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Abstract

We present a static analysis that detects potential runtime exceptions

that are raised and never handled inside Standard ML (SML) programs.

This analysis enhances the software safety by predicting, prior to the

program execution, the abnormal termination caused by unhandled ex-

ceptions.

The analysis is speci�ed as a �nite, abstract semantics of an interme-

diate language. The intermediate language, into which SML programs

are translated before the analysis begins, is de�ned such that the mech-

anism of SML's exception propagation becomes explicit in its text. This

syntactic manipulation makes our analysis easy.

Our analysis prototype has been implemented by using an analyzer

generator called Z1 and has been used to analyze SML programs consisting

of thousand lines. Our analysis is limited to SML programs that are type-

correct and are operationally invariant even if the generative nature of

SML's data-type and exception declarations is not considered.

(To appear in Science of Computer Programming, North-Holland Pub-

lishing Co., Netherlands)

1 Introduction

Exception handling facilities in programming languages allow the programmer

to de�ne, raise and handle exceptional conditions. Exceptional conditions are

brought (by a raise expression) to the attention of another expression where the

raised exceptions may be handled.

�

A preliminary version of this paper was presented in the 1st International Static Analysis

Symposium (SAS'94) and appeared in Lecture Notes in Computer Science Vol. 864.

y

This work was done while the author was associated with AT&T Bell Laboratories. Cur-

rent address: Dept. of Computer Science, KAIST, Taejon, 305-701, South Korea.

1



Use of the exception facilities is not necessarily limited to deal with errors.

The programmer can use exceptions as a \control diverter" to escape any control

structure to a point where the corresponding exception is handled. Also, using

the exceptions, the programmer can tailor an operation's results or e�ects to

particular purposes in a wider variety of contexts than would otherwise be the

case.

The exception facilities, however, can provide a hole for program safety.

A program can terminate abnormally when an exception is raised and never

handled.

Our goal is to develop a compile-time tool for eliminating this safety hole.

The tool will detect, prior to the program execution, potential runtime excep-

tions that may be astray. In this paper, we present one such tool for Standard

ML (SML) [MTH90] programs.

1.1 Exception Mechanism in Standard ML

In SML, exceptions are treated just like any other value (until they are raised).

They can be passed as function arguments, returned as the results of function

applications, bound to identi�ers, stored in locations and etc.

An exception consists of an exception name possibly paired with some argu-

ment values. For example,

Error("at line 7")

constructs the Error exception with the string argument. (In what follows,

an exception name such as Error is called an \exception constructor." ) The

exception constructor Error must be declared beforehand:

exception Error of string

An exception is raised by

raise e

where the expression e must evaluate to an exception. For example, raise !x,

where x is dereferenced for an exception value. A raised exception is particularly

called an exception packet. In this paper, however, when the context is clear

we will use exception, exception value, and exception packet interchangeably.

Once an exception is raised, a handler is located by dynamic means: by

going up the current evaluation chain to �nd potential handlers. During this

process, one or more levels of the currently active call chain are aborted, up to

the function containing the handler.

In SML, the syntax for an exception handler is:

e handle p

1

=> e

1

j � � � j p

n

=> e

2
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Patterns p

i

's are compared with a raised exception from the computation of e.

When the exception's name (constructor) matches with pattern p

k

, the corre-

sponding expression e

k

is evaluated. If the match fails, the raised exception

continues to propagate back along the evaluation chain until it meets another

handler, and so on.

1.2 Analysis Problems

Since SML exceptions are �rst-class objects, it is not straightforward from the

program texts whether a handler and a raise expression are properly paired to

handle all potential exceptions.

Consider the following program fragment:

f(x) = � � �raise x � � �

In order to �nd which exceptions are raised inside f, we must determine which

exceptions are bound to x. We must also analyze which handlers are provided

for expressions that call f, in order to deactivate exceptions that can be handled.

For another example that has a higher-order function, consider:

f(g) = � � �g(x) handle E => � � �

We must analyze which procedures are bound to g in order to determine which

exceptions g(x) can raise. As in the previous case, we must also analyze which

handlers are provided for expressions that call f, in order to deactivate excep-

tions that may escape from the handler inside f.

Lastly, we must take the exception arguments into account. This is in order

to catch, for example, the escaping exception Error[1]

1

in

(� � � raise Error[1] � � �) handle Error nil => 1

1.2.1 Caveat

One subtlety of the SML's exception declaration is that it is generative. (This

is also true for the datatype declarations.) Each evaluation of an exception dec-

laration binds a new, unique name to the exception constructor. An exception

handler looks up this internal name to determine a match. For example, in

the following incorrect de�nition of the factorial function, each recursive call to

fact generates a new instance of exception ZERO (line (1)). Therefore, the han-

dler in line (3), which can only handle exceptions declared in its lexical scope,

cannot handle another instance of ZERO that is newly declared and raised inside

the recursive call fact(n-1). Hence this fact function fails with an uncaught

exception ZERO.

fun fact(n) =

1

[1] is the singleton list of 1.
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let exception ZERO (1)

in if n <= 0 then raise ZERO (2)

else n * fact(n-1) handle ZERO => 1 (3)

end

Our analysis cannot analyze programs that utilize such generative nature of

the exception (and the datatype) declarations. This limitation is not severe;

exceptions (and datatypes) are largely declared at the global scope or at the

structure

2

level, or we can move existing local declarations out to the global

level without a�ecting the \observational" behavior of the programs. Programs

where this hoisting is impossible cannot be analyzed correctly by our analysis.

Another limitation of our analysis is that we consider only exceptions that

appear in the program's text (including library sources). Thus, hidden excep-

tions from primitive functions

3

are not considered. For example, for an integer

division expression \e

1

div e

2

" we do not report the possibly-uncaught excep-

tion Div, which is raised when the value of e

2

is zero. This limitation can easily

be lifted if our analysis is equipped with a table of primitive operators and their

exceptions.

1.3 Analysis Examples

Consider a program where a handler is not complete enough to handle all cases.

exception NEGA and ZERO

fun f(x) = if x<0 then raise NEGA

else if x=0 then raise ZERO

else x

fun g h x = h(x) handle NEGA => x (1)

fun main(x) = g f x

The handler inside g (line (1)) cannot handle exception ZERO that may be

raised inside f. Our analysis detects this.

Consider another program where a handler is complete but some exceptions

can still escape.

exception NEGA and ZERO

fun f(x) = if x<0 then raise NEGA

else if x=0 then raise ZERO

else x

fun g h x = h(x) (1)

handle NEGA => h(x+1) (2)

| ZERO => h(1) (3)

fun main(x) = g f x

The handler inside g is complete enough to catch all exceptions from h(x)

(line (1)). However, because of the repeated call to h (lines (2)) inside a handle

2

A structure in SML is a unit for modular programming; it may be said that an SML

structure is analogous to a �le in C programming.

3

Functions of the SML/NJ's base environment.
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branch, exceptions ZERO and NEGA can be raised again without being handled.

Our analysis detects these uncaught exceptions.

Lastly, consider the following example where exception constructor and its

argument are passed as function parameters.

