Improving CPS-Based Partial Evaluation: Writing Cogen by Hand

Anders Bondorf*
DIKU
Department of Computer Science
Universitetsparken 1
DK-2100 Copenhagen \emptyset, Denmark
anders@diku.dk

Dirk Dussart**
Departement Computerwetenschappen
Katholieke Universiteit Leuven
Celestijnenlaan 200A
B-3001 Leuven (Heverlee), Belgium
Dirk.Dussart@cs.kuleuven.ac.be

Abstract

It is well-known that self-applicable partial evaluation can be used to generate compiler generators: cogen $=$ $\operatorname{mix}($ mix, mix), where mix is the specializer (partial evaluator). However, writing cogen by hand gives several advantages: (1) Contrasting to when writing a self-applicable mix, one is not restricted to write cogen in the same language as it treats [HL91]. (2) A handwritten cogen can be more efficient than a cogen generated by self-application; in particular, a handwritten cogen typically performs no (time consuming) environment manipulations whereas one generated by self-application does. (3) When working in statically typed languages with user defined data types, the self-application approach requires encoding data type values [Bon88, Lau91, DNBV91], resulting in relatively inefficient (cogen-generated) compilers that spend much of their time on coding and decoding. By writing cogen by hand, the coding problem is eliminated [HL91, BW93].

Specializers written in continuation passing style (abbreviated "cps") perform better than specializers written in direct style (abbreviated "ds") [Bon92]. For example, a specializer written in cps straightforwardly handles nonunfoldable let-expressions with static body.

The contribution of this paper is to combine the idea of hand-writing cogen with cps-based specialization. We develop a handwritten cps-cogen which is superior to a dscogen for the same reason that a cps-specializer is superior to a ds-specializer: the cps-cogen can for example handle nonunfoldable let-expressions with static body. Hand-writing a cps-cogen is done along the same lines as hand-writing a ds-cogen, but some additional non-standard two-level η expansions turn out to be needed.

The handwritten cps-cogen presented here is efficient in that it performs continuation processing (β-reductions of continuation applications) already at compiler-generation time. Only some continuation processing can be done at

[^0]compiler generation time, however, so the resulting programs generated by cogen also contain continuations.

We prove our handwritten cps-cogen correct with respect to a cps-specializer. We also give a correctness proof of a handwritten ds-cogen; this proof is much simpler than the cps-proof, but to the best of our knowledge, no handwritten ds-cogen has been proved correct before.

1 Introduction

Cps-based specializers are more powerful than dsbased specializers. For example, a cps-specializer straightforwardly specializes ((let $y=\ldots$ in $\lambda x . x+x+y$) 7) into (let $y=\ldots$ in $14+y$) when the let-expression is nonunfoldable. The cps-specializer is able to do so because it explicitly manipulates a context: a cps-specializer is able to move the context "apply to 7 " across the let-binding into the let-body.

In this paper we show how to hand-write a cps-based cogen. We derive the handwritten cps-cogen from a (handwritten) cps-specializer. However, to make it easier to follow the derivation, we first show how to derive (and prove correctness of) a handwritten ds-cogen \mathcal{C}_{d} from a (handwritten) ds-specializer \mathcal{S}_{d} : the ds-based cogen is much simpler to derive than the cps-based cogen. Then we derive and prove correctness of the handwritten cps-cogen $\mathcal{C}_{c p}$ from a (handwritten) cps-specializer $\mathcal{S}_{c p}$. See the horizontal arrows in Figure 1.

Figure 1: Overview
The cps-specializer $\mathcal{S}_{c p}$ can be derived from the dsspecializer \mathcal{S}_{d} (the leftmost vertical arrow in Figure 1) [Bon92]. We shall derive the cps-cogen $\mathcal{C}_{c p}$ from the cpsspecializer $\mathcal{S}_{c p}$. In Section 4 we briefly discuss how to derive $\mathcal{C}_{c p}$ from \mathcal{C}_{d} instead (rightmost vertical arrow); this derivation is relevant if one is to hand-write a cps-cogen for a language where a handwritten ds-cogen already exists.

We shall consider specialization similar to the one of Lambda-mix [GJ91]. In this paper we only consider a source language consisting of the strict (call-by-value) weak-head normal form pure lambda calculus (variables, λ-abstraction and application) extended with a let-construct, see Figure 2.

We include the let-construct in the source language to cover a form that cps-based specialization treats better than dsspecialization does [Bon92].

$$
\begin{aligned}
& \text { Variable }=\text { String } ; \quad e \in \text { Expression } ; v \in \text { Variable } \\
& e::=\text { Varv } \mid \text { Lamve } e_{1} \mid \text { App } e_{1} e_{2} \mid \text { Letv } e_{1} e_{2}
\end{aligned}
$$

Figure 2: Abstract syntax of source language
In an extended version of the paper, we will also cover the remaining constructs from Lambda-mix (constants, conditionals and $f x$), as well as primitive operations and operations on tuples. Conditionals are interesting as a cpsspecializer, contrasting to a ds-specializer, is able to handle conditionals with dynamic test but static branches [Bon92]. Operations on tuples are interesting as they illustrate the coding problem that arises when writing a specializer mix, but not when hand-writing cogen. Tuples are as easy to handle in a handwritten cps-cogen as in a handwritten ds-cogen: no particular problems with tuples arise due to cps.

When hand-writing cogen, we shall need some abstract syntax constructors in addition to Var, Lam, App and Let. These additional constructors are Vars, Fresh, Lam \diamond, App and Lets. The semantics of the source language, extended with these additional forms, is given in Figure 3. The metalanguage used in this paper is strict: λ - and let-forms are thus strict as well as environment updates $\rho[\ldots \mapsto \ldots]$. Notice that fresh() generates a fresh variable name (a string) and that the forms Lam», App $\begin{aligned} & \text { and Let } \diamond \text { are used to gen- }\end{aligned}$ erate expressions rather than values as Lam, $A p p$ and Let do.

Figure 3: Semantics of extended source language
Programs to be partially evaluated will be annotated and written in a two-level language [NN88, GJ91]. The twolevel language is specified in Figure 4. Each of the compound forms now exist in two versions, a static version (e.g. $L a m v t_{1}$) and a dynamic version (e.g. Lamvt_{1}). The static versions will be reduced at partial evaluation time, and code will be emitted for the dynamic versions.

It turns out to be helpful for cps-based specialization that all source expression variables have distinct names. In the rest of this paper, variable t therefore only ranges over two-level expressions where all variables names are different (variables names can always be made distinct by α conversion).

Only programs that are well-annotated may be specialized. Type rules for checking well-annotatedness are given

```
\(t \in\) 2Expression \(; v \in\) Variable
\(\boldsymbol{t}::=\operatorname{Varv}\left|\operatorname{Lamv} t_{1}\right| A p p t_{1} t_{2} \mid\) Letv \(t_{1} t_{2} \mid\)
    \(\underline{\text { Lam } v t_{1}}\left|\underline{A p p} t_{1} t_{2}\right| \underline{\text { Let }} \boldsymbol{v} t_{1} t_{2}\)
```

Figure 4: Syntax of two-level language
in [GJ91] (not for the let-form, though, but it is simple to add). Annotating programs can be done automatically by binding-time analysis, see e.g. [Gom90, Hen91].

2 Direct style

Figure 5 specifies the ds-specializer \mathcal{S}_{d}. Specializer \mathcal{S}_{d} is a part of the Lambda-mix specializer T from Appendix A of the paper [GJ91], extended with (straightforward) rules for the static and dynamic let-forms. Notice that domain 2 Value is equal to domain Value since Value already includes the forms generated when evaluating the forms Lam \diamond, App and Lets (Figure 3).

```
\(\mathcal{S}_{d}:\) 2Expression \(\times(\) Variable \(\rightarrow\) 2Value \() \rightarrow\) 2Value
\(\mathcal{S}_{d} \llbracket\) Var \(v \rrbracket \rho=\rho v\)
\(\mathcal{S}_{d} \llbracket L a m v t_{1} \rrbracket \rho=\lambda w . \mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho[v \mapsto w]\)
\(\mathcal{S}_{d} \llbracket A p p t_{1} t_{2} \rrbracket \rho=\left(\mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho\right)\left(\mathcal{S}_{d} \llbracket t_{2} \rrbracket \rho\right)\)
\(\mathcal{S}_{d} \llbracket\) Let \(v t_{1} t_{2} \rrbracket \rho=\mathcal{S}_{d} \llbracket t_{2} \rrbracket \rho\left[v \mapsto \mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho\right]\)
\(\mathcal{S}_{d} \llbracket \underline{\text { Lam }} v t_{1} \rrbracket \rho=\operatorname{let} n=\) fresh ()
    in \(\operatorname{Lam} n\left(\mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho[v \mapsto \operatorname{Var} n \rrbracket)\right.\)
\(\mathcal{S}_{d} \llbracket \underline{A p p} t_{1} t_{2} \rrbracket \rho=A p p\left(\mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho\right)\left(\mathcal{S}_{d} \llbracket t_{2} \rrbracket \rho\right)\)
\(\mathcal{S}_{d} \llbracket \underline{\text { Let }} v \boldsymbol{t}_{1} \boldsymbol{t}_{2} \rrbracket \rho=\boldsymbol{l e t} \boldsymbol{n}=\) fresh ()
\(i_{n} \operatorname{Let} n\left(\mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho\right)\left(\mathcal{S}_{d} \llbracket t_{2} \rrbracket \rho[v \mapsto \operatorname{Var} n]\right)\)
```

