It infers an
unknown target formula by posing queries to a teacher. The teacher is responsible
for answering two types of queries. The learning algorithm may ask if a valuation
satisfies the target formula by a membership query. Or it may ask if a conjectured
formula is equivalent to the target in an equivalence query. According to the
answers to queries, CDNF algorithm will infer a Boolean formula equivalent to
the unknown target within a polynomial number of queries in the formula size
of the target.

In order to apply CDNF algorithm, a mechanical teacher that answers queries
from the learning algorithm is needed. The mechanical teacher consists of two
algorithms. The membership query resolution algorithm (MEM) answers mem-
bership queries; the equivalence query resolution algorithm (EQ) resolves equiv-
alence queries. The algorithm MEM returns YES if the given valuation satisfies
the unknown target and NO otherwise. The algorithm EQ returns YES if the
given conjecture is equivalent to the target and a counterexample otherwise. Let
x be a set of Boolean variables, and BF [x] and Valy be the set of Boolean formu-
lae and valuations over x, respectively. The signatures of these query resolution
algorithms are as follows:

MEM : Valx — {YES, NO}
EQ : BF[x] — {YES} + Valx

3.2 Learning Algorithm as an Inference Engine

We establish a connection between Boolean formulae and quantifier-free formu-
lae. The connection enables CDNF algorithm to infer transition invariants. We
consider transition predicate abstraction [26] over a set P of atomic predicates
defined over V and V’. A quantifier-free formula f over P is generated by the
following syntax.
fo=pl=fIIVIIFAS

where p € P. We write QF[P] for the set of quantifier-free formulae over P. The
set QF[P] and the set BF[x] of Boolean formulae, where x = {z,, | p; € P},
establishes the following Galois connection.

QF[P] &= BF[x]

From the connection, we know that once the learning algorithm finds a
Boolean formula, then it has a corresponding quantifier-free formula that we
want to find.

We now show how to make a mechanical teacher under the transition pred-
icate abstraction. We define the following two functions @ and 7 that translate
valuations over V' and x, respectively.

av,v)& psuchthat ul= A 2 A A -1y

v,V Esatp v,V Esap

YW= AN pA N
p(xp)=T pzp)=1

The design of the query resolution algorithms MEM and E@Q amounts to that
of two concrete algorithms MEM * and EQ* with the following signatures:

MEM* : QF[P] — {YES, NO}
EQ*: QF[P] — { YES} + Valy x Valy

With the two concrete algorithms and the translation functions @ and 7, we
derive the query resolution algorithms MEM and EQ as follows:

MEM (1)) = MEM* (5 (1))

_ Ja,) when EQﬁ(’y(b)) = (v,V')
EQ(b) = { YES otherwise

3.3 Algorithms for Mechanical Teacher

In the rest of this section, we explain how to design the algorithms MEM?
and EQF for transition invariants. One technical question is how we can make
MEM* and EQ* answer questions on the formula that we do not know yet.
We solve this problem simply by giving random answers when we cannot answer
conclusively. Interesting observation is that as far as those answers are consistent
and algorithm EQ* returns YES when it really finds the one, CDNF algorithm
can still infer the target formula. We exploit the fact that there can exist multiple
formulae that are equivalent to the target.

Membership Query Resolution. In a membership query MEM (u) with p €
Valx, we would like to know if p is included in an unknown target Boolean
formula that represents a disjunctively well-founded transition invariant. Since
we do not know any disjunctively well-founded transition invariant yet, we can
not answer every membership query conclusively.

To see what amount of answers we can give conclusively, we first consider
the conditions that p should respect. Suppose 7 is a transition invariant. If u
satisfies the target Boolean formula, we have 7(u) = 7. Moreover, we have
J_?P — T — kp for T is a transition invariant. Therefore, we have the
following relationship:

L I fE5(p) = wp, then fE5(n) = T;
2. T E=5p) = ng, then E7(u) = T.

