Improving CPS-Based Partial Evaluation: Writing Cogen by Hand

Anders Bondorf*
DIKU
Department of Computer Science
Universitetsparken 1
DK-2100 Copenhagen @, Denmark
anders@diku.dk

Abstract

It is well-known that self-applicable partial evaluation
can be used to generate compiler generators: cogen =
mix(mix, mix), where mix is the specializer (partial eval-
uator). However, writing cogen by hand gives several ad-
vantages: (1) Contrasting to when writing a self-applicable
mix, one is not restricted to write cogen in the same lan-
guage as it treats [HL91]. (2) A handwritten cogen can be
more efficient than a cogen generated by self-application;
in particular, a handwritten cogen typically performs no
(time consuming) environment manipulations whereas one
generated by self-application does. (3) When working in
statically typed languages with user defined data types, the
self-application approach requires encoding data type values
[Bon88, Lau9l, DNBV91], resulting in relatively inefficient
(cogen-generated) compilers that spend much of their time
on coding and decoding. By writing cogen by hand, the
coding problem is eliminated [HL91, BW93].

Specializers written in continuation passing style (ab-
breviated “cps”) perform better than specializers written
in direct style (abbreviated “ds”) [Bon92]. For example,
a specializer written in cps straightforwardly handles non-
unfoldable let-expressions with static body.

The contribution of this paper is to combine the idea
of hand-writing cogen with cps-based specialization. We
develop a handwritten cps-cogen which is superior to a ds-
cogen for the same reason that a cps-specializer is superior to
a ds-specializer: the cps-cogen can for example handle non-
unfoldable let-expressions with static body. Hand-writing
a cps-cogen is done along the same lines as hand-writing
a ds-cogen, but some additional non-standard two-level 7-
expansions turn out to be needed.

The handwritten cps-cogen presented here is efficient in
that it performs continuation processing (3-reductions of
continuation applications) already at compiler-generation
time. Only some continuation processing can be done at

*Current postal address: Computer Resources International
A/S, Bregnergdvej 144, DK-3460 Birkergd, Denmark; e-mail: use
anders@diku.dk

**Funded by the National Fund for Scientific Research (Belgium).
This work was done during two stays at DIKU in Copenhagen, 1993;
DIKU and K.U. Leuven supported Dirk Dussart’s visits to DIKU.

Dirk Dussart**

Departement Computerwetenschappen

Katholieke Universiteit Leuven
Celestijnenlaan 200A
B-3001 Leuven (Heverlee), Belgium
Dirk.Dussart@cs.kuleuven.ac.be

compiler generation time, however, so the resulting pro-
grams generated by cogen also contain continuations.

We prove our handwritten cps-cogen correct with respect
to a cps-specializer. We also give a correctness proof of a
handwritten ds-cogen; this proof is much simpler than the
cps-proof, but to the best of our knowledge, no handwritten
ds-cogen has been proved correct before.

1 Introduction

Cps-based specializers are more powerful than ds-

based specializers. For example, a cps-specializer
straightforwardly specializes ((let y=... in Ax.x+x+y) 7)
into (let y=... in 14+y) when the let-expression is non-

unfoldable. The cps-specializer is able to do so because it
explicitly manipulates a context: a cps-specializer is able to
move the context “apply to 77 across the let-binding into
the let-body.

In this paper we show how to hand-write a cps-based
cogen. We derive the handwritten cps-cogen from a (hand-
written) cps-specializer. However, to make it easier to follow
the derivation, we first show how to derive (and prove cor-
rectness of) a handwritten ds-cogen C4 from a (handwritten)
ds-specializer Sg: the ds-based cogen is much simpler to de-
rive than the cps-based cogen. Then we derive and prove
correctness of the handwritten cps-cogen C¢p from a (hand-
written) cps-specializer S¢p. See the horizontal arrows in
Figure 1.

ds-specializer §¢ —— ds-cogen Cy4

! !

cps-specializer S¢y —— cps-cogen Cep

Figure 1: Overview

The cps-specializer S¢p can be derived from the ds-
specializer S4 (the leftmost vertical arrow in Figure 1)
[Bon92]. We shall derive the cps-cogen Ccp from the cps-
specializer Scp. In Section 4 we briefly discuss how to derive
Cecp from C4 instead (rightmost vertical arrow); this deriva-
tion is relevant if one is to hand-write a cps-cogen for a
language where a handwritten ds-cogen already exists.

We shall consider specialization similar to the one of
Lambda-miz [GJ91]. In this paper we only consider a source
language consisting of the strict (call-by-value) weak-head
normal form pure lambda calculus (variables, A-abstraction
and application) extended with a let-construct, see Figure 2.

We include the let-construct in the source language to cover
a form that cps-based specialization treats better than ds-
specialization does [Bon92].

Variable = String; e Expression’ ; vE€ Variable

e = Varv | Lamve, | Appei e | Letve ez

Figure 2: Abstract syntax of source language

In an extended version of the paper, we will also cover
the remaining constructs from Lambda-mix (constants, con-
ditionals and fiz), as well as primitive operations and ope-
rations on tuples. Conditionals are interesting as a cps-
specializer, contrasting to a ds-specializer, is able to handle
conditionals with dynamic test but static branches [Bon92].
Operations on tuples are interesting as they illustrate the
coding problem that arises when writing a specializer mix,
but not when hand-writing cogen. Tuples are as easy to han-
dle in a handwritten cps-cogen as in a handwritten ds-cogen:
no particular problems with tuples arise due to cps.