Figure 5: Ds-specializer
Notice that ds-specializer \mathcal{S}_{d} cannot specialize forms such as $t=\operatorname{App}\left(\underline{\operatorname{Let}} v_{1} \ldots\left(\operatorname{Lam} v_{2} \ldots\right)\right)\left(\operatorname{Var} v_{3}\right)$ as \mathcal{S}_{d} requires the body of a Let-form to specialize to an expression: the result of \mathcal{S}_{d} 's call $\mathcal{S}_{d} \llbracket \boldsymbol{t}_{2} \rrbracket \rho[\boldsymbol{v} \mapsto \operatorname{Var} n]$ must be an expression as it is an argument to the abstract syntax constructor Let. But \mathcal{S}_{d} specializes $L a m v_{2} \ldots$ to a function $\lambda w . .$. , not to an expression, so expression t is not well-annotated with respect to \mathcal{S}_{d}. To specialize the expression, the annotations should be $\underline{A p p}\left(\underline{\operatorname{Let}} v_{1} \ldots\left(\underline{\operatorname{Lam}} v_{2} \ldots\right)\right.$) (Var $\left.v_{3}\right)$ (as it also follows from the well-annotatedness rules of [GJ91]); being underlined, the application would consequently not be β-reduced by \mathcal{S}_{d} during specialization.

We now present a ds-cogen \mathcal{C}_{d} derived from the dsspecializer \mathcal{S}_{d}; see Figure 6. Essentially, instead of performing what \mathcal{S}_{d} does, compiler generator \mathcal{C}_{d} generates code that will perform the same operations when evaluated (by \mathcal{E}). For example, specializer \mathcal{S}_{d} performs an application when treating $A p p$-forms, but \mathcal{C}_{d} generates an $A p p$-expression which, when evaluated, performs an application. And, where \mathcal{S}_{d} generates an $A p p$-expression when treating $A p p$ forms, compiler generator \mathcal{C}_{d} generates an $A p p \diamond$-expression which, when evaluated, generates an $A p p$-expression.

Notice that \mathcal{C}_{d} takes no environment (ρ) argument. Avoiding environment manipulation is possible by reusing source variable names in the treatments of Lam, Let, Lam

```
\(\mathcal{C}_{d}:\) 2Expression \(\rightarrow\) Expression
\(\mathcal{C}_{d} \llbracket \operatorname{Var} v \rrbracket=\operatorname{Var} v\)
\(\mathcal{C}_{d} \llbracket \operatorname{Lamv} v t_{1} \rrbracket=\operatorname{Lam} v\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\)
\(\mathcal{C}_{d} \llbracket A p p t_{1} t_{2} \rrbracket=A p p\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right)\)
\(\mathcal{C}_{d} \llbracket \operatorname{Letv} t_{1} t_{2} \rrbracket=\operatorname{Letv}\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right)\)
\(\mathcal{C}_{d} \llbracket \underline{\operatorname{Lam} v} t_{1} \rrbracket=\operatorname{Letm} \operatorname{Fresh}\left(\operatorname{Let} v(\operatorname{Var} \diamond m)\left(\operatorname{Lam} \diamond(\operatorname{Varm})\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\right)\right)\)
\(\mathcal{C}_{d} \llbracket A p p t_{1} t_{2} \rrbracket=A p p \diamond\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right)\)
\(\mathcal{C}_{d} \llbracket \underline{\text { Let } v t_{1}} t_{2} \rrbracket=\operatorname{Let} m \operatorname{Fresh}\left(\operatorname{Let} v(\operatorname{Var} \diamond m)\left(\operatorname{Let} \diamond(\operatorname{Varm})\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right)\right)\right)\)
```

Figure 6: Ds-cogen
and Let (notice e.g. how \mathcal{S}_{d} 's Lam-rule $\lambda w . \mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho[v \mapsto w]$ turns into $\operatorname{Lam} v\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)$ in \mathcal{C}_{d} : source name v is used instead of w whereby the binding $[v \mapsto w]$ can be ignored), but it is non-trivial to see that this does not lead to unexpected name clashes. The reason is briefly that $\mathcal{C}_{\boldsymbol{d}}$ performs no symbolic unfolding and thus preserves the scoping structure of the source program. The handwritten compiler generators [HL91, BW93] did not manipulate environments either (but no correctness proofs were given there). Compiler generators generated by self-application do manipulate environments (see e.g. [GJ91]) and thus they are less efficient than the handwritten ones.

The following theorem states that the handwritten cogen \mathcal{C}_{d} is indeed correct with respect to the specializer \mathcal{S}_{d} (and in particular this also proves that the environment-free treatment of variables in $\mathcal{C}_{\boldsymbol{d}}$ is correct). The theorem states that evaluating the code generated by \mathcal{C}_{d} in environment ρ yields the same result as specializing by \mathcal{S}_{d} (in environment ρ):
Theorem 1 (Correctness of ds-cogen)
$\forall t, \rho: \mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t \rrbracket \rrbracket \rho=\mathcal{S}_{d} \llbracket t \rrbracket \rho$
Proof: By structural induction over two-level expressions. See Appendix A. 1 for details.

3 Continuation passing style

Figure 7 contains a cps-specializer $\mathcal{S}_{c p}$, derived from \mathcal{S}_{d} by (non-standard) cps-transformation as described in [Bon92]; continuation ι is the identity continuation $\lambda \boldsymbol{x} . \boldsymbol{x}$. The cps-specializer $\mathcal{S}_{c p}$ is more powerful than the dsspecializer \mathcal{S}_{d} : it does not constrain the annotations of the body of Let-forms (the type rule for checking wellannotatedness for Let-forms is consequently more liberal for cps-based specialization than for ds-specialization). For example, specializer $\mathcal{S}_{c p}$ is able to specialize the form $\operatorname{App}\left(\underline{\operatorname{Let}} v_{1} \ldots\left(\operatorname{Lam} v_{2} \ldots\right)\right)\left(\operatorname{Var} v_{3}\right)$, hence β-reducing the application during specialization (contrasting to \mathcal{S}_{d}, cf. Section 2).

Notice that the identity continuation ι is used not only to initialize, but also when treating Lam-forms. This nonstandard "impure" form of cps turns out to be necessary to allow the desired liberal treatment of Let-forms, propagating κ "over the let-binding". The more pure cps-code let $n=f r e s h()$ in $\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho[v \mapsto n](\lambda x . \kappa(\operatorname{Lamnx}))$ that one might have expected in the Lam-rule thus gives an incorrect result if the lambda-body t_{1} is a Let-form. Indeed, the let- and λ-bindings are reversed. In short, the problem is
that continuations that dump their argument in the bodyposition of a generated lambda-expression are not allowed to be propagated over the binding when specializing Let-forms; the continuation $\lambda x, \kappa(\operatorname{Lam} n x)$ is such a disallowed form. The code in Figure 7 does not contain any such "ill-behaved" continuations. We refer to [Bon92] for further details.

We are now ready to present the handwritten cps-cogen $\mathcal{C}_{c p}$, see Figure 8. Compiler generator $\mathcal{C}_{c p}$ is derived in the same way from $\mathcal{S}_{c p}$ as \mathcal{C}_{d} was derived from \mathcal{S}_{d} : instead of performing what $\mathcal{S}_{c p}$ does, $\mathcal{C}_{c p}$ generates code that will perform the same operations when evaluated. Deriving the $\mathcal{C}_{c p}$ rules for Lam and $A p p$ involves some additional steps that have no analogue in the \mathcal{C}_{d}-derivation; these steps will be described below. Notice that similarly to \mathcal{C}_{d}, compiler generator $\mathcal{C}_{c p}$ performs no operations on environments, contrasting to what a compiler generator generated by self-application would do. Also notice that $\mathcal{C}_{c p}$ has a continuation argument: we want $\mathcal{C}_{c p}$ to perform continuation reductions already at cogen-time rather than suspending all continuation processing to appear in the programs generated by cogen (such a simpler cps-cogen can be written, but it is certainly less interesting).

