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Abstract Interpretation

A powerful framework for designing correct static analysis
e “framework”: correct static analysis comes out, reusable

o “powerful”: all static analyses are understood in this
framework

@ “simple”: prescription is simple

@ ‘“eye-opening’”: any static analysis is an abstract interpretation
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Why Abstraction?

@ without abstraction, can't capture all possible executions

@ without abstraction, can't terminate

Abstraction is not omission
o reality: {2,4,6,8,---}
@ “even number” (abstraction) vs “multiple of 4" (omission)
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Abstract Interpration Framework

real execution [C] = fizF € D
abstract execution [C] = lim;en Fi ‘(Lp) € D
correctness IC] =~ [C]
implementation computation of [C]

The framework requires:
e a relation between D and D o A
@ a relation between '€ D — Dand F € D — D
The framework guarantees:
o correctness: [C] ~ [C]

e implmentation: computation of [C]
e freedom: any such F and D are fine

~
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Static Analysis Design: step 1

Define the input program'’s real executions(concrete semantics)
@ Define semantic domain CPO D.

@ Define the real executions as the least fixed point fiz F' of
continuous function F € D — D

fixF = | | F{(Lp)

1€EN

Plan: define an abstraction that captures ﬁa:F‘
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Static Analysis Design: step 2

Define the input program’s abstract semantics
o Define abstract domain CPO D.
o Establish a Galois connection between D and D
o Define an abstract semantic function /' € D — D
o F' must be monotonic or extensive

Plan: define an abstraction that captures fix F' by using F
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Requirement 1: about D in relation with D

D must be Galois-connected with D

D%ﬁ

@ Galois connection:
VeeD,ieD:alx)C i<z ()

@ Galois connection captures our intention:
e bigger elements in D means more.
e « abstracts .
@ -y concretizes.

Plan: static analysis is computing an upper bound of | |, Fi(l)
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Requirement 2: about F

e F' must be monotonic:
Ve,ye D:xzCy= F(z)C F(y)

or extensive:
VeeD:xC F(x).

Plan: static analysis is computing an upper bound of | |, Fi(1)
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A

Requirement 3: F' in relation with F'

e Concrete semantic ftn F and its abstract version F' must

satisfy
aoFFEFoq, ie, FoyL~yoF
or,
e Concrete semantic ftn F and its abstract version F' must
satisfy

a(f)Tf = a(Ff)CES

Plan: static analysis is computing an upper bound of | |, F’(j_)
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Then: a Correct Static Analysis

static analysis = computing an upper bound of | |, F’(J:)

@ Such an upper bound A is correct:

a(fitF)E A, thatis,
fitF C~vA

Theorem([fixpoint-transfer]

@ Analysis result A subsumes the real executions fixF
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How to Compute an Upper Bound of | |,y F/(L)

o If abstract semantic domain D's height is finite then, we can
directly compute
| | Fi(L).
€N
The computation always terminates.

o Otherwise, we compute a finite chain {X;}; such that

|J(F'(1)) C lim(X,).

/€N
ieN ‘
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Searching for Finite Chain {X,}]

Finite chain {)A(z}l such that

L] (7' (1) E lim(X,)
1eN

e If F' is monotonic, a chain by an widening operator v/:

/\
N A~

1
X; if F(X;)C X;
Xiv

O.W.

2+1 -

Kwangkeun Yi Abstract Interpretation



Conditions on Widening v/

Conditions

oVa,beD:(aCayb) A (bCavb)

@ Vincreasing chain{a;}; : chainzg = ag, zi+1 = ;57 a;+1is finite
Then

o {X;}; is a finite chain.

o lts limit(X) such that F'(X) C X is correct:

L] (7' (1) E lim(X,).
€N

Theorem|widen's safety]
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Refining the Widening Result

If I is monotonic,

o We can refine the widened result A = lim;en(X;) by a
narrowing operator A.

e Compute chain {Y;};

N

Vo = A
Yipr = Y
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Conditions on Narrowing A

Conditions

° Va,bef):agbéag(aAb)gb

@ Vdecreasing chain{a;}; : chainyg = ao, yi+1 = yiDa;y1is finite
Then

o {V;}; is a finite chain.