In the first case, we can conclusively answer NO. Similarly, we answer YFES for
the second case conclusively.

For the others cases, we can give random answers. Since we are looking
for disjunctively well-founded transition invariants, we heuristically answer NO
when R(7(u)) is not well-founded.

Algorithm 1 summarizes the membership query resolution. The MEM ti()
algorithm first checks if = f = kp. If not, it returns NO. The algorithm then
checks if R(f) is well-founded. If not, it heuristically returns NO. Finally, the
algorithm checks if | f = J_nP. If so, it returns YES since we know for sure

Algorithm 1: MEM®(f)
Input: f € QF[P]
Output: YES or NO
if Fsat f A —kp then
| return NO
else
if R(f) is well-founded then
if u f A L% then
‘ return YES or NO randomly
else
‘ return YES
else
‘ return NO

© 00N O Uk W N

funy
o

Algorithm 2: EQ*(f)

Input: f : a CDNF formula such that f = A, fi
Output: YES or a counterexample (v,v') € Valy x Valy
1 if isTransitionInvariant(f) is (v,v') € Valy x Valy then
| return (v,v)
// f is a transition invariant
3 if hasDWFConjunct(f) is YES then
4 ‘ return YES
// fi is not disjunctively well-founded for every ¢
5 if findCounterezample(f) is (v,v") € Valy x Valy then
| return (v,v)
7 restart CDNF algorithm

[

that 7~ !(f) is the member of the target formula. Otherwise, it gives a random
answer to the learning algorithm.

Equivalence Query Resolution. In an equivalence query FQ(b), we are given
a CDNF formula b over x as the conjecture. The algorithm should check whether
~(b) is a disjunctively well-founded transition invariant for the simple loop pro-
gram P. If not, it returns a valuation over x as a counterexample.

Algorithm 2 presents the equivalence query resolution algorithm EQﬁ().
The algorithm first checks if f is a transition invariant. If not, it returns a
counterexample. Next, it checks if the formula has a disjunctively well-founded
conjunct f;. If so, we have found a disjunctively well-founded transition invariant.
Otherwise, the algorithm tries to find a counterexample that possibly makes the
formula not disjunctively well-founded. If it cannot find a counterexample, the
algorithm simply restarts to find another transition invariant.

Invariance Check. Algorithm 3 shows the procedure to check if f satisfies the
three conditions of transition invariants. If the conjecture f does not satisfy one
of them, the algorithm returns a counterexample.

Algorithm 3: isTransitionInvariant(f)
Input: f : a CDNF formula
Output: YES or a counterexample (v,v') € Valy x Valy
if E1% — fandl=f = kp and = FA(f) = [then
‘ return YES
if v,V Esat J_g, A —f then
| return (v,)
if v, st f A —kp then
| return (v,)
if v,V Esat FFu,(f) A —f then
| return (v,v)

[e IS B =R R N

Algorithm 4: hasDWFConjunct(f)

Input: f : a CDNF formula such that f = AL, V72, fi
Output: YES if f; is disjunctively well-founded for some i; NO otherwise
1 foreachi=1,--- ,n do
2 isWellFounded < T
3 foreach j=1,--- ,m; do
4 if R(fi;) is not well-founded then
5 isWellFounded < L
6
7
8

break
if isWellFounded then return YES
return NO;

Disjunctively Well-foundedness Check. Algorithm 4 checks if f; is disjunctively
well-founded for some i. Recall that f is a CDNF formula such that f = A", f;
and each f; is also a transition invariant since f implies f;. If the algorithm
has found one disjunctively well-founded f;, we have found a disjunctively well-
founded transition invariant. The following lemma states the correctness of the
algorithm.

Lemma 4. Let f = \!_, f; be a CDNF formula. If f is a transition invariant
and f; is disjunctively well-founded for some i, f; is a disjunctively well-founded
transition invariant.