We shall now explain why the Lam- and App-rules look the way they do. At a first try, we might optimistically have written the Lam- and App-rules in the following more "natural" way:
$\mathcal{C}_{c p} \llbracket \operatorname{Lam} v t_{1} \rrbracket \kappa=\kappa\left(\operatorname{Lam} v\left(\mathcal{C}_{c p} \llbracket t_{1} \rrbracket\right)\right)$
$\mathcal{C}_{c p} \llbracket A p p t_{1} t_{2} \rrbracket \kappa=\mathcal{C}_{c p} \llbracket t_{1} \rrbracket\left(\lambda x . \mathcal{C}_{c p} \llbracket t_{2} \rrbracket(\lambda y . A p p(A p p x y) \kappa)\right)$
Let us first consider the incorrect Lam-rule. Notice that $\mathcal{C}_{c p} \llbracket t_{1} \rrbracket$ is a function (from continuations to expressions) whereas the second argument to constructor Lam must be an expression of type Expression. We can fix this problem by a special two-level η-expansion that converts a function to an expression (a λ-form into a Lamform $): f \mapsto \operatorname{Lam} n(f(\operatorname{Var} n))$ where n is fresh to avoid name shadowing. Instead of $\mathcal{C}_{c p} \llbracket t_{1} \rrbracket$, we would thus write $\operatorname{Lam} n\left(\mathcal{C}_{c p} \llbracket \boldsymbol{t}_{1} \rrbracket(\operatorname{Var} n)\right)$. But now there is a problem with the expression $\mathcal{C}_{c p} \llbracket t_{1} \rrbracket($ Var $n)$ as $\mathcal{C}_{c p}$'s second argument must be a function (a continuation), not an expression such as Var n. We therefore perform another kind of two-level η-expansion, this time converting an expression into a function: $e \mapsto$ λx. Appex. We then obtain $\mathcal{C}_{c p} \llbracket t_{1} \rrbracket(\lambda x . A p p(\operatorname{Var} n) x)$. The Lam-rule of Figure 8 has now emerged.

In a similar way, the $A p p$-rule of Figure 8 is obtained from the incorrect one by η-expanding κ in the incorrect expression $\operatorname{App}(\operatorname{Appxy}) \kappa$ into $\operatorname{Lam} n(\kappa(\operatorname{Var} n)) ; A p p$'s second argument must be an expression, not a function.

```
\(\mathcal{S}_{c p}:\) 2Expression \(\times(\) Variable \(\rightarrow\) 2Value \() \times(\) 2Value \(\rightarrow\) 2Value \() \rightarrow\) 2Value
\(\mathcal{S}_{c p} \llbracket\) Var \(v \rrbracket \rho \kappa \quad=\kappa(\rho v)\)
\(\mathcal{S}_{c p} \llbracket \operatorname{Lamv} t_{1} \rrbracket \rho \kappa=\kappa\left(\lambda w . \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho[v \mapsto w]\right)\)
\(\mathcal{S}_{c p} \llbracket A p p t_{1} t_{2} \rrbracket \rho \kappa=\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho(\lambda y \cdot(x y) \kappa)\right)\)
\(\mathcal{S}_{c p} \llbracket\) Let \(v t_{1} t_{2} \rrbracket \rho \kappa=\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho[v \mapsto \boldsymbol{x}] \kappa\right)\)
\(\left.\mathcal{S}_{c p} \llbracket \underline{L a m} v t_{1}\right] \rho \kappa=\kappa\left(\operatorname{let} n=f r e s h()\right.\) in Lam \(n\left(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left[v \mapsto \operatorname{Var} n_{\iota}\right)\right)\)
\(\mathcal{S}_{c p} \llbracket A p p t_{1} t_{2} \rrbracket \rho \kappa=\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho(\lambda y . \kappa(A p p x y))\right)\)
\(\mathcal{S}_{c p} \llbracket \underline{\text { Let } v} t_{1} t_{2} \rrbracket \rho \kappa=\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x\right.\). let \(n=\) fresh () in Let \(n x\left(\mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho\left[v \mapsto \operatorname{Var} n_{-} \kappa\right)\right)\)
```

Figure 7: Cps-specializer

```
\(\mathcal{C}_{c p}:\) 2Expression \(\times(\) Expression \(\rightarrow\) Expression \() \rightarrow\) Expression
\(\mathcal{C}_{c p} \llbracket \operatorname{Var} v \rrbracket \kappa \quad=\kappa(\operatorname{Var} v)\)
\(\mathcal{C}_{c p} \llbracket \operatorname{Lamv} v t_{1} \rrbracket \kappa=\kappa\left(\operatorname{Lamv}\left(\operatorname{let} n=f r e s h() \operatorname{in} \operatorname{Lam} n\left(\mathcal{C}_{c p} \llbracket t_{1} \rrbracket(\lambda x . \operatorname{App}(\operatorname{Var} n) x)\right)\right)\right)\)
\(\mathcal{C}_{c p} \llbracket A p p t_{1} t_{2} \rrbracket \kappa=\mathcal{C}_{c p} \llbracket t_{1} \rrbracket\left(\lambda x \cdot \mathcal{C}_{c p} \llbracket t_{2} \rrbracket(\lambda y . \operatorname{App}(\operatorname{Appxy})(\operatorname{let} n=\operatorname{fresh}()\right.\) in \(\left.\operatorname{Lam} n(\kappa(\operatorname{Var} n))))\right)\)
\(\mathcal{C}_{c p} \llbracket\) Let \(v t_{1} t_{2} \rrbracket \kappa=\mathcal{C}_{c p} \llbracket t_{1} \rrbracket\left(\lambda x . \operatorname{Let} v x\left(\mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa\right)\right)\)
```



```
\(\mathcal{C}_{c p} \llbracket A_{\text {App }} t_{1} t_{2} \rrbracket \kappa=\mathcal{C}_{c p} \llbracket t_{1} \rrbracket\left(\lambda x . \mathcal{C}_{c p} \llbracket t_{2} \rrbracket(\lambda y . \kappa(A p p \diamond x y))\right)\)
\(\mathcal{C}_{c p} \llbracket \underline{\text { Let }} v t_{1} t_{2} \rrbracket \kappa=\mathcal{C}_{c p} \llbracket t_{1} \rrbracket\left(\lambda x . \operatorname{Let} m\right.\) Fresh \(\left.\left(\operatorname{Let} v(\operatorname{Vars} m)\left(\operatorname{Let} \diamond(\operatorname{Var} m) x\left(\mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa\right)\right)\right)\right)\)
```

Figure 8: Cps-cogen

The η-expansions used here resemble the η-conversions used in [DF92] to separate "administrative" from "nonadministrative" continuations in cps-transformation. Also, similar η-conversions were used for binding-time improvements in [Bon91].

We note that expression $\operatorname{Lamn}(\kappa(\operatorname{Var} n))$ in the $A p p-$ rule generates continuations that are present in the programs generated by $\mathcal{C}_{c p}$. Thus, even though $\mathcal{C}_{c p}$ performs continuation processing (β-reductions), it also generates code that still contains (some) continuation processing. This is again analogue to the distinction between "administrative" and "non-administrative" continuations in cpstransformations: only administrative continuations can be β-reduced during cps-transformation.

To prove correctness of $\mathcal{C}_{c p}$ with respect to $\mathcal{S}_{c p}$, we must prove the following: for all \boldsymbol{t} and ρ, it holds that $\left.\left.\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t \rrbracket\right\rfloor\right\rfloor \rho=\mathcal{S}_{c p} \llbracket t \rrbracket \rho \iota$. That is, evaluating the expression generated by $\mathcal{C}_{c p}$ in some environment ρ gives the same result as specializing t in the same environment. Both $\mathcal{C}_{c p}$ and $\mathcal{S}_{c p}$ are initially called with the identity continuation ι. To prove this equality inductively, we need a more general theorem that holds not only when the continuations are ι. Can we hope to simply replace ι by κ and then expect that the equality holds for all κ ? The answer is unfortunately "no". The reason is simple: the type of $\mathcal{S}_{c p}$'s continuation parameter is 2 Value $\rightarrow 2$ Value whereas the type of $\mathcal{C}_{c p}$'s continuation parameter is Expression \rightarrow Expression. However, given a $\mathcal{C}_{c p}$-type continuation κ, we can construct a $\mathcal{S}_{c p}$-type continuation: λ a. let $m=$ fresh () in $\mathcal{E} \llbracket \kappa(\operatorname{Var} m) \rrbracket \rho[m \mapsto a]$. The idea here is to evaluate the expression generated by applying κ to an argument, taking care not to evaluate a which already is a 2 Value (this is the reason why the continuation is not simply $\lambda \boldsymbol{a} \cdot \mathcal{E} \llbracket \kappa a \rrbracket \rho)$. This leads to the following correctness theorem.

Theorem 2 (Correctness of cps-cogen)
$\forall t, \rho, \kappa: \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t \rrbracket \kappa \rrbracket \rho=$

$$
\mathcal{S}_{c p} \llbracket t \rrbracket \rho(\lambda a . \operatorname{let} m=\text { fresh }() \text { in } \mathcal{E} \llbracket \kappa(\operatorname{Var} m) \rrbracket \rho[m \mapsto a])
$$

Proof: By structural induction over two-level expressions. See Appendix A. 2 for details.