4

exception ERROR of int list

exception EXIT of int list

fun f(n, x, y) =

if n<0 then raise (x [n]) (1)

else if n=0 then raise (y nil) (2)

else n

fun g(m, x, y) =

f(m, x, y) (3)

handle ERROR [n] => g(n, y, x) (4)

| EXIT nil => 0 (5)

fun main(c) = g(c, ERROR, EXIT)

When g is �rst called inside main, a raised exception ERROR [n] or EXIT

nil are handled by the handler inside g (line (4) and (5)). Meanwhile, when

g is called recursively (line (4)), the two exception constructors are swapped.

Hence, raised exceptions ERROR nil and EXIT [n], at this time, cannot be

handled by the handler. Our analysis detects this situation.

5

1.4 Analysis Implementation

We use the collecting analyzer generator Z1 [YH93, Yi93] in specifying and

implementing our analysis. The analysis speci�cation is an abstract inter-

preter [CC77, CC92]. From this speci�cation, Z1 generates an executable col-

lecting analyzer. The collecting analysis computes, for each expression of the

input program, a value that characterizes the run-time states that occur at that

expression. The program state, in our case, contains a collection of uncaught

exceptions. Details of our implementation by Z1 is discussed in Section 7.

After the analysis, the following information is conveyed to the programmer:

� Unhandled exceptions of top-level functions. The existence of such excep-

tions implies that the program can terminate abnormally.

� Raised exceptions at each handle expression. Using this information the

programmer can check if the handler patterns are complete to cover all

cases.

Our analyzer has been used to analyze some programs including SML/NJ

libraries, ML-YACC, and ML-LEX. See Figure 1 for preliminary performance

�gures.

4

Such cases are found in the source of SML/NJ 1.01 compiler's environment module.

5

Actually, these two exceptions are included in the analysis result; two other spurious

exceptions ERROR [n] and EXIT nil are reported too. See Section 7.1.
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program statistics

a

ML-LEX 1.2K

b

, 8x

c

, 8h

d

, 47r

e

ML-YACC 7.7K, 21x, 6h, 122r

OR-SML

f

1.8K, 21x, 14h, 65r

program analysis cost result

g

ML-LEX 53min

h

/3.1Mb

i

eof,Subscript,Match,error,lex error

ML-YACC 617min/26.5Mb Subscript,Semantic,MkTable

OR-SML 28min/2.7Mb Badobject, Dontunify, Badtypeorunion

Iscrewedup,Badtypealpha,Badtypemap

Badtyperho,Cannotsort,Unknownnilset

a

After the source is translated into the intermediate form.

b

Number of SML source lines

c

Number of exception constructors

d

Number of handle expressions

e

Number of raise expressions

f

Core of an DB query interpreter for disjunctive data

g

possibly-uncaught exceptions

h

minutes on SGI Challenger

i

mega bytes

Figure 1: Preliminary performance �gures

1.5 Related Works

Guzm�an and Su�arez [GS94] reported an instrumented type-inference system to

collect unhandled exceptions for a simpli�ed core ML. Their system does not

allow exceptions with arguments. In order to consider exception arguments,

they may need an idea similar to the \regions" [TJ92] for approximating the set

of argument values accompanying an exception.

On the other hand, such type-inference or, in general, constraints-resolution

based program analysis [TJ92, TT94, LG88, JG91, Hei92, AW93] seems to have

some appealing characteristics: relatively small analysis cost (because, for some

problems and target languages, it is possible to use the uni�cation [Rob65]

process rather than the iterative �xpoint method) and a natural support for

separate analysis (as reported in [TJ94]). It remains to have a comparative

study of the two analysis methods (uni�cation of instrumented type inference

versus iterative approach based on abstract interpreter) for the instance of the

exception analysis.

2 The Intermediate Language

Our analysis does not directly analyze the SML programs. We have an interme-

diate language into which the SML programs are translated before the analysis

begins. Figure 2 shows this intermediate language.
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expression

e ::= x variable

j (fn x e) function

j (apply e e) application

j (con � e

0

) datatype value

j (exn � e

0

) exception value

j (decon e) datatype deconstruction

j (case x of fp eg

+

) switch expression

j (fix f x e in e) recursive function binding

j (raise e) exception raise

j (handle e x e) exception handler

pattern

p ::= � constructor name

j wild-card

fg for grouping, �

+

for one or more �'s, and �

0

if � is optional.

Figure 2: (Simpli�ed) Abstract Syntax of the Intermediate Language

In this paper we present a simpli�ed version of the language. We do not

show numbers, strings, records, primitive arithmetic operators, and memory

operators (like allocation, assignment and dereference). In our implementation

though, all these omitted features are supported.

The intermediate language is an applicative higher-order language (based

on Lambda [App92] of the SML New Jersey (SML/NJ) compiler). An infor-

mal semantics of the language is as follows. (Formal semantics is presented

in Section 4.) A datatype value (con � e) or an exception value (exn � e)

is constructed from a constructor name � and an expression e for its argument

value. The argument of a datatype or of an exception is recovered by the decon-

struction expression (decon e).That is, (decon (con � e)) is equal to e. The

case expression (case x of p

1

e

1

� � �) branches to e

i

when the value of x has

a constructor name that matches with p

i

. For example, (case x of A 1 _ 2)

is 1 if x is a value (con A e) or (exn A e). The wild-card pattern _ matches

with every name. The handle expression (handle e

1

x e

2

), where e

2

will typ-

ically be a case expression, evaluates e

1

�rst. If e

1

's result is a raised exception

v, the exception value v, not the exception packet v, is bound to x inside e

2

.

Otherwise, e

1

's value is returned. Expression (fix f x e

1

in e

2

) binds the

recursive function f = �x.e

1

inside e

2

.
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2.1 Translation

The translation of the SML programs into their intermediate forms does the

following noteworthy things. (Note that, in this section, some examples in

the intermediate forms are not legitimate according to the abstract syntax of

Figure 2. For convenience, we use numbers, for example.)

� The handler patterns are always augmented with an extra raise expression,

in order to re-raise exceptions that are not caught:

e handle

ERROR => 1

| FAIL => 2

translate

=)

(handle e x

(case x

of ERROR 1

FAIL 2

(raise x)))

Note that the \x" has the exception value that was raised inside e. Hence

the raise expression \(raise x)" in the last branch has the e�ect of prop-

agating the exception packets that cannot be handled by the current han-

dler.

A translation example for a handler of an argument-carrying exception is:

exception E of int list

� � �

e handle E nil => 1

translate

=)

(handle e x

(case x

of E (apply

(fn y

(case y

of NIL 1

(raise x)))

(decon x))

(raise x)

))

Note that (decon x) considers the arguments of exceptions bound to x.

� When patterns in an SML source are not complete enough to cover all

cases, the translation makes this situation manifest in the intermediate

form. For example,

datatype t = A | B | C

case x

of A => 1

| B => 2

translate

=)

(case x

of A 1

B 2

(raise (exn MATCH)))

Note that the incomplete patterns for a datatype can be statically de-

tected. Our translation resorts to the SML/NJ compiler for this detection.

� Alpha conversion is done: every identi�er for variable and function is made

distinct.

8



� Functors in the SML module system are translated into ordinary functions.

A functor's argument and result are represented as records (as explained

in [App92]). The record construct in our intermediate language is omitted

for brevity in this paper.

