
Static Analysis Design Framework:
Abstract Interpration

Kwangkeun Yi

Seoul National University, Korea
http://ropas.snu.ac.kr/~kwang

2/26/2012 – 3/2/2012
17th Estonian Winter School in Computer Science, Palmse,

Estonia

Kwangkeun Yi Abstract Interpretation

Abstract Interpretation

A powerful framework for designing correct static analysis

“framework”: correct static analysis comes out, reusable

“powerful”: all static analyses are understood in this
framework

“simple”: prescription is simple

“eye-opening”: any static analysis is an abstract interpretation

Kwangkeun Yi Abstract Interpretation

Why Abstraction?

without abstraction, can’t capture all possible executions

without abstraction, can’t terminate

Abstraction is not omission

reality: {2, 4, 6, 8, · · · }
“even number”(abstraction) vs “multiple of 4”(omission)

Kwangkeun Yi Abstract Interpretation

Abstract Interpration Framework

real execution [[C]] = fixF ∈ D

abstract execution ˆ[[C]] = limi∈N F̂ i(⊥D̂) ∈ D̂

correctness [[C]] ≈ ˆ[[C]]
implementation computation of ˆ[[C]]

The framework requires:

a relation between D and D̂
a relation between F ∈ D → D and F̂ ∈ D̂ → D̂

The framework guarantees:

correctness: [[C]] ≈ ˆ[[C]]
implmentation: computation of ˆ[[C]]
freedom: any such F̂ and D̂ are fine

Kwangkeun Yi Abstract Interpretation

Static Analysis Design: step 1

Define the input program’s real executions(concrete semantics)

Define semantic domain CPO D.

Define the real executions as the least fixed point fixF of
continuous function F ∈ D → D

fixF =
⊔
i∈N

F i(⊥D)

Plan: define an abstraction that captures fixF

Kwangkeun Yi Abstract Interpretation

Static Analysis Design: step 2

Define the input program’s abstract semantics

Define abstract domain CPO D̂.

Establish a Galois connection between D and D̂

Define an abstract semantic function F̂ ∈ D̂ → D̂

F̂ must be monotonic or extensive

Plan: define an abstraction that captures fixF by using F̂

Kwangkeun Yi Abstract Interpretation

Requirement 1: about D̂ in relation with D

D̂ must be Galois-connected with D

D −→←−α
γ

D̂.

Galois connection:

∀x ∈ D, x̂ ∈ D̂ : α(x) v x̂⇐⇒ x v γ(x̂).

Galois connection captures our intention:

bigger elements in D̂ means more.
α abstracts .
γ concretizes.

Plan: static analysis is computing an upper bound of
⊔

i∈N F̂ i(⊥̂)

Kwangkeun Yi Abstract Interpretation

Requirement 2: about F̂

F̂ must be monotonic:

∀x, y ∈ D̂ : x v y ⇒ F̂ (x) v F̂ (y)

or extensive:
∀x ∈ D̂ : x v F̂ (x).

Plan: static analysis is computing an upper bound of
⊔

i∈N F̂ i(⊥̂)

Kwangkeun Yi Abstract Interpretation

Requirement 3: F̂ in relation with F

Concrete semantic ftn F and its abstract version F̂ must
satisfy

α ◦ F v F̂ ◦ α, i.e., F ◦ γ v γ ◦ F̂

or,

Concrete semantic ftn F and its abstract version F̂ must
satisfy

α(f) v f̂ ⇒ α(F f) v F̂ f̂

Plan: static analysis is computing an upper bound of
⊔

i∈N F̂ i(⊥̂)

Kwangkeun Yi Abstract Interpretation

Then: a Correct Static Analysis

static analysis = computing an upper bound of
⊔

i∈N F̂ i(⊥̂).

Such an upper bound Â is correct:

α(fixF) v Â, that is,

fixF v γÂ

Theorem[fixpoint-transfer]

Analysis result Â subsumes the real executions fixF

Kwangkeun Yi Abstract Interpretation

How to Compute an Upper Bound of
⊔

i∈N F̂ i(⊥̂)

If abstract semantic domain D̂’s height is finite then, we can
directly compute ⊔

i∈N
F̂ i(⊥̂).

The computation always terminates.

Otherwise, we compute a finite chain {X̂i}i such that⊔
i∈N

(F̂ i(⊥̂)) v lim
i∈N

(X̂i).

Kwangkeun Yi Abstract Interpretation

Searching for Finite Chain {X̂i}i

Finite chain {X̂i}i such that⊔
i∈N

(F̂ i(⊥̂)) v lim
i∈N

(X̂i)

If F̂ is monotonic, a chain by an widening operator 5:

X̂0 = ⊥̂

X̂i+1 =
{

X̂i if F̂ (X̂i) v X̂i

X̂i 5 F̂ (X̂i) o.w.