In this theorem, as well as in Appendix A.2, we implicitly assume some restrictions on κ when quantifying by $\forall t, \ldots, \kappa \ldots$: continuation κ must be related to two-level expression t in the sense that κ only ranges over those continuations that are generated when computing $\mathcal{C}_{c p} \llbracket t_{1} \rrbracket \iota$ where \boldsymbol{t} is a subexpression of \boldsymbol{t}_{1}. That is, we only consider the relevant continuations, not all continuations. Notice that the identity continuation ι is a relevant continuation (possible value for κ).
The desired correctness property now follows as a corollary:
Corollary 3 (Correctness of cps-cogen)
$\forall t, \rho: \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t \rrbracket \downarrow \rrbracket \rho=\mathcal{S}_{c p} \llbracket t \rrbracket \rho \iota$
Proof: Follows from Theorem 2 since

$$
\begin{gathered}
\lambda a . \text { let } m=\text { fresh }() \text { in } \mathcal{E} \llbracket \iota(\text { Var } m) \llbracket \rho[m \mapsto a] \stackrel{\beta}{=} \\
\lambda a . \text { let } m=\text { fresh }() \text { in } \mathcal{E} \llbracket \operatorname{Var} m] \rho[m \mapsto a] \stackrel{\mathcal{E}}{=} \\
\lambda a . \text { let } m=\text { fresh }() \text { in } a^{\text {Lemma }}{ }^{8} \lambda a \cdot a=\iota
\end{gathered}
$$

(Lemma 8 can be found in Appendix A.2.) In the proof of Theorem 2, a number of lemmas are used; these are found in Appendix A.2. It is worth noticing that the lemmas only hold when t and κ are restricted as described earlier: all variable names in t must be distinct (α-conversion, cf. Section 1), and κ must be relevant.

4 Deriving $\mathcal{C}_{c p}$ from \mathcal{C}_{d}

In retrospect, when comparing \mathcal{C}_{d} and $\mathcal{C}_{c p}$, we notice that $\mathcal{C}_{c p}$ could have been derived from \mathcal{C}_{d} rather than from $\mathcal{S}_{c p}$: by cps-transforming the \mathcal{C}_{d}, taking into account to use the non-standard cps Lam-rule, and performing appropriate η expansions for the $\overline{L a m}$ - and $A p p$-rules. This way of deriving $\mathcal{S}_{c p}$ might be useful in a context where a handwritten dscogen already exists, for example if one were to write a cpscogen for the ML-cogen described in [BW93]. We believe that this can be done without great difficulty.

5 Related work

Already in the REDFUN-project was a cogen for a subset of Lisp written by hand [BHOS76]. The motivation was that the specializer could not be self-applied.

In [Hol89], a handwritten cogen was based on macro expansion. In the paper [HL91], a ds-cogen for a statically typed language is described. The ideas from [HL91] were used for hand-writing a ds-cogen for a subset of Standard ML [BW93].

Quite recently the work by Lawall and Danvy in [LD94] came to our attention. Lawall and Danvy show how the cps-specializer from [Bon92] can be almost automatically derived from a ds-specializer by inserting the control operators shift and reset (see [DF90]) at selected places and cps converting the resulting specialiser. They also devote some attention to how their ideas could be used in the context of a handwritten cogen.

6 Conclusion

We have demonstrated how an efficient cps-based cogen can be written by hand. The handwritten cogen performs no environment manipulations, contrasting to cogens generated by self-applying specializers. The cps-cogen is derived naturally from a cps-specializer, except that some non-standard η-expansions are needed in the treatment of Lam- and Appforms to shift between functions and expressions. We have given correctness proofs for the cps-cogen as well as for a ds-cogen.

We believe that our handwritten cogen is a good starting point for hand-writing cps-based cogens for larger strict functional languages. Our work does not immediately carry over to lazy languages as the cps-transformation we have used is the strict cps-transformation. However, it is plausible that a similar development could be made for a lazy language using call-by-name cps-transformation (with loss of sharing as a consequence).

Acknowledgements

We would like to thank Neil Jones, Torben Mogensen, Julia Lawall for the fruitful discussions on the subject; also thanks to Karel De Vlaminck and Eddy Bevers for his indispensable contributions in the final stages of the paper.

A Proofs of the theorems 1 and 2

Both proofs are by induction over t; the case analysis is over the syntactic forms specified in Figure 4. All equalities are annotated to explain why equality holds. Notice that β and η-equalities are used: β / η do not in general hold for the
typed (\mathcal{C}_{d} and \mathcal{S}_{d} are both simply typed) strict weak-head normal form lambda-calculus. β / η thus only hold when termination properties do not change; we only use β / η when this is the case. We use β-abstraction to prevent duplicating expressions of form fresh(). Also notice that in both proofs we rely on the fact that the variable m, introduced in the Lam- and Let-rule in both ds- and cps-cogen, is unique: m does not occur in input programs and can not be generated by application of fresh(). By construction it is assured that $\forall t_{1}$: neither $\mathcal{C}_{c p} \llbracket t_{1} \rrbracket \kappa$ (where κ is relevant) nor $\mathcal{C}_{d} \llbracket t_{1} \rrbracket$ contains m as a free variable, nor that any definition of m shadows another definition of m (see Figure 6 and Figure 8).

A. 1 Proof of Theorem 1

See Figure 9.

A. 2 Proof of Theorem 2

We first give the lemmas needed for the inductive proof of Theorem 2. Notice that Lemma 8 was also used in the proof of Corollary 3. We use M and E to range over metaexpressions (as opposed to e that ranges over object expressions). Recall (Section 3) that only two-level expressions t with all variable names distinct and only well-behaved continuations κ are considered when quantifying over t and κ.

Lemma 4 (Environment simplification)
$\forall t, \kappa$: if v is bound in \boldsymbol{t} then

$$
\begin{aligned}
\forall \rho: & \text { let } m=\text { fresh }() \text { in } \mathcal{E} \llbracket \kappa(\text { Var } m) \rrbracket \rho[v \mapsto \ldots]= \\
& \text { let } m=\text { fresh }() \text { in } \mathcal{E} \llbracket \kappa(\operatorname{Var} m) \rrbracket \rho
\end{aligned}
$$

that is, term $\kappa(\operatorname{Var} m)$ will not contain any free occurrences of \boldsymbol{v}.
Proof: Continuation κ is generated independently of \boldsymbol{t}, so when applied to (Varm) it cannot (since all source variable names are distinct) generate expressions with any (and hence no free) v-occurrences.

Lemma 5 (Extracting out κ 's argument)

$\forall t, \kappa$: if t is one of the forms Var $v, \operatorname{Lam} v t_{1}, \underline{\operatorname{Lam} v} \boldsymbol{v} \boldsymbol{t}_{1}$ or App $t_{1} t_{2}$ then, when computing $\mathcal{C}_{c p} \llbracket t \rrbracket \kappa$, the following equality holds for (all relevant instances of) the expressions κE in the right-hand sides of the sides of the rules for Var, Lam, Lam and App:
$\forall \rho: \mathcal{E} \llbracket \kappa E \rrbracket \rho=$

$$
(\lambda a . \operatorname{let} m=\operatorname{fresh}() \text { in } \mathcal{E} \llbracket \kappa(\text { Var } m) \rrbracket \rho[m \mapsto a])(\mathcal{E} \llbracket E \rrbracket \rho)
$$

Proof: First notice that since $\rho[m \mapsto a]$ is strict in a, we may β-reduce $(\lambda a \ldots)(\mathcal{E} \llbracket E] \rho)$. We thus have to prove $\mathcal{E} \llbracket \kappa E \rrbracket \rho=$ let $m=$ fresh () in $\mathcal{E} \llbracket \kappa($ Var $m) \rrbracket \rho[m \mapsto \mathcal{E} \llbracket E \rrbracket \rho]$. We shall refer to the left- and rigth-hand sides of this equality as lhs and rhs below.