When hand-writing cogen, we shall need some abstract
syntax constructors in addition to Var, Lam, App and Let.
These additional constructors are Varo, Fresh, Lamo, Appo
and Leto. The semantics of the source language, extended
with these additional forms, is given in Figure 3. The meta-
language used in this paper is strict: A- and let-forms are
thus strict as well as environment updates p[... > ...]. No-
tice that fresh() generates a fresh variable name (a string)
and that the forms Lamo, Appo and Leto are used to gen-
erate expressions rather than values as Lam, App and Let

do.

& : Ezxpression x (Variable — Value) — Value

E[Var v]p =pv

E[Lamvel]p = Aw.&[e]p[v— w]
ElAppesle = (€lelo) (£Les]o)
E[Letver ex]p = E[ex]p[v— Eler]p]
E[Varo v]p = Var(pv)

E[Fresh]p = fresh()

E[Lamo e1 e2]lp = Lam(E[er]p) (Ee2]p)
E[Appo e ex]lp = App(Ele]p) (Ele2]p)

ElLeto e ez es]lp = Let(E[er]p) (Elez]p) (Ees]p)

Figure 3: Semantics of extended source language

Programs to be partially evaluated will be annotated and
written in a fwo-level language [NN88, GJ91]. The two-
level language is specified in Figure 4. Each of the com-
pound forms now exist in two versions, a static version (e.g.
Lam v) and a dynamic version (e.g. Lam v #). The static
versions will be reduced at partial evaluation time, and code
will be emitted for the dynamic versions.

It turns out to be helpful for cps-based specialization
that all source expression variables have distinct names. In
the rest of this paper, variable ¢ therefore only ranges over
two-level expressions where all variables names are differ-
ent (variables names can always be made distinct by a-
conversion).

Ounly programs that are well-annotated may be special-
ized. Type rules for checking well-annotatedness are given

te 2Fzpression; vE Variable
t u= Varv | Lamvt, | Appti bty | Letviti to |
Lamvt, | Apptity | Letvt &

Figure 4: Syntax of two-level language

in [GJ91] (not for the let-form, though, but it is simple to
add). Annotating programs can be done automatically by
binding-time analysis, see e.g. [Gom90, Hen91].

2 Direct style

Figure 5 specifies the ds-specializer S4. Specializer Sy is
a part of the Lambda-mix specializer T from Appendix A
of the paper [GJ91], extended with (straightforward) rules
for the static and dynamic let-forms. Notice that domain
2Valueis equal to domain Value since Value already includes
the forms generated when evaluating the forms Lamo, Appo
and Leto (Figure 3).

84 : 2Ezpression x (Variable — 2Value) — 2Value
S4l[Var v]p = pv
Sq[Lamvt]p = Aw.Sg[t]p[v— w]
SalAppt t]p = (Salt]e) (Saltlp)
Sa[Letvts b]p = Sq[t]plv— Sa[t]e]
SqlLamvt]p = let n=fresh()
in Lam n(S4[t]plv— Varn])
Saldppt tlp = App(Saltle)(Saltle)
SqlLetvh &]p = let n=fresh()
in Letn(S4t]p) (Sqlt2]p[v — Varn])

Figure 5: Ds-specializer

Notice that ds-specializer S; cannot specialize forms
such as t = App(Letv ... (Lamuvs ...))(Varvs) as Sy re-
quires the body of a Let-form to specialize to an expression:
the result of S4’s call S4[&]p[v— Varn] must be an expres-
sion as it is an argument to the abstract syntax constructor
Let. But S4 specializes Lam vy ... to a function Aw. ...,
not to an expression, so expression tis not well-annotated
with respect to S4. To specialize the expression, the anno-
tations should be App(Letv: ... (Lamwvs ...))(Varvs) (as
it also follows from the well-annotatedness rules of [GJ91]);
being underlined, the application would consequently not be
B-reduced by &4 during specialization.

We now present a ds-cogen C4 derived from the ds-
specializer Sg; see Figure 6. Essentially, instead of perform-
ing what S4 does, compiler generator C4 generates code that
will perform the same operations when evaluated (by £&).
For example, specializer S4 performs an application when
treating App-forms, but C; generates an App-expression
which, when evaluated, performs an application. And,
where §; generates an App-expression when treating App-
forms, compiler generator C4 generates an Appo-expression
which, when evaluated, generates an App-expression.

Notice that C4 takes no environment (p) argument.
Avoiding environment manipulation is possible by reusing
source variable names in the treatments of Lam, Let, Lam

Cq : 2Ezpression — Ezpression
Cyq[Var 4] = Varv
Cq[Lamvt;] = Lamv(C4ftr])

CalAppt:] = App(Ca[ti]) (Calt2])

Cd[[Let'v t tg]] = Let’v(Cd[[tl]]) (Cd[[tg]])

Cq[Lamvt,] = Letm Fresh(Letv(Varo m) (Lamo (Varm) (C4[4])))
Cd[[App t]_ tg]] = App(} (Cd[[t]_]]) (Cd[[tg]])

Cyql[Letviy, &] = Let m Fresh(Letv(Varo m) (Leto (Var m) (C4[t]) (Cqt21)))

Figure 6: Ds-cogen

and Let (notice e.g. how S4’s Lam-rule Aw.S4[t1]p[v— w]
turns into Lamv(C4[t1]) in C4: source name v is used in-
stead of w whereby the binding [v+— w)] can be ignored), but
it is non-trivial to see that this does not lead to unexpected
name clashes. The reason is briefly that C4 performs no
symbolic unfolding and thus preserves the scoping structure
of the source program. The handwritten compiler genera-
tors [HL91, BW93] did not manipulate environments either
(but no correctness proofs were given there). Compiler gen-
erators generated by self-application do manipulate environ-
ments (see e.g. [GJ91]) and thus they are less efficient than
the handwritten ones.