� A datatype or exception constructor that requires an argument is trans-

lated into a function, which is �-reduced whenever appropriate. For ex-

ample,

datatype t = T of int

� � � T, � � �

translate

=) � � � (fn x (con T x)), � � �

� The input SML program is assumed to be type-correct. This condition is

easily supported in our case because the program translation occurs after

the program passes the type inference phase of the SML/NJ compiler.

3 Roadmap

We take the following steps to arrive at an abstract interpreter for the exception

analysis. We start from a standard semantics of the language. This standard

semantics is natural and simple, but it is di�cult to create a �nite semantics

from it. Thus, we will tailor this standard semantics into one called concrete

semantics that becomes easier to abstract (make �nite). Finally, we abstract

the concrete semantics, resulting in a �nite, approximate interpreter that is

suitable for the compile-time computation. We prove the correctness of our

abstract interpreter against the concrete semantics.

4 Standard Semantics

The standard semantics is shown in Figure 3. Note that our semantics is not

denotational in that the semantics of function application is not de�ned com-

positionally. Our semantics function

E :Expr ! Env ! Value = �xF

is de�ned to be the least �xpoint of the functional

F : (Expr ! Env ! Value)! (Expr ! Env ! Value):

Therefore an expression e's semantics is not de�ned from the semantics of e's

subparts but is de�ned to be the image �xF [[e]] of the least �xpoint �xF of F .

Let us brie
y review our notations. A

?

is a lifted cpo

6

: bottom (?) and

incomparable elements of set A. For two cpos A and B, A+B is the coalesced

6

Complete partial ordering. A partial-order set X is cpo i� X has a least element and

every chain in X has a least upper bound in X .
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Semantic domains

� 2 Env = Id ! Value environment

v 2 Value = Closure + Data + Exn + Exn value

Closure = Expr

?

� Env closure

Data = DataCon

?

�Value datatype value

Exn = ExnCon

?

�Value exception

Exn = Exn raised exception

e 2 Expr set of expressions

� 2 DataCon set of datatype constructors

� 2 ExnCon set of exception constructors

Id set of variables

Semantic function E :Expr ! Env ! Value is the least �xpoint �xF of

F : (Expr ! Env ! Value)! (Expr ! Env ! Value)

F E [[x]] � = �(x)

F E [[(raise e)]] � = letx v = E [[e]] �

in v

F E [[(handle e

1

x e

2

)]] � = let v

1

= E [[e

1

]] �

in if v

1

= v 2 Exn

then E [[e

2

]] �[v=x]

else v

1

F E [[(case x of p

1

e

1

� � �p

n

e

n

)]] � = E [[e

j

]] �

(�

match

= p

j

where h�; vi = �(x))

F E [[(apply e

1

e

2

)]] � = letx h(fn x e); �

0

i = E [[e

1

]] �

v = E [[e

2

]] �

in E [[e]] �

0

[v=x]

F E [[(fn x e)]] � = h(fn x e); �i

F E [[(fix f x e

1

in e

2

)]] � = E [[e

2

]] �

0

(�

0

= �x��:�[h(fn x e

1

); �i=f])

F E [[(fconjexng � e)]] � = letx v = E [[e]] �

in h�; vi

F E [[(decon e)]] � = letx h�; vi = E [[e]]�

in v

Figure 3: Standard Semantics for Exception Evaluation
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sum (?

A

= ?

B

= ?

A+B

), A�B is the Cartesian product with the component-

wise order, and A ! B consists of strict, continuous functions with the point-

wise order. For f 2 X ! Y , we write f [y=x] to represent the function that is

identical to f , except at x, where its value is y.

The standard evaluation function E of an expression e returns a value of the

expression for a given environment. An environment

� 2 Env = Id ! Value

is a map (a continuous function) from variables Id to their values Value. Set

Id consists of the names for functions, arguments and exception binders (x's in

the handle expression (handle e

1

x e

2

)) A value v 2 Value is either a closure

Closure, a datatype value Data, an exception value Exn or an exception packet

(a raised exception) Exn:

v 2 Value = Closure +Data + Exn +Exn:

The closure is, as usual, a pair of the function text and the environment at the

function de�nition:

Closure = Expr

?

� Env :

The datatype value is a pair of a constructor name and its argument (similarly

for the exception value):

Data = DataCon

?

�Value

Exn = ExnCon

?

� Value

An exception packet Exn is the same as an exception value except that we mark

it with the underline.

4.1 Expressing the SML Exception Convention

To express the exception convention, we use the \letx" notation

\letx v = []

1

in []

2

"

as a shorthand for

\let v = []

1

in if v 2 Exn then v else []

2

."

That is, the evaluation of the \letx" bindings terminates with the �rst whose

result is a raised exception. This raised exception becomes the result in conclu-

sion of the \letx" expression. When no exception is raised, \letx" is the same

as \let." Note that in the semantics we do not use the \letx" for the handle

expression, because a handler is the only way to stop the propagation of an

exception.
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5 Concrete Semantics

A semantics that is de�ned over recursively-de�ned domains is troublesome

when we derive from it a �nite, abstract interpreter.

The standard semantics of the previous section has in�nite domains that are

recursively de�ned. Consider the value domain Value:

Value = Closure +Data + � � �

= (Expr

?

� (Id ! Value)) + (DataCon

?

� Value) + � � �

In this section, we will develop a new semantics (called concrete semantics)

that uses no recursively-de�ned domains hence becomes easier to abstract than

the standard semantics.

Our solution is to use the store

7

: a map from locations to values, upon which

some e�ects of the evaluation function are accumulated (i.e., the store is a part

of both the input and the output of the evaluation function):

E :Expr ! Env � Store ! Value � Store

When a value v needs to be bound to a variable x, a new location ` is allocated

in the store s 2 Store

s 2 Store = Loc ! Value

and the value is written in that location s[v=`]. The environment � 2 Env

� 2 Env = Id ! Loc

then maps the identi�er to the location �[`=x]. Thus, for example, the argument

of a function is mapped to di�erent locations, one for each invocation of the

function. When variable x's value is needed, x's location e(x) is fetched from

the current environment e and the store entry s(e(x)) of the location has the

value of x.

By using the locations and the stores, the value domain can be de�ned non-

recursively. The domain for the closure is de�ned without the Value domain,

because the environment component is now a map from identi�ers to locations.

The domains for the datatype and exception values has, for the argument com-

ponent, the location Loc in place of the Value domain. That is, when a datatype

value (a pair 2 DataCon

?

� Value in the standard semantics) is constructed,

a new location is allocated in the current store to hold the argument value,

and this new location (rather than the argument value itself) is paired with the

constructor name.

The concrete semantics is shown in Fig. 4.

7

Actually, in order to handle the allocation, assignment and dereference expressions that

are included in the real intermediate language, we need the store domain anyway.

12



Semantic domains

s 2 Store = Loc ! Value store

� 2 Env = Id ! Loc environment

v 2 Value = Closure + Data + Exn + Exn value

Closure = Exp

?

� Env closure

Data = DataCon

?

� Loc datatype value

Exn = ExnCon

?

� Loc exception value

Exn = Exn raised exception

Loc = f` j location `g

?

location

e 2 Expr set of expressions

� 2 DataCon set of datatype constructors

� 2 ExnCon set of exception constructors

Id set of variables

Semantic function E :Expr ! Env � Store ! Value � Store is the least �x-

point �xF of

F : (Expr ! Env � Store ! Value � Store)!