Let e be the value of (meta-)expression E, let e_{1} be the value of (meta-)expression κE, and let ϵ_{2} be the value of (meta-)expression $\kappa(\operatorname{Var} m$); notice from the type of κ (Figure 8) that the values e, e_{1} and ϵ_{2} are all expressions. It then holds that e_{1} always contains at least one leaf which is a copy of e, and this leaf is always placed in a strict position, i.e. when evaluating e_{1}, e is guaranteed also to be evaluated ("evaluation" is done by \mathcal{E}); apart from the e-leaves, the rest of ϵ_{1} is independent of ϵ. These properties of ϵ_{1} are easily inductively proved by considering all possible relevant continuations κ.

```
\(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket \operatorname{Var} v \rrbracket \rrbracket \rho \stackrel{\mathcal{C}_{d}}{=} \mathcal{E} \llbracket \operatorname{Var} v \rrbracket \rho \stackrel{\mathcal{E}}{=} \rho v \stackrel{\mathcal{S}_{d}}{=} \mathcal{S}_{d} \llbracket \operatorname{Var} v \rrbracket \rho\).
\(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket \operatorname{Lam} v t_{1} \rrbracket \rrbracket \rho \stackrel{\mathcal{C}_{d}}{=} \mathcal{E} \llbracket \operatorname{Lam} v\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right) \rrbracket \rho \stackrel{\mathcal{E}}{=} \lambda w . \mathcal{E} \llbracket\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right) \rrbracket \rho[v \mapsto w] \stackrel{\text { induction }}{=} \lambda w . \mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho[v \mapsto w] \stackrel{\mathcal{S}_{d}}{=}\)
    \(\mathcal{S}_{d} \llbracket \operatorname{Lam} v \boldsymbol{t}_{1} \rrbracket \rho\).
\(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket A p p t_{1} t_{2} \rrbracket \rrbracket \rho \stackrel{\mathcal{C}_{d}}{=} \mathcal{E} \llbracket A p p\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right) \rrbracket \rho \stackrel{\mathcal{E}}{=}\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{1} \rrbracket \rrbracket \rho\right)\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{2} \rrbracket \rrbracket \rho\right) \stackrel{2 \text { inductions }}{=}\)
    \(\left(\mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho\right)\left(\mathcal{S}_{d} \llbracket t_{2} \rrbracket \rho\right) \stackrel{\mathcal{S}_{d}}{=} \mathcal{S}_{d} \llbracket A p p t_{1} t_{2} \rrbracket \rho\).
\(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket\) Letv \(t_{1} \boldsymbol{t}_{2} \rrbracket \rrbracket \rho \stackrel{\mathcal{C}_{d}}{=} \mathcal{E} \llbracket \operatorname{Letv}\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right) \rrbracket \rho \stackrel{\mathcal{E}}{=} \mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{2} \rrbracket \rrbracket \rho\left[v \mapsto \mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{1} \rrbracket \rrbracket \rho\right] \quad 2\) inductions
    \(\mathcal{S}_{d} \llbracket t_{2} \rrbracket \rho\left[v \mapsto \mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho\right] \stackrel{\mathcal{S}_{d}}{=} \mathcal{S}_{d} \llbracket \operatorname{Let} v t_{1} t_{2} \rrbracket \rho\).
\(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket \underline{\operatorname{Lam}} v t_{1} \rrbracket \rrbracket \rho \stackrel{\mathcal{C}_{d}}{=} \mathcal{E} \llbracket\) Letm Fresh \(\left(\operatorname{Let} v(\operatorname{Var} \diamond m)\left(\operatorname{Lam} \diamond(\operatorname{Varm})\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\right)\right) \rrbracket \rho \stackrel{\mathcal{E}}{=}\)
    \(\mathcal{E} \llbracket \operatorname{Let} v(\operatorname{Var} \diamond m)\left(\operatorname{Lam} \diamond(\operatorname{Var} m)\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\right) \rrbracket \rho[m \mapsto \operatorname{fresh}()] \stackrel{\beta}{=}\)
    let \(n=\) fresh () in \(\mathcal{E} \llbracket \operatorname{Letv}(\operatorname{Vars} m)\left(\operatorname{Lam} \diamond(\operatorname{Varm})\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\right) \rrbracket \rho[m \mapsto n] \stackrel{\mathcal{E}}{=}\)
    let \(n=\) fresh () in \(\mathcal{E} \llbracket \operatorname{Lam} \diamond(\operatorname{Var} m) \mathcal{C}_{d} \llbracket t_{1} \rrbracket \rrbracket \rho[m \mapsto n, v \mapsto \mathcal{E} \llbracket \operatorname{Var} \diamond m \rrbracket \rho[m \mapsto n]] \stackrel{\mathcal{E} ; \mathcal{E} ; \mathcal{E}}{=}\)
    let \(n=\) fresh() in \(\operatorname{Lam} n\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{1} \rrbracket \rrbracket \rho[m \mapsto n, v \mapsto \operatorname{Var} n]\right) \stackrel{\left.m \text { not free in } \mathcal{C}_{d} \llbracket t_{1}\right]}{=}\)
    let \(n=\) fresh() in Lam \(n\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{1} \rrbracket\right] \rho[v \mapsto\) Var \(\left.n]\right) \stackrel{\text { induction }}{=}\)
    let \(n=\) fresh() in \(\operatorname{Lam} n\left(\mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho[v \mapsto \operatorname{Var} n \rrbracket) \stackrel{\mathcal{S}_{d}}{=} \mathcal{S}_{d} \llbracket \underline{\operatorname{Lam} v} t_{1} \rrbracket \rho\right.\).
\(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket A p p t_{1} t_{2} \rrbracket \rrbracket \rho \stackrel{\mathcal{C}_{d}}{=} \mathcal{E} \llbracket A p p \diamond\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right) \rrbracket \rho \stackrel{\mathcal{E}}{=} A p p\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{1} \rrbracket \rrbracket \rho\right)\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{2} \rrbracket \rrbracket \rho\right){ }^{2}\) inductions
    \(A p p\left(\mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho\right)\left(\mathcal{S}_{d} \llbracket t_{2} \rrbracket \rho\right) \stackrel{\mathcal{S}_{d}}{=} \mathcal{S}_{d} \llbracket \underline{A p p} t_{1} t_{2} \rrbracket \rho\).
\(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket \underline{\text { Let } v t_{1}} \boldsymbol{t}_{2} \rrbracket \rrbracket \rho \stackrel{\mathcal{C}_{d}}{=} \mathcal{E} \llbracket \operatorname{Letm} \operatorname{Fresh}\left(\operatorname{Letv}(\operatorname{Var} \Delta m)\left(\right.\right.\) Letts \(\left.\left.(\operatorname{Varm})\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right)\right)\right) \rrbracket \rho \stackrel{\mathcal{E}}{=}\)
    \(\mathcal{E} \llbracket \operatorname{Let} v(\operatorname{Var} \diamond m)\left(\operatorname{Let} \diamond(\operatorname{Varm})\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right)\right) \rrbracket \rho[m \mapsto\) fresh ()\(] \stackrel{\beta}{=}\)
    let \(n=\) fresh() in \(\mathcal{E} \llbracket \operatorname{Let} v(\operatorname{Vars} m)\left(\operatorname{Let} \diamond(\operatorname{Var} m)\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right)\right) \rrbracket \rho[m \mapsto n] \stackrel{\mathcal{E}}{=}\)
    let \(n=f r e s h()\) in \(\mathcal{E} \llbracket\) Lets \((\) Var \(m)\left(\mathcal{C}_{d} \llbracket t_{1} \rrbracket\right)\left(\mathcal{C}_{d} \llbracket t_{2} \rrbracket\right) \rrbracket \rho[m \mapsto n, v \mapsto \mathcal{E} \llbracket \operatorname{Var} \diamond m \rrbracket \rho[m \mapsto n]] \stackrel{\mathcal{E} ; \mathcal{E} ; \mathcal{E}}{=}\)
    let \(n=\operatorname{fresh}()\) in Letn \(\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{1} \rrbracket \rrbracket \rho[m \mapsto n, v \mapsto \operatorname{Var} n]\right)\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{2} \rrbracket \rrbracket \rho[m \mapsto n, v \mapsto\right.\) Var \(\left.n]\right){ }^{m \text { not free in }}{ }^{\mathcal{C}}{ }_{d} \llbracket t_{1} \rrbracket, \mathcal{C}_{d} \llbracket t_{2} \rrbracket\)
    let \(n=\) fresh () in Letn \(\left.\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{1} \rrbracket\right] \rho[v \mapsto \operatorname{Var} n]\right)\left(\mathcal{E} \llbracket \mathcal{C}_{d} \llbracket t_{2} \rrbracket \rrbracket \rho[v \mapsto \text { Var } n]\right)^{2} \stackrel{\text { inductions }}{=}\)
    let \(n=\) fresh () in Letn \(\left(\mathcal{S}_{d} \llbracket t_{1} \rrbracket \rho\left[v \mapsto \operatorname{Var} n^{-}\right)\left(\mathcal{S}_{d} \llbracket t_{2} \rrbracket \rho[v \mapsto \operatorname{Var} n]\right){ }^{v \text { not free in } t_{1}(\alpha \text {-conv.) })}\right.\)
```


Figure 9: Correctness of ds-cogen

It now follows that lhs and rhs have identical termination properties (since e is always evaluated in e_{1}) and that ϵ_{1} and ϵ_{2} are identical, except at those leaves where e_{1} contains e and ϵ_{2} contains the value of m (we shall be sloppy and just write m below). To prove lhs $=$ rhs, we then just have to consider the differing leaves, i.e. we have to prove $\mathcal{E} \llbracket \boldsymbol{e} \rrbracket \rho[\ldots]=\mathcal{E} \llbracket($ Var $m) \rrbracket \rho[m \mapsto \mathcal{E} \llbracket \in] \rho, \ldots]$ where $\rho[\ldots]$ and $\rho[m \mapsto \mathcal{E} \llbracket e \rrbracket \rho, \ldots]$ are the environments that \mathcal{E} will use when evaluating the $\epsilon /(\operatorname{Varm})$ leaves. But we know that $\mathcal{E} \llbracket($ Var $m) \rrbracket \rho[m \mapsto \mathcal{E} \llbracket e \rrbracket \rho, \ldots]=\mathcal{E} \llbracket e \rrbracket \rho$ since m was fresh and hence is not shadowed in $\kappa(\operatorname{Var} m)$. We thus have to prove $\mathcal{E} \llbracket e \rrbracket \rho[\ldots]=\mathcal{E} \llbracket e \rrbracket \rho$ which holds if no free variables of ϵ are shadowed (and rebound) in κe.