Kwangkeun Yi Abstract Interpretation

Conditions on Widening 5

Conditions

∀a, b ∈ D̂ : (a v a5 b) ∧ (b v a5 b)
∀increasing chain{ai}i : chainx0 = a0, xi+1 = xi5ai+1is finite

Then

{X̂i}i is a finite chain.

Its limit(X̂) such that F̂ (X̂) v X̂ is correct:⊔
i∈N

(F̂ i(⊥̂)) v lim
i∈N

(X̂i).

Theorem[widen’s safety]

Kwangkeun Yi Abstract Interpretation

Refining the Widening Result

If F̂ is monotonic,

We can refine the widened result Â let= limi∈N(X̂i) by a
narrowing operator 4.

Compute chain {Ŷi}i

Ŷ0 = Â
Ŷi+1 = Ŷi 4 F̂ (Ŷi)

Kwangkeun Yi Abstract Interpretation

Conditions on Narrowing 4

Conditions

∀a, b ∈ D̂ : a w b⇒ a w (a4 b) w b

∀decreasing chain{ai}i : chainy0 = a0, yi+1 = yi4ai+1 is finite

Then

{Ŷi}i is a finite chain.

Its limit limi∈N(Ŷi) is still correct:⊔
i∈N

(F̂ i(⊥̂)) v lim
i∈N

(Ŷi).

Theorem[narrow’s safety]

Kwangkeun Yi Abstract Interpretation

Why Above Prescription Is Correct? (1/2)

Fixpoint Transfer Theorem

Theorem (fixpoint transfer)

Let CPOs D and D̂ are Galois-connected. Function F : D → D is continuous.
F̂ : D̂ → D̂ is either monotonic or extensive. Either α ◦ F v F̂ ◦ α or α f v f̂
implies α(F f) v F̂ f̂ . Then,

α(fixF) v
G
i∈N

F̂ i(⊥̂).

Kwangkeun Yi Abstract Interpretation

Why Above Prescription Is Correct? (2/2)

Widening/Narrowing Theorems

Theorem (widen’s safety)

Let F̂ : D̂ → D̂ be monotonic over CPO D̂. Let widening operator
5 : D̂ × D̂ → D̂ satisfies the widending conditions. Then the widened chain
{X̂i}i is finite and its limit satisfies limi∈N X̂i w

F
i∈N F̂ i(⊥̂).

Theorem (narrow’s safety)

Let F̂ : D̂ → D̂ be monotonic over CPO D̂. Let narrowing operator
4 : D̂ × D̂ → D̂ satisfies the narrowng conditions. If F̂ (Â) v Â then the
narrowed chain {Ŷi}i is finite and its limit satisfies limi∈N Ŷi w

F
i∈N F̂ i(⊥̂).

Kwangkeun Yi Abstract Interpretation

Abstract Interpretation Example
(or, a Special Abstract Interpretation Framework)

Kwangkeun Yi Abstract Interpretation

Semantics as Trace

Program C’s semantics [[C]] is the set of all execution traces

[[C]] ∈ 2Trace

τ, τ0τ1 · · · τn ∈ Trace = State∗

State = Command ×Memory × · · ·

Side:

Trace = Stateω v.s. State∗

liveness analysis safety analysis
prop. after infinite traces prop. within finite traces

Kwangkeun Yi Abstract Interpretation

2Trace −→←−α
γ ˆTrace

α0→ Trace of set of states: sequence of set of states appearing at a
given time along at least one of the traces

α0(X) = λi.{τi | τ ∈ X, 0 ≤ i < |τ |} ∈ ˆTrace = N fin→ 2State

α1◦α0→ Set of reachable states (global invariant): set of states
appearing at least once along a trace

α1(Y) =
⋃
{Y (i) | i ∈ Dom Y } ∈ ˆTrace = 2State

α2◦α1◦α0→ Partitioned set of reachable states (local invariant): e.g.,
project along each control point ∈ ∆ (a finite set)

α2(Z) = λc.{si | 〈ci, si〉 ∈ Z, ci = c ∈ ∆} ∈ ˆTrace = ∆→ 2State

α3◦α2◦α1◦α0→ Abstracting the partitioned set of reachable states

α3(Φ) = λc.α(Φ c) ∈ ˆTrace = ∆→ ˆState

where
2State −→←− ˆState

Kwangkeun Yi Abstract Interpretation

Trace Abstract Interpretation’s Correctness Condition

fix (F let= λT.T0 ∪Next T) and fix (F̂ let= λT̂ .α(T0) t ˆNext T̂)

where

F ∈ 2Trace → 2Trace and F̂ ∈ ˆTrace → ˆTrace.