The following theorem states that the handwritten co-
gen Cg4 is indeed correct with respect to the specializer Sy
(and in particular this also proves that the environment-free
treatment of variables in C4 is correct). The theorem states
that evaluating the code generated by C4 in environment p
yields the same result as specializing by Sy (in environment

p):
THEOREM 1 (Correctness of ds-cogen)
Vi, p: E[Cq[t]]e = Saltlp

ProOOF: By structural induction over two-level expressions.
See Appendix A.1 for details. a

3 Continuation passing style

Figure T contains a cps-specializer S¢p, derived from
84 by (non-standard) cps-transformation as described in
[Bon92]; continuation : is the identity continuation Az.z.
The cps-specializer Scp is more powerful than the ds-
specializer Sg4: it does not constrain the annotations of
the body of Let-forms (the type rule for checking well-
annotatedness for Let-forms is consequently more liberal
for cps-based specialization than for ds-specialization). For
example, specializer S¢p is able to specialize the form
App(Letv, ... (Lamv; ...)) (Varwvs), hence B-reducing the
application during specialization (contrasting to Sy, cf. Sec-
tion 2).

Notice that the identity continuation ¢ is used not only
to initialize, but also when treating Lam-forms. This non-
standard “impure” form of cps turns out to be necessary
to allow the desired liberal treatment of Let-forms, propa-
gating & “over the let-binding”. The more pure cps-code
let n=fresh() in Scp[t]o[v — n](Az.x (Lamnz)) that one
might have expected in the Lam-rule thus gives an incor-
rect result if the lambda-body # is a Let-form. Indeed, the
let- and A-bindings are reversed. In short, the problem is

that continuations that dump their argument in the body-
position of a generated lambda-expression are not allowed to
be propagated over the binding when specializing Let-forms;
the continuation Az.x (Lemnz) is such a disallowed form.
The code in Figure 7 does not contain any such “ill-behaved”
continuations. We refer to [Bon92] for further details.

We are now ready to present the handwritten cps-cogen
Ccp, see Figure 8. Compiler generator C¢p is derived in the
same way from Sc¢p as Cq was derived from S4: instead of
performing what S¢cp does, Ccp generates code that will per-
form the same operations when evaluated. Deriving the Ccp-
rules for Lam and App involves some additional steps that
have no analogue in the Cj-derivation; these steps will be de-
scribed below. Notice that similarly to C4, compiler genera-
tor C¢p performs no operations on environments, contrasting
to what a compiler generator generated by self-application
would do. Also notice that C¢p has a continuation argument:
we want Ccp to perform continuation reductions already at
cogen-time rather than suspending all continuation process-
ing to appear in the programs generated by cogen (such a
simpler cps-cogen can be written, but it is certainly less in-
teresting).

We shall now explain why the Lam- and App-rules look
the way they do. At a first try, we might optimistically
have written the Lam- and App-rules in the following more
“natural” way:

Cep[Lamvti]|k = & (Lamv(Cep[t]))
Cep[Appts 2]k = Cep[t1](Az. Cep[t2](Ay. App (Appzy) k)

Let us first consider the incorrect Lam-rule. Notice
that Cep[t1] is a function (from continuations to expres-
sions) whereas the second argument to constructor Lam
must be an exzpression of type FExpression. We can fix
this problem by a special two-level n-expansion that con-
verts a function to an expression (a A-form into a Lam-
form): f — Lamn(f(Varn)) where n is fresh to avoid
name shadowing. Instead of Ccp[t1], we would thus write
Lam n(Ccp[t](Varn)). But now there is a problem with the
expression Cep[t1](Var n) as Cc¢p’s second argument must be
a function (a continuation), not an expression such as Varn.
We therefore perform another kind of two-level -expansion,
this time converting an expression into a function: e —
Az. App ex. We then obtain Cep[t1](Az. App(Varn) z). The
Lam-rule of Figure 8 has now emerged.

In a similar way, the App-rule of Figure 8 is obtained
from the incorrect one by n-expanding & in the incorrect ex-
pression App(Appzy) & into Lamn(k (Varn)); App’s sec-
ond argument must be an expression, not a function.