But no κ ever shadows any variable: the only relevant continuations which potentially may shadow free variables are the continuations λx. Letv Fresh \ldots generated by $\mathcal{C}_{c p}$'s Let-rule. However, since all source variable names are distinct and since κ is relevant and hence has been generated independently of t_{1}, variable x cannot possible become bound
to any expression containing any (and hence no free) occurrences of variable v when computing $\mathcal{C}_{c p} \llbracket t_{1} \rrbracket(\lambda x \ldots)$. \square

Lemma 6 (Reordering λ and $l e t$)
$\forall \kappa: \lambda$ a.let $m=$ fresh () in $\mathcal{E} \llbracket \kappa($ Var $m) \rrbracket \rho[m \mapsto a]=$ let $m=$ fresh () in $\lambda a . \mathcal{E} \llbracket \kappa($ Var $m)] \rho[m \mapsto a]$
Proof: Both sides of the equality terminate equally often. The difference between the two expressions is then only that the left-hand side generates a different m each time the function is applied whereas the right-hand side uses the same m. But as the value of $\mathcal{E} \llbracket \kappa(\operatorname{Varm}) \rrbracket \rho[m \mapsto a]$ is independent of which particular fresh variable m denotes, the equality follows.

Lemma 7 (Reordering \mathcal{E} and let)
$\forall E_{1}, E_{2}: n$ not free in $E_{2} \Rightarrow \mathcal{E} \llbracket l$ let $n=f r e s h()$ in $E_{1} \rrbracket E_{2}=$ let $n=$ fresh () in $\mathcal{E} \llbracket E_{1} \rrbracket E_{2}$

Proof: Follows from strictness of \mathcal{E} in its first argument and that the let-form is strict. The condition " n not free in E_{2} " ensures that no undesired shadowing occurs.

Lemma 8 (Removing superfluous fresh variable generation) $\forall M: M$ not free in $E \Rightarrow$ let $M=$ fresh () in $E=E$
Proof: Trivial as expression fresh() always terminates normally.

Let us now give the inductive proof of Theorem 2. We use the textual abbreviation μ for the continuation (λ a. let $m=$ fresh () in $\mathcal{E} \llbracket \kappa(\operatorname{Var} m) \rrbracket \rho[m \mapsto a])$ that occurs in Theorem 2 and in Lemma 5. For each possible t, we thus have to prove $\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t \rrbracket \kappa \rrbracket \rho=\mathcal{S}_{c p} \llbracket t \rrbracket \rho \mu$. Notice that, using the abbreviation, Lemma 5 states that $\mathcal{E} \llbracket \kappa E \rrbracket \rho=$ $\mu(\mathcal{E} \llbracket E \rrbracket \rho)$.

For proof of theorem 2 see Figure 10 and Figure 11.

References

[BHOS76] Lennart Beckman, Anders Haraldson, Osten Oskarsson, and Erik Sandewall. A partial evaluator and its use as a programming tool. Artificial Intelligence, 7:319-357, 1976.
[Bon88] Anders Bondorf. Towards a self-applicable partial evaluator for term rewriting systems. In Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors, Partial Evaluation and Mixed Computation, pages 27-50. North-Holland, 1988.
[Bon91] Anders Bondorf. Automatic autoprojection of higher order recursive equations. Science of Computer Programming, 17(1-3):3-34, December 1991. Revision of paper in ESOP'90, LNCS 432, May 1990.
[Bon92] Anders Bondorf. Improving binding times without explicit cps-conversion. In 1992 ACM Conference on Lisp and Functional Programming. San Francisco, California. LISP Pointers V, 1, pages 1-10, June 1992.
[BW93] Lars Birkedal and Morten Welinder. Partial evaluation of Standard ML. Technical Report DIKU-report 93/22, DIKU, Department of Computer Science, University of Copenhagen, October 1993.
[DF90] Olivier Danvy and Andrzej Filinski. Abstracting control. In 1990 ACM Conference on Lisp and Functional Programming. Nice, France, pages 151-160, June 1990.
[DF92] Olivier Danvy and Andrzej Filinski. Representing control. Mathematical Structures in Computer Science, 2(4), 1992.
[DNBV91] Anne De Niel, Eddy Bevers, and Karel De Vlaminck. Partial evaluation of polymorphically typed functional languages: the representation problem. In M. Billaud et al., editors, Analyse Statique en Programmation Équationnelle, Fonctionnelle, et Logique, Bordeaux, France, Octobre 1991 (Bigre, vol. 74), pages 90-97. Rennes: IRISA, 1991.
[GJ91]
Carsten K. Gomard and Neil D. Jones. A partial evaluator for the untyped lambda-calculus. Journal of Functional Programming, 1(1):21-69, January 1991.
[Gom90] Carsten K. Gomard. Partial type inference for untyped functional programs. In 1990 ACM Conference on Lisp and Functional Programming. Nice, France, pages 282-287, June 1990.
[Hen91] Fritz Henglein. Efficient type inference for higher-order binding-time analysis. In John Hughes, editor, Conference on Functional Programming and Computer Architecture, Cambridge, Massachusetts. Lecture Notes in Computer Science 523, pages 448-472. SpringerVerlag, August 1991.
[HL91] Carsten Kehler Holst and John Launchbury. Handwriting cogen to avoid problems with static typing. In Draft Proceedings, Fourth Annual Glasgow Workshop on Functional Programming, Skye, Scotland, pages 210-218. Glasgow University, 1991.
[Hol89] Carsten Kehler Holst. Syntactic currying: yet another approach to partial evaluation. Student Report 89-7-6, DIKU, University of Copenhagen, Denmark, July 1989.
[Lau91] John Launchbury. A strongly-typed selfapplicable partial evaluator. In John Hughes, editor, Conference on Functional Programming and Computer Architecture, Cambridge, Massachusetts. Lecture Notes in Computer Science 523, pages 145-164. Springer-Verlag, August 1991.
[LD94] J. Lawall and O. Danvy. Continuation-based partial evaluation. In 1994 ACM Conference on Lisp and Functional Programming. Orlando, Florida, June 1994.
[NN88] Hanne R. Nielson and Flemming Nielson. Automatic binding time analysis for a typed λ calculus. In Fifteenth Annual ACM SIGACTSIGPLAN Symposium on Principles of Programming Languages. San Diego, California, pages 98-106, 1988.