To show is α(fixF) v fix F̂ , i.e., α ◦ F v F̂ ◦ α.
A sufficient condition, if Trace and ˆTrace are t-closed, is:

α ◦Next v ˆNext ◦ α.

(easy to see, by Galois-connection.)

Kwangkeun Yi Abstract Interpretation

A Sufficient Condition for α ◦ Next v ˆNext ◦ α (1/4)

Focus on:
2State −→←−α

γ
(∆→ ˆState)

that is,

program’s all executions = the collection of all the machine
states occuring during the executions

[[C]] ∈ 2State

program’s abstract semantics = partition and abstract the
collection:

ˆ[[C]] ∈ ∆→ ˆState

∆: a finite set of partinitiong indices
e.g.) ∆ = the set of program points

Kwangkeun Yi Abstract Interpretation

Notation ℘f

For f ∈ A→ B,

℘f ∈ 2A → 2B is (℘f)X = {fx | x ∈ X}.
Abusely, ℘f ∈ (∆→ A)→ 2B is
(℘f)X = {fx | x ∈ rangeX}.

Kwangkeun Yi Abstract Interpretation

A Sufficient Condition for α ◦ Next v ˆNext ◦ α (2/4)

The Galois-connection

2State −→←−α
γ

(∆→ ˆState)

is
α = (℘α1) ◦ π.

α1 abstracts sets of states into abstract states:

2State −→←−α1

γ1 ˆState.

π and π̂ are partition functions:

π ∈ 2State → 22State

π̂ ∈ 2 ˆState → (∆→ 2 ˆState)

Kwangkeun Yi Abstract Interpretation

A Sufficient Condition for α ◦ Next v ˆNext ◦ α (3/4)

Define

Next = ℘next ∈ 2State → 2State

ˆNext = (℘t) ◦ π̂ ◦ ∪ ◦ (℘ ˆnext) ∈ (∆→ ˆState)→ (∆→ ˆState)

where

concrete transition next :

next ∈ State → State

(transitions terminal state into itself)

abstract transition ˆnext :

ˆnext ∈ ˆState → 2 ˆState

(may transition one abstract state into multiple abstract states)

Kwangkeun Yi Abstract Interpretation

A Sufficient Condition for α ◦ Next v ˆNext ◦ α (4/4)

Theorem (Correctness)

Let Next and ˆNext be:

Next = ℘next ∈ 2State → 2State

ˆNext = (℘t) ◦ π̂ ◦ ∪ ◦ (℘ ˆnext) ∈ (∆→ ˆState)→ (∆→ ˆState)

If the below two conditions hold then α ◦Next v ˆNext ◦ α.

1. Condition on abstract partitioning(π̂):

(℘α1) ◦ π ◦ ∪ ◦ (℘γ) v (℘t) ◦ π̂ (1)

2. Condition on abstract transition(ˆnext):

next x ∈ (∪ ◦ (℘γ) ◦ ˆnext ◦ α1) {x} (2)

Kwangkeun Yi Abstract Interpretation

In Proof

Notation

↑∈ X → 2X is ↑ x = {x}.
For f ∈ A→ B, ℘f ∈ 2A → 2B is (℘f)X = {fx | x ∈ X}.
Abusely, ℘f ∈ (∆→ A)→ 2B is
(℘f)X = {fx | x ∈ rangeX}.
For f ∈ A→ 2B, ℘∪f = ∪ ◦ ℘f .

Facts

℘∪(f ◦ g) = (℘∪f) ◦ (℘g).
℘∪(℘∪f) ◦ (℘g) = (℘∪f) ◦ (℘∪g).
For x ∈ A,X ∈ 2A, fx ∈ gx implies (℘f)X ⊆ (℘∪g)X.

Kwangkeun Yi Abstract Interpretation

Proof. First, from condition (2) the following holds:

℘next v (℘∪γ) ◦ (℘∪ ˆnext) ◦ α (3)

Because,

℘next v ℘∪((℘∪γ) ◦ ˆnext ◦ α1◦ ↑) (cond. (2), (fx ∈ gx then (℘f)X ⊆ (℘∪g)X))
= ℘∪(℘∪γ) ◦ ℘(ˆnext ◦ α1◦ ↑) (℘∪(f ◦ g) = (℘∪f) ◦ (℘g))
= (℘∪γ) ◦ (℘∪ ˆnext) ◦ (℘α1) ◦ (℘ ↑) (℘∪(℘∪f) ◦ (℘g) = (℘∪f) ◦ (℘∪g))
v (℘∪γ) ◦ (℘∪ ˆnext) ◦ (℘α1) ◦ π (γ, ˆnext , α1 are all monotonic)
= (℘∪γ) ◦ (℘∪ ˆnext) ◦ α.