Sep[Var v]px = k(pv)

Scp[Letvty t]pk

Scp : 2Ezpression x (Variable — 2Value) x (2Value — 2Value) — 2Value

Sep[Lamvti]pr = & (Aw.Scp[t]plv— w])

SeplApp it B]pr = Scp[t]o(Az. Scp[t]lp(Ay. (zy) &)

Seplti]lp(Az. Scp]p[v — zlk)

Sep[Lamvti]pr = & (letn=fresh() in Lam n(Scp[t]p[v— Varn]))

Scp[[m t bllor = Sep[ti]p(Az. Scpli]p(Ay. & (Appzy)))

Secp[Letvty &]ps = Scp[t]p(Az. let n=fresh() in Letnx(Scp[t2]p[v — Varn]x))

Figure 7: Cps-specializer

Cep[[Var] = k(Varv)

Cep : 2Expression x (Expression — Expression) — Ezpression

Cep[Lamv ti|k = k(Lamv (letn=fresh() in Lam n(Ccp[t1|(Az. App (Varn) x))))

Cep[Appts 2]le = Cep[ti](Az.Cep[t2](Ay. App (App z y) (let n=fresh() in Lam n (& (Varn)))))
Cep[Letvty]l = Cep[ti](Az. Let vz (Cep[tz]x))

Cep[Lamv ti]k = k(Letm Fresh(Letv(Varo m)(Lamo (Varm) (Cep[i1]e))))

Ccp[[m t bl = Cep[t](Az.Cep[t2](Ay. & (Appoz y)))

Cep[Letvty] = Cep[ti](Az. Let m Fresh (Let v(Varo m) (Leto (Var m) z(Cep[t2]x))))

Figure 8: Cps-cogen

The n-expansions used here resemble the n-conversions
used in [DF92] to separate “administrative” from “non-
administrative” continuations in cps-transformation. Also,
similar 7-conversions were used for binding-time improve-
ments in [Bon91].

We note that expression Lamn (k(Varn)) in the App-
rule generates continuations that are present in the pro-
grams generated by Ccp. Thus, even though C.p per-
forms continuation processing (3-reductions), it also gener-
ates code that still contains (some) continuation processing.
This is again analogue to the distinction between “admin-
istrative” and “non-administrative” continuations in cps-
transformations: only administrative continuations can be
B-reduced during cps-transformation.

To prove correctness of Ccp with respect to Scp, we
must prove the following: for all ¢ and p, it holds that
E[Ccp[He]p = Scptlpe. That is, evaluating the expression
generated by Ccp in some environment p gives the same re-
sult as specializing tin the same environment. Both Ccp and
Scp are initially called with the identity continuation ¢. To
prove this equality inductively, we need a more general the-
orem that holds not only when the continuations are ;. Can
we hope to simply replace ¢ by « and then expect that the
equality holds for all k7 The answer is unfortunately “no”.
The reason is simple: the type of S¢p’s continuation param-
eter is 2Value — 2Value whereas the type of C¢cp’s continua-
tion parameter is Ezpression — Ezpression. However, given
a Ccp-type continuation &, we can construct a S¢p-type con-
tinuation: Aa.let m=fresh() in E[x (Var m)]p[m — a]. The
idea here is to evaluate the expression generated by apply-
ing k to an argument, taking care not to evaluate a which
already is a 2Value (this is the reason why the continua-
tion is not simply Aa.&[x a]p). This leads to the following
correctness theorem.

THEOREM 2 (Correctness of cps-cogen)

Vi, p, 6 E[Cept]&]p =
Sep[tlo(Aa. let m=fresh() in £[& (Var m)]p[m — a])

ProOOF: By structural induction over two-level expressions.
See Appendix A.2 for details. a

In this theorem, as well as in Appendix A.2, we implic-
itly assume some restrictions on & when quantifying by
Vt, ...,k ...: continuation k must be related to two-level ex-
pression tin the sense that « only ranges over those contin-
uations that are generated when computing Ce¢p [t.]e where
tis a subexpression of # . That is, we only consider the rel-
evant continuations, not all continuations. Notice that the
identity continuation : is a relevant continuation (possible
value for &).

The desired correctness property now follows as a corollary:

COROLLARY 3 (Correctness of cps-cogen)
Vi, p: E[Cep[t]e]lp = Scp[foe
Proor: Follows from Theorem 2 since
Aa. let m=fresh() in E[¢ (Var m)]p[m — d] £

Aa.let m=fresh() in [Var m]p[m — d] 2

Aa.let m=fresh() in a Lemma8

a.a=1 O

(Lemma 8 can be found in Appendix A.2.) In the proof of
Theorem 2, a number of lemmas are used; these are found
in Appendix A.2. It is worth noticing that the lemmas only
hold when ¢ and & are restricted as described earlier: all
variable names in ¢t must be distinct (a-conversion, cf. Sec-
tion 1), and & must be relevant.

4 Deriving Ccp from Cy

In retrospect, when comparing C4 and Ccp, we notice that
C¢p could have been derived from C4 rather than from Scp:
by cps-transforming the C4, taking into account to use the
non-standard cps Lam-rule, and performing appropriate 7-
expansions for the Lam- and App-rules. This way of deriving
Scp might be useful in a context where a handwritten ds-
cogen already exists, for example if one were to write a cps-
cogen for the ML-cogen described in [BW93]. We believe
that this can be done without great difficulty.

5 Related work

Already in the REDFUN-project was a cogen for a subset of
Lisp written by hand [BHOST76]. The motivation was that
the specializer could not be self-applied.

In [Hol89], a handwritten cogen was based on macro ex-
pansion. In the paper [HL91], a ds-cogen for a statically
typed language is described. The ideas from [HL91] were
used for hand-writing a ds-cogen for a subset of Standard
ML [BW93].

Quite recently the work by Lawall and Danvy in [LD94]
came to our attention. Lawall and Danvy show how the
cps-specializer from [Bon92] can be almost automatically
derived from a ds-specializer by inserting the control oper-
ators shift and reset (see [DF90]) at selected places and cps
converting the resulting specialiser. They also devote some
attention to how their ideas could be used in the context of
a handwritten cogen.