$$
\begin{aligned}
& \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket \operatorname{Var} v \rrbracket \kappa \rrbracket \rho \stackrel{\mathcal{C}_{c p}}{=} \mathcal{E} \llbracket \kappa(\operatorname{Var} v) \rrbracket \rho \stackrel{\operatorname{Lemma} 5}{=} \mu(\mathcal{E} \llbracket \operatorname{Var} v \rrbracket \rho) \stackrel{\mathcal{E}}{=} \mu(\rho v) \stackrel{\mathcal{S}_{c p}}{=} \mathcal{S}_{c p} \llbracket \operatorname{Var} v \rrbracket \rho \mu . \\
& \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket \operatorname{Lamv} t_{1} \rrbracket \kappa \rrbracket \rho \stackrel{\mathcal{C}_{c p}}{=} \mathcal{E} \llbracket \kappa\left(\operatorname{Lam} v\left(\text { let } n=\text { fresh() in } \operatorname{Lam} n\left(\mathcal{C}_{c p} \llbracket t_{1} \rrbracket(\lambda x \text {. App }(\operatorname{Var} n) x)\right)\right)\right] \rho \stackrel{\text { Lemma } 5}{=} \\
& \mu\left(\mathcal{E} \llbracket \operatorname{Lam} v(\operatorname{let} n=\text { fresh(}) \text { in Lam } n\left(\mathcal{C}_{c p} \llbracket t_{1} \rrbracket(\lambda x . \operatorname{App}(\operatorname{Var} n) x)\right) \rrbracket \rho\right) \stackrel{\mathcal{E} ; \text { Lemma } 7 ; \mathcal{E}}{=} \\
& \mu\left(\lambda w . \text { let } n=\text { fresh }() \text { in } \lambda u \cdot \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{1} \rrbracket(\lambda x . A p p(\operatorname{Var} n) x) \rrbracket \rho[v \mapsto w, n \mapsto u]\right) \stackrel{\text { induction }}{=} \\
& \mu\left(\lambda w . \operatorname{let} n=\text { fresh() in } \lambda u . \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho[v \mapsto w, n \mapsto u](\lambda a . l e t m=\text { fresh() in }\right. \\
& \mathcal{E} \llbracket(\lambda x . \operatorname{App}(\operatorname{Var} n) x)(\operatorname{Var} m) \rrbracket \rho[v \mapsto w, n \mapsto u, m \mapsto a]))^{n \text { not free in } t_{1} ; \beta ; \mathcal{E}}= \\
& \mu\left(\lambda w . \text { let } n=\text { fresh() in } \lambda u . \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho[v \mapsto w](\lambda a . l e t m=\text { fresh }() \text { in } u a)\right) \stackrel{\text { Lemma } 8 \text { twice }}{=} \\
& \mu\left(\lambda w \cdot \lambda u . \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho[v \mapsto w](\lambda a \cdot u a)\right) \stackrel{\eta \text { twice }}{=} \mu\left(\lambda w . \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho[v \mapsto w]\right) \stackrel{\mathcal{S}_{c p}}{=} \mathcal{S}_{c p} \llbracket L a m v t_{1} \rrbracket \rho \mu . \\
& \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket A p p t_{1} t_{2} \rrbracket \kappa \rrbracket \rho \stackrel{\mathcal{C}_{c p}}{=} \\
& \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{1} \rrbracket\left(\lambda x \cdot \mathcal{C}_{c p} \llbracket t_{2} \rrbracket(\lambda y . \operatorname{App}(\operatorname{Appxy})(\text { let } n=\text { fresh() in } \operatorname{Lam} n(\kappa(\operatorname{Var} n))))\right] \rho \stackrel{\text { induction }}{=} \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda a . \operatorname { l e t } m = \text { fresh() in } \mathcal { E } \llbracket \left(\lambda x \cdot \mathcal{C}_{c p} \llbracket t_{2} \rrbracket(\lambda y . A p p(A p p x y)(\text { let } n=\text { fresh }() \text { in }\right.\right. \\
& \operatorname{Lamn}(\kappa(\operatorname{Var} n))))(\operatorname{Varm}) \rrbracket \rho[m \mapsto a]) \stackrel{\beta \text {; renaming } a \text { to } x}{=} \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \text { let } m=\text { fresh }() \text { in } \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{2} \rrbracket(\lambda y . A p p(\operatorname{App}(\operatorname{Varm}) y)(\text { let } n=\text { fresh }) \text { in }\right. \\
& \operatorname{Lam} n(\kappa(\operatorname{Var} n)))) \rrbracket \rho[m \mapsto x]) \stackrel{\text { induction }}{=} \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \operatorname { l e t } m = \text { fresh() in } \mathcal { S } _ { c p } \llbracket t _ { 2 } \rrbracket \rho [m \mapsto x] \left(\lambda \text { a. let } m^{\prime}=\text { fresh() in } \mathcal{E} \llbracket(\lambda y . A p p(A p p(V a r m) y)\right.\right. \\
& \left.\left.\left.(\operatorname{let} \boldsymbol{n}=\operatorname{fresh}() \text { in } \operatorname{Lam} n(\kappa(\operatorname{Var} n)))\left(\operatorname{Var} m^{\prime}\right)\right] \rho\left[m \mapsto x, \boldsymbol{m}^{\prime} \mapsto a\right]\right)\right) \text { mot free in } \boldsymbol{t}_{2} ; \underline{\beta} ; \mathcal{E} ; \text { Lemma } 7 ; \mathcal{E} \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \text { let } m = \text { fresh() in } \mathcal { S } _ { c p } \llbracket t _ { 2 } \rrbracket \rho \left(\lambda a . \operatorname{let} m^{\prime}=\text { fresh () in (xa) (let } n=\text { fresh () in } \lambda w . \mathcal{E} \llbracket \kappa(\operatorname{Var} n) \rrbracket\right.\right. \\
& \left.\left.\left.\rho\left[m \mapsto x, m^{\prime} \mapsto a, n \mapsto w\right]\right)\right)\right)^{m, m^{\prime}} \text { not free in } \kappa(\operatorname{Var} n) \text {; Lemma } 8 \text { twice; renaming } a \text { to } y, w \text { to } a, n \text { to } m \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho(\lambda y \cdot(x y)(\text { let } m=f r e s h() \text { in } \lambda a . \mathcal{E} \llbracket \kappa(\operatorname{Var} m) \rrbracket \rho[m \mapsto a])) \stackrel{\text { Lemma } 6}{=}\right. \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho(\lambda y \cdot(x y)(\lambda a . l e t m=f r e s h() \text { in } \mathcal{E} \llbracket \kappa(\operatorname{Var} m) \rrbracket \rho[m \mapsto a \rrbracket))) \stackrel{\mathcal{S}_{c p}}{=} \mathcal{S}_{c p} \llbracket A p p t_{1} t_{2} \rrbracket \rho \mu .\right. \\
& \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket \text { Letv } t_{1} t_{2} \rrbracket \kappa \rrbracket \rho \stackrel{\mathcal{C}_{c p}}{=} \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{1} \rrbracket\left(\lambda x . \text { Let } v x\left(\mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa\right)\right) \rrbracket \rho \stackrel{\text { induction }}{=} \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda a . \text { let } m^{\prime}=\text { fresh() in } \mathcal{E} \llbracket\left(\lambda x . \operatorname{Letv} x \mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa\right)\left(\operatorname{Var} m^{\prime}\right) \rrbracket \rho\left[m^{\prime} \mapsto a \rrbracket\right) \stackrel{\beta ;}{ } \stackrel{\mathcal{E}}{ } \stackrel{\text { renaming } a \text { to } x}{=}\right. \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda \boldsymbol{x} \text {. let } m^{\prime}=\text { fresh() in } \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa \rrbracket \rho\left[\boldsymbol{m}^{\prime} \mapsto \boldsymbol{x}, \boldsymbol{v} \mapsto \boldsymbol{x} \rrbracket\right) \stackrel{\text { induction }}{=}\right. \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \text { let } m^{\prime}=\text { fresh() in } \mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho\left[m^{\prime} \mapsto x, v \mapsto \boldsymbol{x}\right](\lambda \text { a.let } m=\text { fresh () in }\right. \\
& \left.\left.\mathcal{E} \llbracket \kappa(\operatorname{Var} m) \rrbracket \rho\left[m^{\prime} \mapsto x, v \mapsto x, m \mapsto a\right]\right)\right)^{m^{\prime} \text { not free in } t_{2} ; m^{\prime} \text { not free in } \kappa(\text { Var } m \text {); Lemma } 8 .} \\
& \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho[v \mapsto x](\lambda a . \operatorname{let} m=\text { fresh()in } \mathcal{E} \llbracket \kappa(\operatorname{Var} m) \rrbracket \rho[v \mapsto x, m \mapsto a])\right) \stackrel{\text { Lemma } 4}{=} \\
& \mathcal{S}_{c p \llbracket} \llbracket t_{1} \rrbracket \rho\left(\lambda \boldsymbol{x} . \mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho[v \mapsto x](\lambda a . \operatorname{let} m=\text { fresh()in } \mathcal{E} \llbracket \kappa(\operatorname{Varm}) \rrbracket \rho[m \mapsto a])\right) \stackrel{\mathcal{S}_{c p}}{=} \mathcal{S}_{c p} \llbracket \operatorname{Let} v t_{1} t_{2} \rrbracket \rho \mu .
\end{aligned}
$$