A~

o lts limit lim;en(Y;) is still correct:

[ (7' (1) E lim(¥).
€N

Theorem[narrow's safety|
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Why Above Prescription Is Correct? (1/2)

Fixpoint Transfer Theorem
Theorem (fixpoint transfer)

Let gPOs D and D are Galois-connected. Function F : D — D is continuous.
F: D — D is either monotonic or extensive. EitheraoFFC FoaorafLC f
implies o(F f) T F' f. Then,

a(fizF) C |_| Fi(L).

i€EN
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Why Above Prescription Is Correct? (2/2)

Widening/Narrowing Theorems
Theorem (widen's safety)

Let ]*i‘ : IA)AH DAbe monotonic over CPO D. Let widening operator
V : D x D — D satisfies the widending conditions. Then the widened chain
{Xi}: is finite and its limit satisfies lim;en X; 3 | |, F7(L).

Theorem (narrow’s safety)

Let F': D — D be monotonic over CPO D. Let narrowing operator
A : D x D — D satisfies the narrowng conditions. If F/(A) C A then the
narrowed chain {Y;}; is finite and its limit satisfies lim;en Y; 3 | ;o F*(L).

v
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Abstract Interpretation Example

(or, a Special Abstract Interpretation Framework)
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Semantics as Trace

Program C’s semantics [C] is the set of all execution traces

[[0]] c 2Tmce

T, 7071 Tn € Trace = State*
State = Command X Memory X - -
Side:
Trace = State” v.s. State*
liveness analysis safety analysis
prop. after infinite traces prop. within finite traces
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% ~
gTrace ——— Trgee
«

2% Trace of set of states: sequence of set of states appearing at a

given time along at least one of the traces

ap(X) =N | 1€ X,0<i<|r]} € Trace = N5 5tate

“1% Set of reachable states (global invariant): set of states
appearing at least once along a trace
a1 (Y) = J{Y(i) | i € DomY} € Trace = 25"
“2°2°% Partitioned set of reachable states (local invariant): e.g.,

project along each control point € A (a finite set)
@2(Z) = Ae{si | (ci,8:) € Zye; =ce A} € Trace = A — 25tte
8OO0 Apstracting the partitioned set of reachable states

a3(®) = he.a(®¢) € Trace = A — State

where
oState —— Grate
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Trace Abstract Interpretation’s Correctness Condition

fir(F 2 XT.TyU Next T) and  fiz(F = \T.o(Tp) U Next T))
where
F g Trace _, oTrace  qnd  F € Trace — Trace.

To show is a(fiz F') C ﬁxF, ie, aoF L Foa.
A sufficient condition, if Trace and Trace are Ll-closed, is:

o o Next C Next o a.

(easy to see, by Galois-connection.)
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A Sufficient Condition for a o Neat T Next o v (1/4)

Focus on: ,
9State h— (A — State)

that is,

@ program'’s all executions = the collection of all the machine
states occuring during the executions

[[C]] e 2State

@ program'’s abstract semantics = partition and abstract the
collection: R
[C] € A — State

e A: a finite set of partinitiong indices
e e.g.) A = the set of program points
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For f € A — B,
o pf €24 =28 is (pf)X = {fx |z € X}.
o Abusely, pf € (A — A) — 2B is
()X ={fz |z € rangeX}.
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A Sufficient Condition for a o Neat T Next o v (2/4)

The Galois-connection

oState % (A — State)
a = (pay)om.

@ « abstracts sets of states into abstract states:

oState *i State.

v
al

@ 7 and 7 are partition functions:

T c QState_)QQSt‘”e
i QSt;zte_)(AHQSt;zte)
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A Sufficient Condition for a o Neat T Next o v (3/4)

Define

Next = pnext g 9State _, 9State
Neat = (pU) ot oUo (pnext) € (A — State) — (A — State)

where

@ concrete transition next:
next € State — State

(transitions terminal state into itself)
@ abstract transition next:

next € State —s 25tate

(may transition one abstract state into multiple abstract states)
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A Sufficient Condition for a o Neat T Next o o (4/4)

Theorem (Correctness)

Let Next and Next be:

Next = pnext ¢ 9State _, oState

Next = (pU) ot o U o (pnext) € (A — State) — (A — State)

If the below two conditions hold then o o Next T Next o .