6 Conclusion

We have demonstrated how an efficient cps-based cogen can
be written by hand. The handwritten cogen performs no
environment manipulations, contrasting to cogens generated
by self-applying specializers. The cps-cogen is derived natu-
rally from a cps-specializer, except that some non-standard
n-expansions are needed in the treatment of Lam- and App-
forms to shift between functions and expressions. We have
given correctness proofs for the cps-cogen as well as for a
ds-cogen.

We believe that our handwritten cogen is a good start-
ing point for hand-writing cps-based cogens for larger strict
functional languages. Our work does not immediately carry
over to lazy languages as the cps-transformation we have
used is the strict cps-transformation. However, it is plau-
sible that a similar development could be made for a lazy
language using call-by-name cps-transformation (with loss
of sharing as a consequence).

Acknowledgements

We would like to thank Neil Jones, Torben Mogensen, Julia
Lawall for the fruitful discussions on the subject; also thanks
to Karel De Vlaminck and Eddy Bevers for his indispensable
contributions in the final stages of the paper.

A Proofs of the theorems 1 and 2

Both proofs are by induction over ¢ the case analysis is over
the syntactic forms specified in Figure 4. All equalities are
annotated to explain why equality holds. Notice that 8-
and 7n-equalities are used: /7 do not in general hold for the

typed (C4 and S4 are both simply typed) strict weak-head
normal form lambda-calculus. 3/% thus only hold when ter-
mination properties do not change; we only use 3/n when
this is the case. We use (-abstraction to prevent duplicat-
ing expressions of form fresh(). Also notice that in both
proofs we rely on the fact that the variable m, introduced in
the Lam- and Let-rule in both ds- and cps-cogen, is unique:
m does not occur in input programs and can not be gener-
ated by application of fresh(). By construction it is assured
that Vi;: neither Cep[t1]x (where & is relevant) nor C4f[#1]
contains m as a free variable, nor that any definition of m
shadows another definition of m (see Figure 6 and Figure 8).

A.1 Proof of Theorem 1
See Figure 9.

A.2 Proof of Theorem 2

We first give the lemmas needed for the inductive proof of
Theorem 2. Notice that Lemma 8 was also used in the
proof of Corollary 3. We use M and E to range over meta-
expressions (as opposed to e that ranges over object expres-
sions). Recall (Section 3) that only two-level expressions ¢
with all variable names distinct and only well-behaved con-
tinuations k are considered when quantifying over ¢ and k.

LEMMA 4 (Environment simplification)
Vt, k : if vis bound in ¢ then
Vo : let m=fresh() in [(Var m)]p[v— ...] =
let m=fresh() in £[k (Var m)]p

that is, term &(Var m) will not contain any free occurrences
of v.

ProOF: Continuation & is generated independently of ¢, so
when applied to (Varm) it cannot (since all source vari-
able names are distinct) generate expressions with any (and
hence no free) v-occurrences.

LEMMA 5 (Extracting out k’s argument)

Vt, k : if tis one of the forms Varv, Lamvt;, Lam vt or
App ty & then, when computing Ccp[f]&, the
following equality holds for (all relevant instances of)
the expressions k£ F in the right-hand sides of the
sides of the rules for Var, Lam, Lam and App:

Vo: &k Elp =
(Aa.let m=fresh() in E[x (Var m)]p[m — a]) (E[E]p)

ProoF: First notice that since p[m +— q] is strict in a, we
may [-reduce (Aa....)(E[E]Jp). We thus have to prove
Elk E]lp = letm=fresh() in E[r (Varm)]p[m — E[E]p).
We shall refer to the left- and rigth-hand sides of this equal-
ity as lhs and rhs below.

Let e be the value of (meta-)expression E, let e; be the
value of (meta-)expression & E, and let e; be the value of
(meta-)expression & (Var m); notice from the type of x (Fig-
ure 8) that the values e, e; and e; are all expressions. It
then holds that e; always contains at least one leaf which is
a copy of e, and this leaf is always placed in a strict position,
i.e. when evaluating e, eis guaranteed also to be evaluated
(“evaluation” is done by £); apart from the e-leaves, the rest
of e; is independent of e. These properties of e; are easily
inductively proved by considering all possible relevant con-
tinuations k.

€q £ Sq
E[Cq[Varv]]p = E[Varvp = pv = S4[Varv]p.
Cq

Sq[Lamv t.]p.

(Salts1e) (Salte]o) 2 SalAwpt: t]p.
Cyq £

s
Salt]elv— Saltle] 2 SalLetvt t]p.

let n=fresh() in Lam n (E[C4[t]]p[v— Varn

cy £

App (Salti]o) (Saltele) 2 SalAppt t]p.
¥

ECalLamvti]lp 2 E[Lamo(CaltDlp £ Mo E[Caltolo > u] "™ Aw. Sq[tTolv > u] 22

Cq £ 2 inductions
elCa[Appts &]1p =2 £[App(Calt]) (CaleDle £ (EICaltlle) (€1Calt]Dp) 2 ™2
E[Ca[Letvts t]]p 2 E[Letw(Calt]) (CaltaDle £ E[Caltzlolv — E[Ca[L]]0] 2 O M

E[Cq[Lam vt]]p e E[Let m Fresh(Let v (Vare m) (Lamo (Var m) (C4[t.])))]e £
E[Let v(Varo m) (Lamo (Var m) (C4[t:]))]p[m — fresh()] £
let n=fresh() in £[Let v (Varo m) (Lamo (Var m) (C4[t.]))]p[m — n]
let n=fresh() in E[Lamo (Var m) C4[t1]p[m — n, v — E[Varc m]p[m — n]
let n=fresh() in Lam n (E[C4[t]]p[m — n,v— Varn])

]) induction

m not free in C 4[#]

S
let n=fresh() in Lam n(Sg[t1]p[v — Varn]) =4 SqlLamv t,]p.