(Expr ! Env � Store ! Value � Store)

F E [[x]] h�; s

0

i = s

0

(�(x))

F E [[(raise e)]] h�; s

0

i = letx hv; s

1

i = E [[e]] h�; s

0

i

in hv; s

1

i

F E [[(handle e

1

x e

2

)]] h�; s

0

i = let hv; s

1

i = E [[e

1

]] h�; s

0

i

in if v = v

0

2 Exn (new `)

then E [[e

2

]] h�[`=x]; s

1

[v

0

=`]i

else hv; s

1

i

F E [[(case x of p

1

e

1

� � �p

n

e

n

)]] h�; s

0

i = E [[e

j

]] h�; s

0

i

(�

match

= p

j

where h�; `i = s

0

(�(x)))

F E [[(apply e

1

e

2

)]] h�; s

0

i = letx hh(fn x e); �

0

i; s

1

i = E [[e

1

]] h�; s

0

i

hv; s

2

i = E [[e

2

]] h�; s

1

i

in E [[e]] h�

0

[`=x]; s

2

[v=`]i (new `)

F E [[(fn x e)]] h�; s

0

i = hh(fn x e); �i; s

0

i

F E [[(fix f x e

1

in e

2

)]] h�; s

0

i = let �

0

= �[`=f] (new `)

s

0

= s

0

[h(fn x e); �

0

i=`]

in E [[e

2

]] h�

0

; s

0

i

F E [[(fconjexng � e)]] h�; s

0

i = letx hv; s

1

i = E [[e]] h�; s

0

i

in hh�; `i; s

1

[v=`]i (new `)

F E [[(decon e)]] h�; s

0

i = letx hh�; `i; s

1

i = E [[e]] h�; s

0

i

in hs

1

(`); s

1

i

Figure 4: Concrete Semantics for Exception Evaluation
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6 Abstract Exception Evaluation

The abstraction of the concrete semantics is needed to make the resulting inter-

pretation computable at compile-time. This abstraction consists of abstracting

both the semantic domains and the interpreter function.

We makes the abstract domains be �nite lattices

8

. Each element x̂ 2

^

D in an

abstract domain

^

D denotes an ideal

9


(x̂) � D of concrete values. The partial

order x̂ v ŷ in the abstract domain is when x̂'s information is more precise than

that of ŷ, i.e., when 
(x̂) � 
(ŷ). The lattice structure ensures the existence of

a safe element x̂ t ŷ whose information 
(x̂ t ŷ) is consistent with the others


(x̂) and 
(ŷ).

The abstract evaluation function must be monotonic and be a upper ap-

proximate of its concrete correspondence. A function

^

f :

^

A !

^

B is a upper

approximation of its concrete counterpart f :A ! B when the abstract result

^

f(x̂) over x̂ must include the concrete result f(x) for every x meant by x̂. The

monotonicity requires that

^

f 's results for consistent inputs be consistent.

Both the �niteness of the abstract domains and the monotonicity of the

abstract evaluation guarantee the termination of the induced program analysis.

The upper approximate-ness is necessary for the soundness.

6.1 Abstracting Locations

In abstract semantics, we use a single location for each allocation site of the

source program. Note that new locations are allocated at four places. When a

function is de�ned (inside the fix expression), a new location for the function

name is allocated to hold the closure. When a function is applied, a new location

to hold its argument. When a handler is applied, a new location to hold, if any,

exception value. Lastly, when a datatype or exception value is created, a new

location to hold its argument.

We uniquely name the allocation sites of a program, and use these names for

abstract locations. Let Ln be the set of unique names for the allocation sites. An

abstract location � 2 Ln represents the set Allocated(�) of all concrete locations

that are allocated at site � during the execution of the program. Formally, the

abstract location

^

L and its abstraction map �

L

:Loc !

^

L are:

^

L = Ln

?

�

L

= �`:if ` = ? then ? else � such that ` 2 Allocated(�).

Generally, that a single abstract location ` represents multiple, concrete

locations can deteriorate the analysis accuracy. This is because storing a value

8

In general, abstract domains need not be �nite. Even for in�nite lattices, if their every

chain is bounded we can have terminating abstract interpretation[CC77, Bou93, Bou92] by

means of applying \widening" operators at 
ow cycles. However, in Z1 we cannot specify such

operators that are selectively applied only to some 
ow points.

9

An ideal I of a cpo D is a subset of D that is downwardly closed (x v y 2 I implies x 2 I)

and upwardly complete (every chain in I has the least upper bound inside I).
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�

L

: Loc !

^

L = �`:if ` = ? then ? else � where ` 2 Allocated(�)

�

C

: Closure !

^

C = �c:if c = ? then fg else feg where c = he; �i

�

D

: Data !

^

D = �d:if d = ? then fg

else fh�; �ijd = h�; `i ^ ` 2 Allocated(�)g

�

X

: Exn !

^

X = �x:if x = ? then fg

else fh�; �ijx = h�; `i ^ ` 2 Allocated(�)g

�

X

: Exn !

^

X = �

X

�

V

: Value !

^

V = �v:

8

>

>

>

>

>

<

>

>

>

>

>

:

if v = ? then h?

^

C

;?

^

D

;?

^

X

;?

^

X

i

else if v 2 Closure then h�

C

(v);?

^

D

;?

^

X

;?

^

X

i

else if v 2 Data then h?

^

C

; �

D

(v);?

^

X

;?

^

X

i

else if v 2 Exn then h?

^

C

;?

^

D

; �

X

(v);?

^

X

i

else if v 2 Exn then h?

^

C

;?

^

D

;?

^

X

; �

X

(v)i

�

S

: Store !

^

S = �s:�

^

`:

F

�

L

(`)v

^

`

�

V

(s(`))

�

E�S

: Env � Store !

^

S = �he; si:�

S

(s)

�

V�S

: Value � Store !

^

V �

^

S = �hv; si:h�

V

(v); �

S

(s)i

Figure 5: Abstraction functions for domains

to

^

` must have the e�ect of raising the location's value in its lattice; we cannot

overwrite the existing value at the location.

This accuracy deterioration is not avoidable but can be reduced, to some

extent. For example, instead of using a single abstract location for each allo-

cation site, we can use multiple abstract locations each of which represents an

exclusive subset of the locations allocated at that site. One technique is to use

the \abstract procedure string" [Har89] that classi�es the locations according to

the procedural movements (calls and returns) that they experience after their

births. Depending on the abstractions of locations, we can achieve the e�ects

of various cost-accuracy balances (such as \call/single", \dynamic/multiple" or

\single/multiple" granularities [HDCM93]). We chose not to use these tech-

niques because our exception analysis with our simple abstraction showed a

satisfying accuracy.

Our abstraction of locations eliminates the use of the environment (a map

from variables to locations) because only one abstract location is associated

with each variable. The elimination of environments immediately entails an

abstraction of closures. An abstract closure becomes a set of function de�nitions

without the environment component.

The abstractions for other domains are straightforward. See Figure 5.
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6.2 Abstract Evaluation

Abstract interpreter for the exception analysis is shown in Fig. 6. Notations:

f [y==x] = f [f(x)ty=x]. x:D selects D component of x. x for h?; � � � ; x;? � � �i in

proper contexts. x : D casts x 2 D

0

into D (only when D and D

0

are equivalent

except for names). jv̂j is identical to v̂ except for jv̂j:

^

X = ? (raised exception

component). For abstract locations we use the program's variable names (as-

suming that every variable is named uniquely). When an allocation site has

no variable (such as the datatype and exception construction expressions), we

choose a unique name for such sites.