For each DNF formula f;, we check if all of its disjuncts are well-founded. Each
disjunct f;; is a conjunction of atomic transition predicates and we can check
the well-foundedness using existing well-foundness checkers [4, 5,11, 24].

Counterexample Generation. Conjectures from learning algorithms are some-
times not disjunctively well-founded even if they are a transition invariant.
Those are either containing an idle transition, which does nothing during an
iteration, or the ones that become disjunctively well-founded once proper bound
conditions are added. For example, transition invariant z’ < x contains an idle
transition and transition invariant ' < x becomes well-founded if additional
bound condition z > 0 is added. We implemented an algorithm that generates a

10

Algorithm 5: findCounterexample(f)
Input: f : a CDNF formula
Output: a counterexample (v,v') € Valy x Valy or FAIL

1 if (1) Esat f AV =V then return (v,v') as a counterezample
2 return FAIL

Algorithm 6: Pseudo-code of the main loop

Input: set P of transition predicates

1 while there exists a simple loop P in the program do
2 repeat N times to infer d.wf transition invariant 7 € QF[P] using CDNF
algorithm
if T is found then

‘ replace P with assume(kp ATV —kp AV =V');
else

‘ replace P with assume(kp A trueV —kp AV =V');

<23 N}

counterexample for both cases, but for space reason, we present in Algorithm 5
a simplified procedure that handles only the first case. If the algorithm finds
an idle transition (=g f AV’ = V), it returns a counterexample. Otherwise
it returns FAIL, hoping that the learning algorithm finds another formula next
time.

4 Experiments

To evaluate our approach, we implemented our algorithm and compared it with
existing tools. In the implementation, we use Z3 SMT solver [16] for satisfiability
check and our own implementation of RANKFINDER algorithm [24] for well-
foundedness check.

Algorithm 6 shows the pseudo-code of the main loop of our analyzer. The
algorithm essentially handles the nested loop in the manner similar to that of [27];
it finds a non-nested simple loop and tries to find a disjunctively well-founded
transition invariant; when it finds one, we can use it as a summary of the loop
and make the outer-loop also non-nested; if the inference fails within the given
limit N, it simply assumes that the loop can change the variable arbitrarily and
uses true as its summary.

In Algorithm 6, we make CDNF algorithm repeat only a certain number of
times because the learning algorithm loops indefinitely if a given loop does not
terminate or it does but there is no disjunctively well-founded transition invariant
expressible with the given set of predicates. In practice, CDNF algorithm could
find a disjunctively well-founded transition invariant within several trials.

We implement a simple heuristic that generates atomic transition predicates
using loop guards and branch conditions. First, all loop guards and branch con-
ditions are used as atomic transition predicates. Second, for each loop guard, say
E, > Es, we generate predicates Ej — E}, < Ey— F5. The intuition is that the gap

11

between values of F; and Fy should decrease so that the loop guard would be
eventually violated. According to our experience, even with this simple heuris-
tic we could verify almost all terminating examples (only four predicates are
required to add manually in the whole experiments).

For comparison, we use the following four tools.

LTA) Our prototype algorithmic-Learning-based Termination Analyzer (LTA) with
a simple heuristic for transition predicate generation.

LF) LooPFROG [27], a summary-based termination analyzer. LOOPFROG can be
configured with five different templates of transition invariants and we use
only the template i’ o where ¢ = {<, >}, which showed the best performance
according to [27].

LR) LINEARRANKTERM [8], an abstract interpretation-based termination ana-
lyzer.

CTA) Compositional Termination Analyzer (CTA) [22].

All experiments are done on Intel Core i7 3.07 Ghz CPU with 24GB memory
running Linux 2.6.35. The timeout for CTA is set to one hour and LTA is
configured with the retrial limit (V in Algorithm 6) 100.