£[CalAppt 6110 =2 E[Appo (Calt]) (Caltl)le £ App(£[Calti]le) (E[Calt]]p) * mEHm

ElC4[[Letvty &:]]p = E[Let m Fresh (Letv(Varo m) (Leto (Varm) (C4[t]) (Calt2])))]e £
E[Let v(Varo m) (Leto (Varm) (C4[[t]) (Cqlt2]))]p[m — fresh()] £
let n=fresh() in [Let v (Varo m) (Leto (Var m) (C4[1]) (C4[t2]))]o[m — n]
let n=fresh() in E[Leto (Var m) (C4[[6]) (Cq4lt])]o[m — n, v — E[Varo m]p[m — n]]
let n=fresh() in Letn (E[Cq[t]]p[m — n, v— Varn]) (E[C4[&]]p[m — n,v— Varn])
let n=fresh() in Letn (E[Cq[ti]lp[v — Varn]) (E[C4lt]]p[v — Varn]) 2 inductions
let n=fresh() in Letn (S4[t p[v — Varn]) (Sd[[tg]]p['v; Var n])
let n=fresh() in Letn (S4[t]p) (Sqlt2]p[v — Varn]) 4 SqlLetvt &]p.

£

& & &

£

&; &

&
m not free in C4[#,],C 4[t2]

v not free in t; (a-conv.)

Figure 9: Correctness of ds-cogen

It now follows that lhs and rhs have identical termina-
tion properties (since e is always evaluated in e;) and that
e1 and ez are identical, except at those leaves where e; con-
tains e and ey contains the value of m (we shall be sloppy
and just write m below). To prove lhs = rhs, we then
just have to comsider the differing leaves, i.e. we have to
prove E[e]p[...] = E[(Var m)]p[m — E[€]p, ...] where p[...]
and p[m — &[€]p,...] are the environments that £ will use
when evaluating the e/(Varm) leaves. But we know that
EM(Var m)]p[m — E[€]p,...] = £]€]p since m was fresh and
hence is not shadowed in & (Var m). We thus have to prove
E[e]lpl...] = €[e]p which holds if no free variables of e are
shadowed (and rebound) in & e.

But no « ever shadows any variable: the only relevant
continuations which potentially may shadow free variables
are the continuations Az. Letv Fresh ... generated by Ccp’s
Let-rule. However, since all source variable names are dis-
tinct and since k is relevant and hence has been generated in-
dependently of #;, variable £ cannot possible become bound

to any expression containing any (and hence no free) occur-
rences of variable v when computing Cep[t1](Az. ...). O

LEMMA 6 (Reordering A and let)

Vi : Aa.let m=fresh() in [k (Var m)]p[m — a] =
let m=fresh() in Aa.E[& (Var m)]p[m — q

PrOOF: Both sides of the equality terminate equally often.
The difference between the two expressions is then only that
the left-hand side generates a different m each time the func-
tion is applied whereas the right-hand side uses the same m.
But as the value of &£[x (Varm)]p[m — q] is independent
of which particular fresh variable m denotes, the equality
follows. a

LEMMA 7 (Reordering &£ and let)

VE1,E; : nnot freein E; = E[letn=fresh()in E1]E; =
let n=fresh() in E[E.] E>

Proor: Follows from strictness of £ in its first argument
and that the let-form is strict. The condition “n not free in
E»” ensures that no undesired shadowing occurs. 0

LEMMA 8 (Removing superfluous fresh variable generation)
VM : M not freein E = let M=fresh()in E = E

PrOOF: Trivial as expression fresh() always terminates nor-
mally. a

Let us now give the inductive proof of Theorem 2.
We use the textual abbreviation g for the continuation
(Aa. let m=fresh() in E[x (Varm)]p[m — a]) that occurs
in Theorem 2 and in Lemma 5. For each possible ¢, we
thus have to prove &[Ccp[[f]c]p = Scp[tlop. Notice that,
using the abbreviation, Lemma 5 states that £k E]p =

w (£[E]p).

For proof of theorem 2 see Figure 10 and Figure 11.

References

[BHOS76] Lennart Beckman, Anders Haraldson, Osten Os-
karsson, and Erik Sandewall. A partial evaluator
and its use as a programming tool. Artificial In-
telligence, 7:319-357, 1976.

[Bon88] Anders Bondorf. Towards a self-applicable par-

tial evaluator for term rewriting systems. In
Dines Bjgrner, Andrei P. Ershov, and Neil D.
Jones, editors, Partial Evaluation and Mized
Computation, pages 27-50. North-Holland, 1988.

[Bon91] Anders Bondorf. Automatic autoprojection of
higher order recursive equations. Science of
Computer Programming, 17(1-3):3-34, Decem-
ber 1991. Revision of paper in ESOP’90, LNCS

432, May 1990.

[Bon92] Anders Bondorf. Improving binding times with-
out explicit cps-conversion. In 1992 ACM Con-
ference on Lisp and Functional Programming.
San Francisco, California. LISP Pointers V, 1,

pages 1-10, June 1992.