Note that the abstract evaluation does not use the \letx" notation. That is,

when an exception is raised during a subcomputation, the remaining evaluation

is not aborted. Rather, the evaluation continues and its result, together with

the exceptions raised during subcomputations, is collected in the value of the

conclusion.

Consider the raise expression.

^

E [[(raise e)]] ŝ

0

= let hv̂

1

; ŝ

1

i =

^

E[[e]] ŝ

0

in hv̂

1

:

^

X t (v̂

1

:

^

X :

^

X); ŝ

1

i

We �rst evaluate the exception expression e. Any raised exception during this

evaluation is collected in v̂

1

:

^

X. By the current raise expression, the exception

values v̂

1

:

^

X are raised v̂

1

:

^

X :

^

X and are collected (joined) with the already

raised exceptions v̂

1

:

^

X.

Consider the handle expression.

^

E[[(handle e

1

x e

2

)]] ŝ

0

= let hv̂

1

; ŝ

1

i =

^

E [[e

1

]] ŝ

0

hv̂

2

; ŝ

2

i =

^

E [[e

2

]] ŝ

1

[(v̂

1

:

^

X :

^

X)==x]

in hjv̂

1

j t v̂

2

; ŝ

1

t ŝ

2

i

We �rst evaluate the expression e

1

. The handler needs to handle, if any, raised

exceptions v̂

1

:

^

X inside e

1

. With the store ŝ

1

[(v̂

1

:

^

X :

^

X)==x] that holds the

exceptions v̂

1

:

^

X :

^

X at x. we evaluate the second expression e

2

, which is usually

a case expression. The value in conclusion is either the value v̂

1

if expression

e

1

did not raise any exception or the value v̂

2

after the handling if expression

e

1

raised some exceptions. These two possibilities are accommodated by the

join operation jv̂

1

j t v̂

2

. We do not return the raised exceptions of v̂

1

because

they are considered inside the evaluation of e

2

. (Hence jv̂

1

j, not v̂

1

, in jv̂

1

j t v̂

2

.)

Note that if the handler patterns of e

2

is not complete enough to handle all

cases, the exceptions bound to x are re-raised,

10

hence is captured inside v̂

2

.

Consider the case expression.

^

E[[(case x of p

1

e

1

� � �p

n

e

n

)]] ŝ

0

=

F

1�i�n

^

E[[e

i

]] (ŝ

0

[Screen(ŝ

0

(x); fp

i

g; fp

1

; � � � ; p

i�1

g)==x])

10

Note that when an SML source program is translated into the intermediate language,

appropriate raise expressions are added for incomplete patterns { see discussions in Sect. 2.1.
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Semantic domains

ŝ 2

^

S =

^

L!

^

V abstract store

^

` 2

^

L = Ln

?

abstract location

v̂ 2

^

V =

^

C �

^

D �

^

X �

^

X abstract value

^

C = 2

Expr

abstract closure

^

D = 2

DataCon�Ln

abstract datatype value

^

X = 2

ExnCon�Ln

abstract exception value

^

X =

^

X abstract raised exception

� 2 Ln set of allocation sites

DataCon set of datatype constructors

ExnCon set of exception constructors

e 2 Expr set of expressions

Semantic function

^

E :Expr !

^

S !

^

V �

^

S is the least �xpoint �x

^

F of

^

F : (Expr !

^

S !

^

V �

^

S)! (Expr !

^

S !

^

V �

^

S)

^

F

^

E [[x]] ŝ

0

= hŝ

0

(x); ŝ

0

i

^

F

^

E [[(raise e)]] ŝ

0

= let hv̂

1

; ŝ

1

i =

^

E[[e]] ŝ

0

in hv̂

1

:

^

X t (v̂

1

:

^

X :

^

X); ŝ

1

i

^

F

^

E [[(handle e

1

x e

2

)]] ŝ

0

= let hv̂

1

; ŝ

1

i =

^

E[[e

1

]] ŝ

0

hv̂

2

; ŝ

2

i =

^

E[[e

2

]] ŝ

1

[(v̂

1

:

^

X :

^

X)==x]

in hjv̂

1

j t v̂

2

; ŝ

1

t ŝ

2

i

^

F

^

E [[(case x of p

1

e

1

� � �p

n

e

n

)]] ŝ

0

=

G

1�i�n

^

E [[e

i

]] (ŝ

0

[Screen(ŝ

0

(x); fp

i

g; fp

1

; � � � ; p

i�1

g)==x])

^

F

^

E [[(apply e

1

e

2

)]] ŝ

0

= let hv̂

1

; ŝ

1

i =

^

E[[e

1

]] ŝ

0

hv̂

2

; ŝ

2

i =

^

E[[e

1

]] ŝ

1

in hv̂

1

:

^

X t v̂

2

:

^

X; ŝ

1

t ŝ

2

i t

F

1�i�n

^

E [[e

0

i

]] ŝ

2

[jv̂

2

j==x

i

]

where v̂

1

:

^

C = f(fn x

1

e

0

1

); � � � ; (fn x

n

e

0

n

)g

^

F

^

E [[(fn x e)]] ŝ

0

= hf(fn x e)g; ŝ

0

i

^

F

^

E [[(fix f x e in e

0

)]] ŝ

0

=

^

E [[e

0

]] ŝ

0

[f(fn x e)g==f]

^

F

^

E [[(fconjexng � e)]] ŝ

0

= let hv̂

1

; ŝ

1

i =

^

E[[e]] ŝ

0

in hfh�; x

e

ig; ŝ

1

[v̂

1

==x

e

]i

^

F

^

E [[(decon e)]] ŝ

0

= let hv̂

1

; ŝ

1

i =

^

E[[e]] ŝ

0

in h

F

1�i�n

ŝ

1

(�

i

); ŝ

1

i

where v̂

1

:

^

D [ v̂

1

:

^

X = fh�

1

; �

1

i; � � � h�

n

; �

n

ig

Figure 6: Abstract Semantics for Exception Analysis
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We evaluate every branch of the case expression and collect the results. Inside

each branch e

i

, the value of x will be appropriately trimmed (by the Screen oper-

ation) according to the case patterns fp

1

; � � � ; p

i�1

g that appear in the previous

branches. The auxiliary operation

Screen(v̂; P;Q)

chooses among the data values v̂:

^

D and exceptions v̂:

^

X those that match with

a pattern in P but not with any pattern in Q.

Screen:

^

V � 2

Pattern

� 2

Pattern

!

^

V

Screen(v̂; P;Q) =

let screen = �hx; P i:fh�; �i 2 xj9p 2 P : �

match

= pg

in h ?

^

C

;

screen(v̂:

^

D;P )� screen(v̂:

^

D;Q);

screen(v̂:

^

X;P )� screen(v̂:

^

X;Q);

?

^

X

i

This auxiliary operation is used to sharpen our analysis as follows. When we

analyze a program, we carry an approximate store whose entry is a collection of

approximate values that a variable can have during execution. This collection

always denotes a superset of actual values. The larger the collection, the less

accurate the analysis becomes. In each branch of a case expression, blind use of

this collection may result in overly conservative (hence very inaccurate) analysis.