In all experiments, we report only the elapsed time for cases that tools could
prove the termination. If there are multiple loops, we report the elapsed time
aggregated only on terminating cases (denoted by '+’ after numbers). The reason
is that our technique is semi-algorithm; it is not meaningful to report the elapsed
time to eventually fail since it simply depends on the parameter N. We run each
case 100 times and take the average of them.

We use four sets of examples' from the literature, which are examples from
Octagon library [23], POLYRANK distribution [5, 6], Windows device drivers [2,
8], and SNU real-time benchmark suite [27]. Since our prototype supports a
fragment of full ANSI-C, some examples are manually translated when they use
unsupported features. The experiment results are given in Figure 1.

Figure 1(a) and (b) shows the results on examples from Octagon Library and
PoLYRANK distribution?, respectively. All examples are known to terminate.
Our tool is the only one that proves all examples from Octagon library (note
that we got a different result from the one in [8]; we tried our best but we could
not make LINEARRANKTERM prove example 3). In terms of efficiency, LTA
outperforms the others except LOOPFROG; since LOOPFROG considers only one
iteration of loops with the pre-defined transition invariant template, it is very
efficient for simple programs. For the examples from POLYRANK distribution,
only LTA and LINEARRANKTERM can prove the first two.

Figure 1(c) shows the result on examples from Windows device drivers. Ex-
ample 2, 3, and 9 are known to have termination bugs and the others terminate.
Only LTA and LINEARRANKTERM can prove all the terminating cases and LTA

! We made them available at http://ropas.snu.ac.kr/cavi2/. Windows device
driver examples cannot be made available due to the license issue.

2 As already noted in [2, 8], there was no example 5 in the original distribution. We
used the same numbering to avoid confusion.

12

|

[1[2[3[4]5]6]

LTA

0.01{0.01{0.59

0.12

0.01{0.03

LF |0.01/0.01|0.02

0.03

@ (0.01

LR [0.20(0.16| ©

0.32

0.2110.79

CTA

0.58(0.26(9.48

© | @ |0.48

(a) Results on examples from the Octagon Library

| | 1] 2 [3]4][6]7][8]9]10[11]12]
LTA |0.03]|0.45|0|0|0|0|0|0|0|0 |0
LF | 0 | © |0jo|o|o|0|ojo|0|o
LR |0.71]0.34|0|0|0|0|0|0|0|©|©
CTA| 0 | 0 |0v©©©L @2
(b) Results on examples from the POLYRANK distribution
[[1[2[3[4]5]6[7]8[9]10]
LTA |0.43|®|©|0.02]0.01]0.60/0.30|0.20|®| 0.03
LF | © (©|©]0.00/0.000 © | © | © |0 ©
LR [0.66|©|©(0.32(0.16/0.34|0.54|0.29|®| 0.28
CTA|T/O|@|®]0.41]0.44|2.04|8.86(8.87|®|T/O
(c) Results on small arithmetic examples taken from Windows device drivers
l Example ‘Tool‘/‘@‘Time‘ l Example ‘Tool‘\/ ‘@‘Time‘
bs LTA|1|0| 0.01 ludemp LTA |11{0| 0.13
1 loop LF |0|1|N/A 11 loops LF |5(6(0.07+
1 terminates CTA|O0|1|N/A 11 terminate CTA| 4 |7|1.50+
fit1k LTA |3|0| 0.04 minver LTA |15/2|0.23+
3 loops LF [2(1]0.03+ 17 loops LF [16/1(0.22+
3 terminate CTA|2|1|0.54+ 15 terminate CTA|15|2|5.21+
fft1 LTA |2|3(0.03+ gsort-exam LTA |2 |4|0.66+
5 loops LF |2|3]0.18+ 6 loops LF [0|6| N/A
2 terminate CTA|2[30.66+ 2 terminate CTA|0[6]| N/A
insertsort LTA|1|1(0.01+ select LTA|0|4| N/A
2 loops LF |1]|1]0.01+ 4 loops LF [0[|4| N/A
1 terminates CTA|1|1(0.29+ 0 terminates CTA|0 4| N/A