Lars Birkedal and Morten Welinder. Partial
evaluation of Standard ML. Technical Re-
port DIKU-report 93/22, DIKU, Department of
Computer Science, University of Copenhagen,
October 1993.

[BW93]

[DF90] Olivier Danvy and Andrzej Filinski. Abstracting
control. In 1990 ACM Conference on Lisp and
Functional Programming. Nice, France, pages

151-160, June 1990.

[DF92] Olivier Danvy and Andrzej Filinski. Represent-
ing control. Mathematical Structures in Com-

puter Science, 2(4), 1992.
[DNBV91] Anne De Niel, Eddy Bevers, and Karel De

Vlaminck. Partial evaluation of polymorphically
typed functional languages: the representation
problem. In M. Billaud et al., editors, Ana-
lyse Statique en Programmation Equationnelle,
Fonctionnelle, et Logique, Bordeauz, France,
Octobre 1991 (Bigre, vol. 74), pages 90-97.
Rennes: TRISA, 1991.

[GI91]

[Gom90]

[Hen91]

[HL91]

[Hol89]

[Lau9l]

[LD94]

[NN88]

Carsten K. Gomard and Neil D. Jones. A par-
tial evaluator for the untyped lambda-calculus.
Journal of Functional Programming, 1(1):21-69,
January 1991.

Carsten K. Gomard. Partial type inference for
untyped functional programs. In 1990 ACM
Conference on Lisp and Functional Program-
ming. Nice, France, pages 282-287, June 1990.

Fritz Henglein. Efficient type inference for
higher-order binding-time analysis. In John
Hughes, editor, Conference on Functional Pro-
gramming and Computer Architecture, Cam-
bridge, Massachusetts. Lecture Notes in Com-
puter Science 523, pages 448-472. Springer-
Verlag, August 1991.

Carsten Kehler Holst and John Launchbury.
Handwriting cogen to avoid problems with static
typing. In Draft Proceedings, Fourth Annual
Glasgow Workshop on Functional Programming,
Skye, Scotland, pages 210-218. Glasgow Univer-
sity, 1991.

Carsten Kehler Holst. Syntactic currying: yet
another approach to partial evaluation. Stu-
dent Report 89-7-6, DIKU, University of Copen-
hagen, Denmark, July 1989.

John Launchbury. A strongly-typed self-
applicable partial evaluator. In John Hughes,
editor, Conference on Functional Programming
and Computer Architecture, Cambridge, Mas-
sachusetts. Lecture Notes in Computer Science
523, pages 145-164. Springer-Verlag, August
1991.

J. Lawall and O. Danvy. Continuation-based
partial evaluation. In 1994 ACM Conference
on Lisp and Functional Programming. Orlando,
Florida, June 1994.

Hanne R. Nielson and Flemming Nielson. Au-
tomatic binding time analysis for a typed A-
calculus. In Fifteenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Pro-
gramming Languages. San Diego, California,
pages 98-106, 1988.

Lemma 5

E[Cep[[Varv]]p Cep El& (Varv)]p u(é’[[Var'v]]p) e(p 'v) Scp[[Var'v]]pp.

ElCcp[Lam vt]k]p Cep Elk (Lam v (let n=fresh() in Lam n(Ccp[t](Az. App (Varn) 2))))]e
g (€[Lam v (let n=fresh() in Lam n (Ccep[ti|(Az. App(Varn) 2)))]p) & Lemma 7;

g (Aw. letn=fresh() in Au.E[Cep[ti|(Az. App(Var n) z)]p[v— w, n— u]) mdu_Ctlon

g (Aw. letn=fresh() in Au. Scp[t]p[v — w, n— u](Aa.letm= f:ggzgr)eznm i g e

El(Az. App(Varn) z) (Var m)]plv — w, n — u, m — a])) L

g (Aw. let n=fresh() in Au. Scp[t]p[v — w](Aa. let m=fresh() in u a))

S
p(Aw. Au. Scp[[tl]]p[v — w](Aa.ua)) n twice g (Aw. Scp[tr]p[v— w]) = Scp[Lam vty pp.

Lemma 5

Lemma 8 twice

E[Cep[Appts tZ]]"‘v]]P =
ElCep[t](Az. Cep[t](Ay. App (App x y) (let n=Ffresh() in Lam n (& (Varn)))))]p
Secplti]o(Aa. let m=fresh() in E[(Az.Cep[L](Ay. App (App zy) (let n=Ffresh() in
Lam n (& (Varn))))) (Var m)]p[m — a]) j Tenaming d to @

Sep[ti]o(Az. let m=fresh() in 5[[Ccp[[t§]]()\y App(App (Var m) y) (let n=fresh() in

Lamn (s (Varn)))]p[m— o]) = =

Scplti]p(Az. let m=fresh() in Scp[]p[m — z](Aa. let m’ _f’resh() in E[(Ay. App (App (Var m) y)
(let n=fresh() in Lam n(x (Varn)))) (Varm')]p[m — z, m' — a])) m not free in 3 B; & Lemma 73 €

Sep[ti]o(Az. let m=fresh() in Scp[[tg]]p()\a letm'=fresh() in (z a) (let n=fresh() in Aw. E[x (Varn)]

m, m' not free in & (Var n); Lemma 8 twice; renaming a to y, wto a, n tom
plm— z,m' — a n— wl]))) =