1. Condition on abstract partitioning(T ):

(par)omoUo (py) C (pU) o7 (1)

2. Condition on abstract transition(net ):

next x € (Uo (py) o next o ay) {x} (2)1
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Notation
o e X —»2Xis Tz ={z}.
o For fe A— B, pf €24 =28 is (pf)X = {fz |z € X}.
o Abusely, pf € (A — A) — 2B is

(/)X ={fz |z € rangeX}.
o For fe A—2B o f =Uopf.

Facts

o pu(fog)=(puf)o°(pg)

o pu(puf) o (pg) = (puf) ° (Pug)-
o Forz € A, X €24, fa € gx implies (pf)X C (pug)X.
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Proof. First, from condition (2) the following holds:

pnext C (puy) o (puneat) o (3)
Because,
pnext T pu((puy) o néx}f oaio ) (cond. (2), (fz € gz then (pf)X C (pug)-

= pulpuy) o p(nest o aro 1) (pu(f o g) = (puf) o (09))
= (pu7) o (puneat) o (par) o (p 1) (pulpuf) o (pg) = (puf) © (9u9))
C (puy)o (p une:rt) (pay)om (7, neat, o are all monotonic)
= (pu7) o (punext) o .

Therefore,

ao Next = (pai)omo (pnext)

(pa1) o m o (puy) o (puneat) o a (cond. (3))
(pU)) o 7 o (punext) o (cond. (1))

I 1m

= Neztoa.

That is, from condition (1) and condition (2), a o Next C Next o«
holds. Hence by the Fixpoint Transfer Theorem,

a(fir(\T. Ty U Next T)) C fix(AT.o(Ty) U Next T).

O
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Trace Abstract Interpreation’s Algorithm (1/4)

Static analysis is to compute [C], which is
fiz(F 2 XT".a(Ty) U Neat T))

where

F € Trace — Trace

Trace = A — State

Next = (pU) o7 o (punéxt)
nést € State — 25tate,

Computing ﬁzﬁ is to compute Y; until no change:
Yo = a(Ty), Y1 = a(Tp) U Next(Yy,)

Hence,

T,7: A — St:zte;

begin
T:=T := a(To);
repeat
T =T,

T = a(To) U ((pU) o #)(U,ca nezt T[i]);
until 7" C 7”; (* no more increase *)
return 7T7;
end

Figure: Naive algorithm
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Trace Abstract Interpreation’s Algorithm

When widening(57) and narrowing(/\) are necessary, we compute
the folloing two things in sequence:

Y() = «
Widen(F) = limjen< o ]
Yipn = o

|
3

N . o
N = lim; N . I
arrow (1) imjen { T = 7B

Hence,

T,T'.Y: A — State;

begin
T:=T :=a(Ty);
repeat
o

T =T,
To) U ((pu) 0 7) (U p mext T(i)):

T:=if Y CT' then T else 7'y Y;
until 7 C 7”; (* no more increase *)

repeat

T:=T
T A=a(To) U ((pU) 0 7)(U,ea neat T[]);
until 7' C 7"; (* no more decrease *)
return T';
end

Figure: Naive algorithm with widening and narrowing
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Trace Abstract Interpreation’s Algorithm (3/4)

Worklist method:

o wasteful at each iteration to compute
U next T[]
€A

for every index in A.
@ enough to compute those affected from the previous iteration

T,T': A — State;
W: 2%; (* worklist *)

begin
T:=T :=a(ly); W:=A;
repeat

T 1= a(To) U ((91) 0 7)(Useuy nést Tl
W= {ic A|THE Z Tl
until W = {}; (* no more increase *)
return T';
end

Figure: Worklist algorithm
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Trace Abstract Interpreation’s Algorithm (4/4)

T,T.Y: A — State;
W 2%; (* worklist *)

begin
T:=T :=aTo); W:=A;
repeat

T =T,
Y = a(Th) U ((pU) © 7) (U, néot T
T:=if YCT then T else T'VY;
W:={iecA|THEZT[}

until W = {}; (* no more increase *)

W= A;

repeat
T:=T
T A= o(To) U ((pU) o 7) (U, ey neat TA);
W={iec A|T[ZTT}

until W = {}; (¥ no more decrease *)

return 7T,

end

Figure: Worklist algorithm with widening and narrowing
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