(d) Results on modified examples from SNU real-time benchmark

Fig. 1. Experiment Results. LTA is used to represent algorithmic-learning-based ter-
mination analyzer. LF is used to represent LOOPFROG, summary-based termination
analyzer. LR is used to represent LINEARRANKTERM, abstract interpretation-based
termination analyzer. CTA is used to denote compositional termination analyzer.
Symbol 4+’ means that the time is aggregated only when the tool proved the termina-

tion. v'="“termination proven”. @=*“termination not proven”. N/A=“not comparable”.
T/O=¢“time out”. Tool and Time show the name and the runtime of tools.

13

shows better performance than LINEARRANKTERM for all examples except ex-
ample 6.

Figure 1(d) is the result on SNU real-time benchmark suite3. The original
examples in the suite contain many trivial, non-nested loops of form for (i=0;
i<n; ++i){...} (52 out of 107 loops). We leave them out and make suite contain
only non-trivial, nested loops. We show in the figure the number of terminating
loops in each example, which was found manually.

Figure 1(d) shows that LTA outperforms LOOPFROG and CTA, both in
efficiency and effectiveness. Note that there is no comparison between LINEAR-
RANKTERM and LTA; we could not compare LTA with LINEARRANKTERM on
the examples that have non-terminating loops since LINEARRANKTERM stops
the analysis as soon as it finds any single termination bug. We report here the
results on the examples with terminating loops only; for three such examples
(bs, fft1k, and ludecmp), LINEARRANKTERM tool can prove only one example
(bs) and it takes 0.59 seconds.

Our approach shows a promising result; even by a prototype implementa-
tion with a simple heuristic for atomic transition predicate generation, our tool
outperforms other tools both in efficiency and effectiveness.

5 Related Work

Our work is inspired by the recent success of the algorithmic-learning-based ap-
proach to loop invariant inference [19,21,20]. In those papers, the problem of
loop invariant generation is formulated as a problem of inferring an unknown
quantifier-free formula. With a simple randomized mechanical teacher, a learning
algorithm is adopted to infer an invariant for the given annotated loop. Instead of
the costly fixpoint iteration, the learning algorithm revises its purported invari-
ants by counterexamples from the teacher. The randomized teacher can guide
the learning algorithm to find a loop invariant very efficiently since there are
usually sufficiently many loop invariants.

TERMINATOR [13] is the most prominent termination analyzer which is suc-
cessfully applied to an industrial practice [1]. Using transition invariants [25],
TERMINATOR decomposes a termination problem of complex loops into easier
ones. However, as reported in [13], the initial approach reveals that most of the
analysis time is spent in reachability analysis that is to check if the current
transition invariant reached a fixpoint.

Our work shares the same goal as several techniques [2, 8,22, 27] which aims
to improve the performance of the initial approach. To compute fixpoints effi-
ciently, Berdine et al. [2] and Chawdhary et al. [8] use abstract interpretation [15].
We use in experiments LINEARRANKTERM [8] which adopts a new abstract do-
main tailored for termination proof. The new abstract domain is effective to
prove the termination in most of the practical examples, but it simply gives
up when a transition invariant of a loop is beyond its expressivity. Kroening et

3 The original benchmark suite can be also found at http://archi.snu.ac.kr/
realtime/benchmark/.

14

al. [22] and Tsitovich et al. [27] use compositional transition invariants. Com-
positional transition invariants are the ones that are closed under composition
with themselves. If a transition invariant covers several iterations of a loop and
is compositional, it covers the entire iterations. Since compositional transition
invariants can be found by considering only several iterations, they are some-
times discovered earlier than the one that covers the entire iterations. However,
not all terminating programs have a compositional transition invariant.

Our technique can be easily extended with more sophisticated ranking func-
tion synthesis algorithms, such as lexicographic linear ranking functions [4] or
bit-vector relations [11]. In this paper we use the ranking function synthesis al-
gorithm for simple linear loops [24], which has been proven to be effective on
realistic programs.