Therefore,

α ◦Next = (℘α1) ◦ π ◦ (℘next)
v (℘α1) ◦ π ◦ (℘∪γ) ◦ (℘∪ ˆnext) ◦ α (cond. (3))

v (℘t) ◦ π̂ ◦ (℘∪ ˆnext) ◦ α (cond. (1))

= ˆNext ◦ α.

That is, from condition (1) and condition (2), α ◦Next v ˆNext ◦ α
holds. Hence by the Fixpoint Transfer Theorem,

α(fix (λT.T0 ∪Next T)) v fix (λT̂ .α(T0) t ˆNext T̂).

2

Kwangkeun Yi Abstract Interpretation

Trace Abstract Interpreation’s Algorithm (1/4)

Static analysis is to compute ˆ[[C]], which is

fix (F̂ let= λT̂ .α(T0) t ˆNext T̂)

where
F̂ ∈ ˆTrace → ˆTrace

ˆTrace = ∆→ ˆState
ˆNext = (℘t) ◦ π̂ ◦ (℘∪ ˆnext)
ˆnext ∈ ˆState → 2 ˆState .

Computing fix F̂ is to compute Yi until no change:

Y0 = α(T0), Yn+1 = α(T0) t ˆNext(Yn)

Hence,

T, T ′ : ∆ → ˆState;
begin

T := T ′ := α(T0);
repeat

T ′ := T ;
T := α(T0) t ((℘t) ◦ π̂)(

S
i∈∆

ˆnext T [i]);
until T v T ′; (* no more increase *)

return T ′;
end

Figure: Naive algorithm

Kwangkeun Yi Abstract Interpretation

Trace Abstract Interpreation’s Algorithm (2/4)

When widening(5) and narrowing(4) are necessary, we compute
the folloing two things in sequence:

Widen(F̂) = limi∈N


Ŷ0 = α(T0)

Ŷi+1 =
{

Ŷi if F̂ (Ŷi) v Ŷi

Ŷi 5 F̂ (Ŷi) o.w.

Narrow(m̂) = limi∈N

{
Ẑ0 = m̂

Ẑi+1 = Ẑi 4 F̂ (Ẑi)

Hence,

T, T ′, Y : ∆ → ˆState;
begin

T := T ′ := α(T0);
repeat

T ′ := T ;
Y := α(T0) t ((℘t) ◦ π̂)(

S
i∈∆

ˆnext T [i]);
T := if Y v T ′ then T ′ else T ′ 5 Y ;

until T v T ′; (* no more increase *)

repeat

T := T ′

T ′ 4 := α(T0) t ((℘t) ◦ π̂)(
S

i∈∆
ˆnext T [i]);

until T v T ′; (* no more decrease *)
return T ;

end

Figure: Naive algorithm with widening and narrowing

Kwangkeun Yi Abstract Interpretation

Trace Abstract Interpreation’s Algorithm (3/4)

Worklist method:

wasteful at each iteration to compute⋃
i∈∆

ˆnext T [i]

for every index in ∆.
enough to compute those affected from the previous iteration

T, T ′ : ∆ → ˆState;
W : 2∆; (* worklist *)
begin

T := T ′ := α(T0); W := ∆;
repeat

T ′ := T ;
T := α(T0) t ((℘t) ◦ π̂)(

S
i∈W

ˆnext T [i]);
W := {i ∈ ∆ | T [i] 6v T ′[i]};

until W = {}; (* no more increase *)
return T ′;
end

Figure: Worklist algorithm

Kwangkeun Yi Abstract Interpretation

Trace Abstract Interpreation’s Algorithm (4/4)

T, T ′, Y : ∆ → ˆState;
W : 2∆; (* worklist *)
begin

T := T ′ := α(T0); W := ∆;
repeat

T ′ := T ;
Y := α(T0) t ((℘t) ◦ π̂)(

S
i∈W

ˆnext T [i]);
T := if Y v T ′ then T ′ else T ′ 5 Y ;
W := {i ∈ ∆ | T [i] 6v T ′[i]};

until W = {}; (* no more increase *)

W := ∆;
repeat

T := T ′;
T ′ 4 := α(T0) t ((℘t) ◦ π̂)(

S
i∈W

ˆnext T [i]);
W := {i ∈ ∆ | T [i] 6v T ′[i]};

until W = {}; (* no more decrease *)
return T ;

end

Figure: Worklist algorithm with widening and narrowing

Kwangkeun Yi Abstract Interpretation