Sep[ti]e(Az. Scp[t]p(Ay. (zy) (let m=fresh() in Aa. E[k (Var m)]p[m — 4 <
Sep[ti]e(Az. Scp[t2]p(Ay. (zy) (Aa. let m=fresh() in £[& (Var m)]p[m — d]))) = Scp[App ti t]pp.

induction

E[CeplLetvty t:]]p Cep ECep[ti](Az. Letva (Ceplta]u))]o =
Sepltilp(Aa. let m'=fresh() in E[(Az. Let vz Cep[[t2]x) (Var n.z,'?i]]pE?n' — al)
]) 1n ui 1ion

Scplti]p(Az. let m'=fresh() in E[Cep[to]c]p[m — z,v— =
Scplti]p(Az. let m'=fresh() in Scp[t2]p[m' — T, v z)(Aa. Ietm fresh() in

m' not free in ty; m' not free in & (Var m); Lemma 8

induction

))) Lem:ma 6

B; &€; renaming a to =

Elk (Varm)]p[m' — z,v— 2, m— q|))

Sep[ti]o(Az. Scpt2]plv — zl(Aa. let m=fresh() in E[& (Var m)]p[v— z, m »: a)))
Sep[ti]o(Az. Scp[t]plv — zl(Aa. let m=fresh() in E[k (Var m)]p[m — a])) = Scp[Letvty t]pp.

Lemma 4

Figure 10: Correctness of cps-cogen (Part 1)

Lemma 5

ElCep[Lam vt]k]p Cep &k (Let m Fresh (Let v(Varo m) (Lamo (Var m) (Cep[61]:))))]e
¢ (€] Let m Fresh(Let v(Vareo m) (Lamo (Var m) (Cep[8]:)))]p) GEE
¢ (let n=fresh() in E[Lamo (Var m) (Cep[ti]e)]p[m — n, v — E[Varo m]]p[m — n]]) BEf
¢ (let n=fresh() in Lam n (E[Ccp[t]]p[m — n, v— Var n])) m ot free:m Ceplti]e
¢ (let n=fresh() in Lam n (E[Ccp[t]e]p[v— Varn])) induction
¢ (let n=fresh() in Lam n(Scp[t]p[v — Varn](Aa.let m=fresh() in E[i (Var m)]p[v— Varn, m — a])))
& Lemma§; e = Ac.a ¢ (let n=fresh() in Lam n(Scp[t1]p[v — Varn].)) Sep Sep[Lam v b pp.

induction

ElCerlAppt tlslp 2 E[Co[n](0e. Coplal(Ay. x (Appoz)] ™
Sep[ti]e(Aa. let m=fresh() in E[(Az. Cep[t2](Ay. & (Appoz y))) (Var m)]]p[m — a].)
Sep[ti]p(Az. let m=fresh() in E[Ccp[2](Ay. & (Appo (Var m) y))]p[m — =]) indyction
Sep[ti]o(Az. let m=fresh() in Scp[[tg]]p[’m — z](Aa. (lc’ztm':freiiz(goinﬁee in t2; f; renaming to ¥
El(Ay. & (Appo(Varm) y)) (Var m')]p[m — z, m' — d))) =

Sep[ti]p(Az. let m=fresh() in Scp[t2]p(Ay . (letm':f’res{f() in ;
E[x (Appo (Var m) (Varm'))]p[m — z, m' — g]))) "=

Sep[ti]p(Az. let m=fresh() in Scp[t2]p(Ay . (letm':f’reshg) in
e (E[Appo (Var m) (Varm)p[m — =, m’ — g])))) =

Scpltilp(Az. let m=fresh() in Scp[t]p(Ay. (let m'=fresh() in p (Appzy))))
Se
Sep[ti]p(Az. Scpt2]p(Ay. 1 (Appz y))) r Scp[[m 4 b pw.
induction

C
E[Cep[Letvty t]k]p = E[Cep[t](Az. Let m Fresh (Let v (Varo m) (Leto (Var m) & (Cep[t2]5))))]p " =
Scpltilp(Aa. let m'=fresh() in E[(Az. Let m Fresh (Let v(Varo m) (Leto (Varm) z
f f 3 €365 & &5 &5 &5 €; renaming ato x
(Cep[t2]%)))) (Var m')]p[m" — a]) =
Scpltilp(Az. let m'=fresh() in let n=Ffresh() in Let nz (E[Cep[t]]p[m' — z, m — n, v~ Varn]))
m not free in Cep[ta]x , i i ,
= Sep[ti]p(Az. let m'=fresh() in let n=fresh() in Let nx (E[Cep[t2]6]p[m' — z, v — Varn]))
induction Scplti]p(Az. let m'=fresh() in let n=fresh() in Let nz (Scp[t2]p[m' — z, v— Varn](Aa.(let m' =fresh() in
" , " m' not free in ty; m' not free in & (Var m''); Lemma 8
El& (Varm)]p[m’ — z, v~ Varn, m" — d)))) =

Scpltilp(Az. let n=Ffresh() in Let nz (Scp[]p[v— Varn](Aa.(let m"=fresh() in
Elk (Varm')]p[v— Varn,m" — d])))) Lemma 4
Scpltilp(Az. let n=Ffresh() in Let nz (Scp[t]p[v— Varn](Aa.(let m"=fresh() in

Elk (Varm]o[m — d])))) = ScplLetvt t:]pp.

B; renaming a to x

Lemma 8 twice

Figure 11: Correctness of cps-cogen (Part 2)