6 Conclusion

In this paper, we present an algorithmic-learning-based termination analysis
technique. By combining transition predicate abstraction, algorithmic learning,
and decision procedures, the technique can efficiently compute transition invari-
ants as proofs of program termination. Compared to the previous approaches,
our technique does not commit to any particular one, thus can prove the termina-
tion of the examples that previous techniques simply give up and report possible
non-termination. We compare our technique with others on several benchmarks
from literature. The result shows that the new technique outperforms the others
both in efficiency and effectiveness.

Although our heuristic for selecting initial atomic transition predicates is
effective, a complete predicate synthesis technique will be useful. Extending our
learning-based framework to support more features such as function calls and
pointers is certainly desirable. Several optimizations under the learning-based
framework are to be explored. A more powerful well-foundedness checker should
make the framework even more effective. An incremental learning algorithm for
Boolean functions [9] should improve the efficiency of our technique as well.

Acknowledgement. We would like to thank anonymous referees for their com-
ments and appreciations. We are grateful to Aziem Chawdhary, Peter O’Hearn,
and Hongseok Yang for letting us use Windows device drivers examples. Espe-
cially, Aziem helps us a lot on the comparison with LINEARRANKTERM analyzer.
We also thank to Hakjoo Oh, Daejun Park, Yungbum Jung, Deokhwan Kim, and
Sungkeun Cho for their comments.

References

1. Ball, T\, Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: EuroSys. (2006)

2. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’'Hearn, P.: Variance anal-
yses from invariance analyses. In: POPL. (2007)

15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs
for programs with shape-shifting heaps. In: CAV. (2006)

Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: CAV.
2005

](Bradlzey, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: ICALP.
(2005)

Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In:

VMCALI (2005)

Bshouty, N.H.: Exact learning Boolean function via the monotone theory. Infor-
mation and Computation 123(1) (1995) 146-153

Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking abstractions.
In: ESOP. (2008)

Chen, Y.F., Wang, B.Y.: Learning boolean functions incrementally. In
Parthasarathy, M., Seshia, S.A., eds.: CAV. LNCS (this volume), Springer (2012)
Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-

tional termination. In: CAV. (2008)

Cook, B., Kroening, D., Riilmmer, P., Wintersteiger, C.M.: Ranking function syn-

thesis for bit-vector relations. In: TACAS. (2010)

Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: SAS. (2005)

Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI. (2006)

Cook, B., Podelski, A., Rybalchenko, A.: Proving thread termination. In: PLDI.
(2007)

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
1977

Ele Mc)>ura, L.M., Bjgrner, N.: Z3: An efficient smt solver. In: TACAS. (2008)
Harris, W.R., Lal, A., Nori, A.V., Rajamani, S.K.: Alternation for termination.
In: SAS. (2010)

Heizmann, M., Jones, N.D., Podelski, A.: Size-change termination and transition
invariants. In: SAS. (2010)

Jung, Y., Kong, S., Wang, B.Y., Yi, K.: Deriving invariants in propositional logic
by algorithmic learning, decision procedure, and predicate abstraction. In: VM CAL
(2010)

Jung, Y., Lee, W., Wang, B.Y., Yi, K.: Predicate generation for learning-based
quantifier-free loop invariant inference. In: TACAS. (2011)

Kong, S., Jung, Y., David, C., Wang, B.Y., Yi, K.: Automatically inferring quan-

tified loop invariants by algorithmic learning from simple templates. In: APLAS.
2010

E(roerzing7 D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination anal-

ysis with compositional transition invariants. In: CAV. (2010)

Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation
19(1) (2006) 31-100

Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In: VMCAI (2004)

Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS. (2004)

Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-

tion. In: POPL. (2005)

Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop summariza-

tion and termination analysis. In: TACAS. (2011)

16