For example, suppose that the current abstract store ŝ has two exceptions

fE, Fg for x below.

(case x

E e

1

(raise x))

When we analyze the second branch (raise x) exception E should not be

considered for x, because this exception matches with the �rst pattern. This

trimming is achieved by the Screen operation:

Screen(ŝ(x); f_g; fEg)

6.2.1 Accuracy Concern: An Implementation Details

Even with the Screen operation, the rule for the case expression has no e�ect

on improving the analysis accuracy. This is because the Screen result does not

replace the existing value of x in the store. Instead, the result is joined with the

existing value of x (recall the notation: f [y==x] = f [y t f(x)=x]). We cannot

overwrite the existing value because an abstract location x represents multiple

concrete locations.

Therefore, even with the Screen operation the store value at x after

ŝ[Screen(� � �)==x]
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remains unchanged.

This problem is simply solved by using di�erent names for x inside each

branch. Each trimmed value of x for each branch e

i

is bound to a unique name,

say x

i

, instead of always to the same x. And every \x" inside each branch

e

i

is replaced by its unique name \x

i

". This replacement is straightforward

because the source was already alpha-converted when translated from SML.

For example,

(case x

of E (apply

(fn y

(case y

of NIL y

(raise x)))

(decon x))

(raise x)

)

becomes

=)

(case x

of E (apply

(fn y

(case y

of NIL y

1

(raise x

1

)))

(decon x

1

))

(raise x

2

)

)

Let e

0

i

be the result of such replacement for i-th branch e

i

in the case ex-

pression

(case x of p

1

e

1

� � �p

n

e

n

)

Then the new abstract evaluation rule for case expression becomes

G

1�i�n

^

E [[e

0

i

]] (ŝ

0

[Screen(ŝ

0

(x); fp

i

g; fp

1

; � � � ; p

i�1

g)==x

i

]):

6.3 Correctness of the Abstract Semantics

Theorem 1 For a given program e, its abstract semantics �x

^

F [[e]] can be com-

puted in a �nite time.

Proof. This fact immediately follows from that every operation used in the

abstract semantics of Figure 6 is monotonic and all the abstract domains where

the Expr is the set of expressions of the given program e are �nite. 2

Proving the soundness of the abstract semantics needs the following two

lemmas.

Lemma 1 All abstraction functions (Figure 5) are strict and continuous.

Proof. The strictness of �

L

, �

C

, �

D

, �

X

, �

X

, and �

V

is obvious from their

de�nitions. Store abstraction �

S

is strict because �

L

and �

V

are strict. �

E�S

and �

V�S

are strict because �

S

and �

V

are strict.

Similarly, it is trivial to see that every abstraction function is monotonic.

Continuity immediately follows from that every chain of concrete domains is of

�nite length. 2
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Lemma 2 For every store s, value v, and location `,

�(s[v=`]) v �(s)[�(v)==�(`)]:

Proof. Recall the store abstraction:

�

S

= �s:�

^

`:

G

�

L

(`)v

^

`

�

V

(s(`))

Thus,

�(s[v=`])(�(`)) =

F

�(`

0

)v�(`)

�(s[v=`](`

0

)) by de�nition of �

S

v �(v) t

F

�(`

0

)<�(`)

�(s(`

0

))

v �(v) t

F

�(`

0

)v�(`)

�(s(`

0

)) by monotonicity of �

= �(v) t �(s)(�(`)) by de�nition of �

S

= (�(s)[�(v)==�(`)])(�(`)) by de�nition of ==

On the other hand, for `

0

6= `,

�(s[v=`])(�(`

0

)) =

F

�(`

00

)v�(`

0

)

�(s[v=`](`

00

))

=

F

�(`

00

)v�(`

0

)

�(s(`

00

)) because `

0

6= `

= �(s)(�(`

0

))

v �(s)[�(v)==�(`)](�(`

0

)):

By the above two cases, �(s[v=`]) v �(s)[�(v)==�(`)]. 2

The soundness of the abstract semantics �x

^

F (in Figure 6) with respect to

the concrete semantics �xF (in Figure 4) is that for an arbitrary expression e

and input x 2 E � S the concrete evaluation result �xF [[e]]x must be implied

by its abstract correspondence �x

^

F [[e]] (�

E�S

(x)):

Theorem 2 For any expression e

�

V�S

� �xF [[e]] v �x

^

F [[e]] � �

E�S

:

Proof. We can prove by Cousot's inductive soundness proof method [CC92,

Proposition 4.3]. However, a very similar yet simpler proof method is applicable:

�xpoint induction [Sto77, page 213].

Let Q(f; g) be an assertion

Q(f; g) = 8expression e : �

Y

� f [[e]] v g[[e]] ��

X

:

Base case: Q(?;?) holds because all abstraction functions are strict (Lemma1).

Induction step: assuming that for continuous functions E and

^

E , Q(E ;

^

E)

holds we will show Q(F(E);

^

F(

^

E)) holds. Then, by the �xpoint induction, the

goal Q(�xF ; �x

^

F) holds.
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We will present the proof of the induction step for the raise, handle, and

case expressions. Proofs for other expressions can be done similarly. For ab-

stract functions, we will simply write � without its type subscript; from the

context, it is clear which domain abstraction � indicates. For easy reference, we

juxtapose the concrete and abstract interpretation rules separated by k.

� (raise e):

letx hv; s

1

i = E e h�; s

0

i

in hv; s

1

i

k

let hv̂

1

; ŝ

1

i =

^

E e ŝ

0

in hv̂

1

:

^

X t (v̂

1

:

^

X :

^

X); ŝ

1

i

By the induction hypothesis (Q(E ;

^

E)), �(hv; s

1

i) v hv̂

1

; ŝ

1

i. Thus, the

�nal abstract result

hv̂

1

:

^

X t (v̂

1

:

^

X :

^

X); ŝ

1

i

is consistent with the two possibilities of the concrete evaluation because

{ When v 2 Exn , �(hv; s

1

i) v hv̂

1

:

^

X; ŝ

1

i.

{ When v 2 Exn , �(hv; s

1

i) v hv̂

1

:

^

X :

^

X; ŝ

1

i.

� (handle e

1

x e

2

):

let hv; s

1

i = E e

1

h�; s

0

i

in if v = v

0

2 Exn

then E e

2

h�[`=x]; s

1

[v

0

=`]i

(new `)

else hv; s

1

i

k

let hv̂

1

; ŝ

1

i =

^

E e

1

ŝ

0

hv̂

2

; ŝ

2

i =

^

E e

2

ŝ

1

[(v̂

1

:

^

X :

^

X)==x]

in hjv̂

1

j t v̂

2

; ŝ

1

t ŝ

2

i

By the induction hypothesis Q(E ;

^

E), �(hv; s

1

i) v hv̂

1

; ŝ

1

i.

{ When v is not a raised exception, the concrete result hv; s

1

i is sub-

sumed by the abstract part hjv̂

1

j; ŝ

1

i.