Figure 10: Correctness of cps-cogen (Part 1)

```
\(\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket\) Lam \(v t_{1} \rrbracket \kappa \rrbracket \rho \stackrel{\mathcal{C}_{c p}}{=} \mathcal{E} \llbracket \kappa\left(\right.\) Let \(m\) Fresh \(\left(\operatorname{Let} v(\operatorname{Vars} m)\left(\operatorname{Lam} \diamond(\operatorname{Var} m)\left(\mathcal{C}_{c p} \llbracket t_{1} \rrbracket \iota\right)\right)\right) \rrbracket \rho \stackrel{\text { Lemma } 5}{=}\)
    \(\mu\left(\mathcal{E} \llbracket\right.\) Let \(m\) Fresh \(\left.\left(\operatorname{Let} v(\operatorname{Vars} m)\left(\operatorname{Lam} \diamond(\operatorname{Var} m)\left(\mathcal{C}_{c p} \llbracket t_{1} \rrbracket \iota\right)\right)\right) \rrbracket \rho\right) \stackrel{\mathcal{E} ;}{\stackrel{\beta}{\beta} ; \mathcal{E}}\)
    \(\mu\left(\right.\) let \(n=\) fresh () in \(\left.\mathcal{E} \llbracket \operatorname{Lam} \diamond(\operatorname{Varm})\left(\mathcal{C}_{c p} \llbracket t_{1} \rrbracket \iota\right) \rrbracket \rho[m \mapsto n, v \mapsto \mathcal{E} \llbracket \operatorname{Var} \diamond m \rrbracket \rho[m \mapsto n]]\right) \stackrel{\mathcal{E} ; \mathcal{E} ; \mathcal{E}}{=}\)
    \(\mu\left(\right.\) let \(n=\) fresh () in \(\left.\operatorname{Lam} n\left(\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{1} \rrbracket \iota \rrbracket \rho[m \mapsto n, v \mapsto \operatorname{Var} n]\right)\right) \stackrel{m \text { not free in } \mathcal{C}_{c p} \llbracket t_{1} \rrbracket \iota}{=}\)
    \(\mu\left(\right.\) let \(n=\) fresh () in \(\left.\operatorname{Lam} n\left(\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{1} \rrbracket \iota \rrbracket \rho[v \mapsto \operatorname{Var} n]\right)\right) \stackrel{\text { induction }}{=}\)
    \(\mu\left(\right.\) let \(n=\) fresh () in Lam \(n\left(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho[v \mapsto \operatorname{Var} n](\lambda a . l e t m=\right.\) fresh () in \(\left.\left.\mathcal{E} \llbracket \iota(\operatorname{Var} m) \rrbracket \rho[v \mapsto \operatorname{Var} n, m \mapsto a])\right)\right)\)
    \(\mathcal{E} ;\) Lemma \(\stackrel{8}{=} \iota=\lambda a \cdot a{ }_{\mu}\left(\right.\) let \(n=f r e s h()\) in Lam \(n\left(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left[v \mapsto \operatorname{Varn} n_{\iota}\right)\right) \stackrel{\mathcal{S}_{c p}}{=} \mathcal{S}_{c p} \llbracket \underline{\text { Lam } v t_{1} \rrbracket \rho \mu}\).
\(\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket A_{A p p} t_{1} \boldsymbol{t}_{2} \rrbracket \kappa \rrbracket \rho \stackrel{\mathcal{C}_{c p}}{=} \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{1} \rrbracket\left(\lambda x . \mathcal{C}_{c p} \llbracket t_{2} \rrbracket(\lambda y . \kappa(A p p \diamond x y))\right) \rrbracket \rho \stackrel{\text { induction }}{=}\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda a\right.\). let \(m=f r e s h()\) in \(\left.\mathcal{E} \llbracket\left(\lambda x . \mathcal{C}_{c p} \llbracket t_{2} \rrbracket(\lambda y . \kappa(A p p \diamond x y))\right)(V a r m) \rrbracket \rho[m \mapsto a]\right) \stackrel{\beta \text { renaming } a \text { to } x}{=}\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x\right.\). let \(m=\) fresh () in \(\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{2} \rrbracket(\lambda y . \kappa(\) App \(\diamond(\) Var \(\left.m) y)) \rrbracket \rho[m \mapsto x]\right) \stackrel{\text { induction }}{=}\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x\right.\).let \(m=f r e s h()\) in \(\mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho[m \mapsto x]\left(\lambda a .\left(\right.\right.\) let \(m^{\prime}=\) fresh () in
        \(\left.\left.\left.\left.\mathcal{E} \llbracket(\lambda y . \kappa(A p p \diamond(\operatorname{Var} m) y))\left(\operatorname{Var} m^{\prime}\right)\right] \rho\left[m \mapsto x, m^{\prime} \mapsto a\right]\right)\right)\right)^{m \text { not free in } t_{2}} ; \underline{\underline{\beta} ;}\); renaming \(a\) to \(y\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x\right.\). let \(m=\) fresh () in \(\mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho\left(\lambda y .\left(\right.\right.\) let \(m^{\prime}=\) fresh () in
        \(\left.\left.\left.\mathcal{E} \llbracket \kappa\left(A p p \diamond(\operatorname{Var} m)\left(\operatorname{Var} m^{\prime}\right)\right) \rrbracket \rho\left[m \mapsto x, m^{\prime} \mapsto y\right]\right)\right)\right) \stackrel{\text { Lemma } 5}{=}\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x\right.\). let \(m=\) fresh () in \(\mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho\left(\lambda y \cdot\left(\right.\right.\) let \(m^{\prime}=\) fresh () in
        \(\mu\left(\mathcal{E} \llbracket A p p \diamond(\operatorname{Var} m)\left(\right.\right.\) Var \(\left.\left.\left.\left.\left.m^{\prime}\right) \rrbracket \rho\left[m \mapsto x, m^{\prime} \mapsto y\right]\right)\right)\right)\right) \stackrel{\text { E }}{=}\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x\right.\). let \(m=f r e s h()\) in \(\mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho\left(\lambda y .\left(\right.\right.\) let \(m^{\prime}=\) fresh () in \(\left.\left.\left.\mu(A p p x y)\right)\right)\right) \stackrel{\text { Lemma } 8 \text { twice }}{=}\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho(\lambda y \cdot \mu(A p p x y))\right) \stackrel{\mathcal{S}_{c p}}{=} \mathcal{S}_{c p} \llbracket \underline{A p p} t_{1} t_{2} \rrbracket \rho \mu\).
\(\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket \underline{\text { Let }} v t_{1} t_{2} \rrbracket \kappa \rrbracket \rho \stackrel{\mathcal{C}_{c p}}{=} \mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{1} \rrbracket\left(\lambda x . \operatorname{Letm} \operatorname{Fresh}\left(\operatorname{Letv}(\operatorname{Var} \diamond m)\left(\right.\right.\right.\) Lets \(\left.\left.\left.(\operatorname{Varm}) x\left(\mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa\right)\right)\right)\right] \rho \stackrel{\text { induction }}{=}\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda a . \operatorname{let} m^{\prime}=\right.\) fresh () in \(\mathcal{E} \llbracket(\lambda x\). Letm Fresh \((\) Let \(v(\) Var \(\Delta m)(\) Let \(\Delta(\) Var \(m) x\)
        \(\left.\left.\left.\left(\mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa\right)\right)\right)\right)\left(\right.\) Var \(\left.\left.m^{\prime}\right) \rrbracket \rho\left[m^{\prime} \mapsto a\right]\right){ }^{\beta ; \mathcal{E} ; \beta ; \mathcal{E} ; \mathcal{E} ; \mathcal{E} ; \mathcal{E} ; \mathcal{E} ; \text { renaming } a \text { to } x}\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . \operatorname{let} m^{\prime}=\right.\) fresh () in let \(n=\) fresh() in Let \(\left.n x\left(\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa \rrbracket \rho\left[m^{\prime} \mapsto x, m \mapsto n, v \mapsto \operatorname{Var} n\right]\right)\right)\)
    \(\begin{aligned} & m \text { not free in } \\ &= \mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa \\ & S_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x . l e t m^{\prime}=\text { fresh() in let } n=\text { fresh() in Let } n x\left(\mathcal{E} \llbracket \mathcal{C}_{c p} \llbracket t_{2} \rrbracket \kappa \rrbracket \rho\left[m^{\prime} \mapsto x, v \mapsto \text { Var } n\right]\right)\right), ~\end{aligned}\)
    \(\stackrel{\text { induction }}{=} \mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x\right.\). let \(m^{\prime}=\) fresh() in let \(n=\) fresh () in Let \(n x\left(\mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho\left[m^{\prime} \mapsto x, v \mapsto \operatorname{Var} n\right]\left(\lambda a\right.\right.\). (let \(m^{\prime \prime}=\) fresh () in
        \(\left.\left.\left.\left.\mathcal{E} \llbracket \kappa\left(\operatorname{Var} m^{\prime \prime}\right) \rrbracket \rho\left[m^{\prime} \mapsto x, v \mapsto \operatorname{Var} n, m^{\prime \prime} \mapsto a\right\rfloor\right)\right)\right)\right)^{m^{\prime} \text { not free in } t_{2} ; m^{\prime}} \stackrel{\text { not free in } \kappa\left(\text { Var } m^{\prime \prime}\right)}{=}\); Lemma 8
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x\right.\).let \(n=\) fresh () in Let \(n x\left(\mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho[v \mapsto \operatorname{Var} n]\left(\lambda a .\left(\right.\right.\right.\) let \(m^{\prime \prime}=\) fresh () in
        \(\left.\left.\left.\left.\mathcal{E} \llbracket \kappa\left(\operatorname{Var} m^{\prime \prime}\right) \rrbracket \rho\left[v \mapsto \operatorname{Var} n, m^{\prime \prime} \mapsto a\right\rfloor\right)\right)\right)\right) \stackrel{\text { Lemma } 4}{=}\)
    \(\mathcal{S}_{c p} \llbracket t_{1} \rrbracket \rho\left(\lambda x\right.\).let \(n=\) fresh() in Let \(n x\left(\mathcal{S}_{c p} \llbracket t_{2} \rrbracket \rho[v \mapsto \operatorname{Varn}]\left(\lambda a\right.\right.\). \(\left(\right.\) let \(m^{\prime \prime}=\) fresh () in
        \(\left.\left.\left.\left.\mathcal{E} \llbracket \kappa\left(\operatorname{Var} m^{\prime \prime}\right) \rrbracket \rho[m \mapsto a\rfloor\right)\right)\right)\right) \stackrel{\mathcal{S}_{c p}}{=} \mathcal{S}_{c p} \llbracket \underline{\operatorname{Let}} v t_{1} t_{2} \rrbracket \rho \mu\).
```

Figure 11: Correctness of cps-cogen (Part 2)

[^0]: *Current postal address: Computer Resources International A/S, Bregnerødvej 144, DK-3460 Birkerød, Denmark; e-mail: use anders@diku.dk
 ${ }^{* *}$ Funded by the National Fund for Scientific Research (Belgium). This work was done during two stays at DIKU in Copenhagen, 1993; DIKU and K.U. Leuven supported Dirk Dussart's visits to DIKU.