{ On the other hand, when v = v

0

2 Exn ,

�(h�[`=x]; s

1

[v

0

=`]i) v �(s

1

)[�(v

0

)==x] by Lemma 2

v ŝ

1

[�(v

0

)==x] by monotonicity of ŝ

1

v ŝ

1

[(v̂

1

:

^

X :

^

X)==x] because �(v) v v̂

1

By Q(E ;

^

E) and by the monotonicity of

^

E ,

�(E e

2

h�[`=x]; s

1

[v

0

=`]i) v

^

E e

2

�(h�[`=x]; s

1

[v

0

=`]i)

v

^

E e

2

ŝ

1

[(v̂

1

:

^

X :

^

X)==x] = hv̂

2

; ŝ

2

i:

� (case x of p

1

e

1

� � �p

n

e

n

):
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E e

j

h�; s

0

i

(�

match

= p

j

where

h�; `i = s

0

(�(x)))

k

G

1�i�n

^

E e

i

(ŝ

0

[Screen(ŝ

0

(x); � � �)==x])

By the induction hypothesis Q(E ;

^

E),

�(E e

j

h�; s

0

i) v

^

E e

j

ŝ

0

v

^

E e

j

(ŝ

0

[Screen(� � �)==x]) because 8y : f v f [y==x]

v

F

1�i�n

^

E e

i

(ŝ

0

[Screen(� � �)==x])

� We will prove the case of Section 6.2.1 where we use distinct (subscripted)

x

i

's in each case branch. For (case x of p

1

e

1

� � �p

n

e

n

), e

0

i

is equiva-

lent to e

i

except that every \x" inside e

i

is replaced by \x

i

." Concrete

semantics is: before a selected branch e

j

is evaluated we allocate a new

location for x

j

and use this location inside e

0

j

.

E e

0

j

h�[`

0

=x

j

]; s

0

[v=`

0

]i

(new `

0

, v as h�; `i = s

0

(�(x)),

and �

match

= p

j

)

k

G

1�i�n

^

E e

0

i

(ŝ

0

[Screen(ŝ

0

(x); � � �)==x

i

])

Because �(s

0

) = ŝ

0

,

�(s

0

(�(x))

let

= v) v ŝ

0

(x)

let

= v̂:

Furthermore, because v matches with p

j

,

�(v) v Screen(v̂; fp

j

g; fp

1

; � � � ; p

j�1

g) (1)

Thus

�(s

0

[v=`

0

]) v ŝ

0

[�(v)==�(`

0

)] by Lemma 2

By (1) and monotonicity of ŝ

0

v ŝ

0

[Screen(v̂; fp

j

g; fp

1

; � � � ; p

j�1

g==x

j

] (2)

By the induction hypothesis Q(E ;

^

E),

�(E e

0

j

h�[`

0

=x

j

]; s

0

[v=`

0

]i) v

^

E e

0

j

�(h�[`

0

=x

j

]; s

0

[v=`

0

]i)

By (2) and monotonicity of

^

E

v

^

E e

0

j

(ŝ

0

[Screen(� � �)==x

j

])

v

F

1�i�n

^

E e

0

i

(ŝ

0

[Screen(� � �)==x

i

]):

2
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7 Implementing the Analysis by Z1

Our analysis has been implemented by Z1 [YH93, Yi93].

The input to Z1 is a speci�cation of the abstract interpreter of Figure 6.

Neither the standard semantics nor the concrete semantics are processed by Z1.

These non-abstract semantics are only necessary for us to derive a safe abstract

interpreter.

An abstract interpreter speci�cation in Z1 consists of three parts: lattice

and set de�nitions (for abstract domains), auxiliary function de�nitions, and

the main interpreter de�nition. The abstract domains (

^

S;

^

L;

^

V , and etc.) of the

exception analysis are exactly de�ned as lattices in Z1. For example,

(lattice S (-> L V)) for

^

S =

^

L!

^

V

(lattice L (flat Ln)) for

^

L = Ln

?

(lattice V (* C D X R)) for

^

V =

^

C �

^

D �

^

X �

^

X

� � �

(set Ln (index numIds)) for Ln = fi 2 Zj0 � i � numIds()g

de�nes the three abstract domains. Note that, in the de�nition of set Ln, numIds

is a procedure that is implemented by us to return the number of allocation sites

of an input program. Over these lattices and sets, the abstract interpreter

^

F is

speci�ed.

The output from Z1 is a C program that becomes an executable analyzer

when linked with the target language

11

parser and syntax-tree interface proce-

dures. This parser and the interface procedures must be implemented in C by

us.

The speci�cation of our abstract interpreter has 426 lines. Generated C code

has 6965 lines. The executable size is 427 Kbytes.

The generated analyzer computes a collecting analysis of an input program.

The collecting analyzer computes, for each program point of the input program,

an abstract state that characterizes the run-time states that can occur at that

point during execution. In Z1 a program state is a pair of the pre-state and the

post-state, and the program points are the nodes of the program's abstract syn-

tax tree. As an example, for a function application expression \(apply e

1

e

2

)"

the pre-state at the program point (apply � � �) is the program state immedi-

ately before the beginning of the application. The post-state is the state after

the completion of the application.

Z1's derivation of a collecting analysis from an abstract interpreter functional

^

F is straightforward. Note that an abstract interpreter is a function that de�nes,

for each language construct, its evaluation rule: a state transformer from a pre-

state to a post-state. In our case, the abstract interpreter

^

E has therefore the

11

The target language is the language in which the programs to analyze are written. In our

case, the intermediate language in Section 2.
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following type

^

E : �!

^

S !

^

V �

^

S

where � is the set of program points, and

^

S (abstract store) is the lattice of pre-

states,

^

V �

^

S (pair of abstract value and store) is the lattice of post-states. This

^

E function, which is usually recursively de�ned, is embedded in its associated

functional

^

F :

^

F = �

^

E :�e:�ŝ

0

: case e of

(raise e

0

): � � �

^

E(e

0

; ŝ

0

) � � �

(handle e

1

x e

2

): � � �

^

E(e

1

; ŝ

0

) � � �

� � �

This abstract interpreter functional

^

F , an input program P (actually, P 's

set of program points �

P

), and the initial pre-state ŝ

0

that is valid at the P 's

start point, are three inputs to the collecting analysis computation

Tabulate(

^

F ;�

P

; ŝ

0

): (see Figure 7)

The analysis results (two tables T

X

and T

Y

) have, for each program point p, a

pre-state T

X

(p) 2

^

S and a post-state T

Y

(p) 2

^

V �

^

S that characterize run-time

states that occur before and after that point during execution. The safeness of

this collecting analysis algorithm is proven in [CHY95]. Note that the �xpoint

algorithm is one that can be used only if the lattices are �nite and the functions

are monotonic. The monotonicity of

^

F in Figure 6 is straightforward to show.

Our collecting analyzer uses the same idea as minimal function graph [JM86]

or collecting interpretation [HY88]. It iterates, given an initial state valid at the

program's start point, until all reachable states are computed for each program

point. At each iteration, the algorithm computes, for each program point, a new

state value reachable from the state values computed by the previous iteration.

Note that our method is not the denotational approach [Bur87, BHA85, Nie82],

where the table of the program's semantic function is computed across the entire

argument spaces.

Figure 7 presents a simpli�ed version of our collecting analysis algorithm. In

reality, Z1 uses a worklist algorithm that invokes

^

F only for a subset of program

points whose T

X

and T

Y

entries were changed by the previous iteration. The

�xpoint computation performance may vary, depending on the order in which

elements are selected from the worklist. Z1 uses the heuristics in [CH93] for the

selection order, which is guided by the structure of the dependence graph (an

expression e

1

depends on another expression e

2

if the evaluation of e

1

requires

that of e

2

) in order to approximate the optimal order of selecting an element from

the worklist. (Similar �xpoint algorithms are reported in [CDMH93, J�r93]. Our

algorithm may be seen as a mixture of the top-down and bottom-up �xpoint

algorithms [CH92].) The reader may refer to [CHY95, CH93] for the complete

algorithm and the proof of its correctness.
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eval (p: �; x:X):Y

begin

if x 6v T

X

(p) then

T

X

(p) = T

X

(p) t x; /* join the pre-state */

return T

Y

(p);

end

Tabulate(F : (�! X ! Y )! �! X ! Y; �

P

: 2

�

; x

0

:X): void

T

X

; T

0

X

: �

P

! X; /* pgm point to pre-state */

T

Y

; T

0

Y

: �

P

! Y ; /* pgm point to post-state */

begin

8p 2 �

P

: T

X

(p) = ?

X

; T

Y

(p) = ?

Y

;

T

X

(p

0

) = x

0

; /* pre-state at the pgm's entry point */

repeat

hT

0

X

; T

0

Y

i = hT

X

; T

Y

i; /* remember the previous iteration */

foreach p 2 �

P

/* for each pgm point */

T

Y

(p) = F (eval ; p; T

X

(p)); /* compute the post-state */

until (T

X

v T

0

X

) ^ (T

Y

v T

0

Y

) /* repeat until stable */

end

In the exception analysis, F is

^

F , eval is

^

E , X is

^

S, and Y is

^

V �

^

S of the

abstract semantics in Figure 6.

Figure 7: A primitive algorithm to compute collecting analysis from an abstract

interpreter functional F
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7.1 Analysis Snapshots

Some snapshots of our analysis of the last example in Section 1.3 are shown in

the following table. For convenience, the program is shown here again:

exception ERROR of int list

exception EXIT of int list

fun f(n, x, y) =

if n<0 then raise (x [n]) (1)

else if n=0 then raise (y nil) (2)

else n

fun g(m, x, y) =

f(m, x, y) (3)

handle ERROR [n] => g(n, y, x) (4)

| EXIT nil => 0 (5)

fun main(c) = g(c, ERROR, EXIT)

The following table shows the raised exception and the store at the point

right after the call f(m,x,y) at line (3). The column \non �xpoint" shows the

case when f is initially called. It shows exception hERROR,`i and hEXIT,`

0

i are

raised, whose arguments (at locations ` and `

0

) have constructors CONS

12

and NIL,

respectively. Location ` (respectively `

0

) is the one allocated for \[n]" (resp.

\nil") in line (1) (resp. line (2)). After the multiple calls to f (by recursive

call to g at line (4)), raised exceptions ERROR and EXIT have both CONS and NIL

as their arguments. Among these exceptions, hERROR,`

0

i and hEXIT,`g escape the

handler, which our analysis detects.

non �xpoint �xpoint

v̂:

^

X fhERROR; `i; hEXIT; `

0

ig fhERROR; `i; hERROR; `

0

i; hEXIT; `i; hEXIT; `

0

ig

ŝ (x) f�x:(exn ERROR x)g f�x:(exn ERROR x); �x:(exn EXIT x)g

ŝ (y) f�x:(exn EXIT x)g f�x:(exn ERROR x); �x:(exn EXIT x)g

ŝ (`) fhCONS,�ig fhCONS,�ig

ŝ (`

0

) fhNIL,?ig fhNIL,?ig

8 Discussion

8.1 Semantic Sparse Analysis

We need a sparse analysis technique for reducing our analysis cost. It seems

wasteful to trace all expressions of the input program, because only a small

subset of the expressions may generate the exception behavior (creating, raising

and handling). In conventional data 
ow analysis framework, many techniques

[DRZ92, CCF91, CFR

+

89, DGS94] have been developed. However, these meth-

ods are problematic for \higher-order" languages like SML, because the SML

program's 
ow graph, which is a prerequisite of the conventional methods, is

not available prior to the analysis.

12

List constructor name.
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We will informally outline a semantics-based sparse analysis technique for

the exception analysis. We will discuss at the level of the concrete semantics.

Deriving an abstract correspondence will be straightforward. This sparse anal-

ysis technique is not implemented for our analysis. A similar idea was discussed

in [Har89] for interprocedural dependence analysis of Scheme programs.

Proposition 1 Before we evaluate an expression, we can conservatively decide

whether the evaluation will have the exception behavior or not, by examining the

expression text with respect to the current environment and the store.

Before we evaluate an expression e

E e h�; si

we can collect all values that might be used during this evaluation. These values

consist of those that are \reachable" from the free variables FV (e) of e. This

reachable set R is constructed as follows. First, it is initialized with the values

fs(�(x))jx 2 FV (e)g of the free variables of e. For each closure value he

0

; �

0

i in

R, we add to R the values fs(�

0

(x

0

))jx

0

2 FV (e

0

)g of the closure's free variables,

and so on. The �nal, transitively closed set R will contain the reachable values

during the evaluation of e. This process of constructing the R set is analogous

to the mark phase of the garbage collection. The root set of our case is the free

variables of the expression e.

Conservative conditions under which the evaluation \E e h�; si" may cause

exception behavior are as follows: (We consider, for simplicity, that the expres-

sion e is also included in R as a closure he; �i.)

� When there exists a closure in R whose body has a raise, handle or exn

expression.

� When there is an expression that receives a exception value, manipulates

it and returns it, without raising, handling nor creating a new exception.

That is, when there exists a closure in R whose type has the exception

type or a polymorphic type. Note that the intermediate expression can

have the type information imported from the type inference phase (of the

SML/NJ compiler) for its SML source.

� When the current expression e occurs during the computation of an excep-

tion argument (like in \(exn E e)"). This is because our analysis must

take the exception arguments into account during the handler matches.

When we evaluate an expression, we check the above conditions. If any one

of the conditions holds, we evaluate the expression. Otherwise, we skip the

evaluation. This method will reduce the analysis cost, assuming that the time

spent computing R is less than the time spent evaluating unnecessarily many

expressions.
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The computation cost of R for every expression may o�set the gain we

expect. In this case, we may apply the sparse evaluation rule only for, say, the

function applications.

8.2 Conclusion

We have presented a static analysis that detects exceptions that are raised

and never handled inside Standard ML programs. This analysis improves soft-

ware safety by predicting, before program execution, the abnormal termination

caused by potentially unhandled exceptions.

The analysis is speci�ed as a �nite, abstract semantics of an intermediate

language. From this semantics, an executable collecting analyzer is derived.

This derivation is done by a tool called Z1 [YH93, Yi93]. The generated analyzer

was used to analyze SML/NJ Libraries, ML-YACC and ML-LEX programs.

The intermediate language is de�ned such that the mechanism of SML's

exception propagation becomes explicit in its text. For example, every handler

expression is augmented with a raise expression that will re-raise the exceptions

that are not caught by the handler patterns.

Our analysis is limited to SML programs that are type-correct and are opera-

tionally invariant even if the generative nature of SML's data-type and exception

declarations is not considered.
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