
Improving CPS-Based Partial Evaluation: Writing Cogen by HandAnders Bondorf�DIKUDepartment of Computer ScienceUniversitetsparken 1DK-2100 Copenhagen �, Denmarkanders@diku.dk Dirk Dussart��Departement ComputerwetenschappenKatholieke Universiteit LeuvenCelestijnenlaan 200AB-3001 Leuven (Heverlee), BelgiumDirk.Dussart@cs.kuleuven.ac.beAbstractIt is well-known that self-applicable partial evaluationcan be used to generate compiler generators: cogen =mix(mix;mix), where mix is the specializer (partial eval-uator). However, writing cogen by hand gives several ad-vantages: (1) Contrasting to when writing a self-applicablemix, one is not restricted to write cogen in the same lan-guage as it treats [HL91]. (2) A handwritten cogen can bemore e�cient than a cogen generated by self-application;in particular, a handwritten cogen typically performs no(time consuming) environment manipulations whereas onegenerated by self-application does. (3) When working instatically typed languages with user de�ned data types, theself-application approach requires encoding data type values[Bon88, Lau91, DNBV91], resulting in relatively ine�cient(cogen-generated) compilers that spend much of their timeon coding and decoding. By writing cogen by hand, thecoding problem is eliminated [HL91, BW93].Specializers written in continuation passing style (ab-breviated \cps") perform better than specializers writtenin direct style (abbreviated \ds") [Bon92]. For example,a specializer written in cps straightforwardly handles non-unfoldable let-expressions with static body.The contribution of this paper is to combine the ideaof hand-writing cogen with cps-based specialization. Wedevelop a handwritten cps-cogen which is superior to a ds-cogen for the same reason that a cps-specializer is superior toa ds-specializer: the cps-cogen can for example handle non-unfoldable let-expressions with static body. Hand-writinga cps-cogen is done along the same lines as hand-writinga ds-cogen, but some additional non-standard two-level �-expansions turn out to be needed.The handwritten cps-cogen presented here is e�cient inthat it performs continuation processing (�-reductions ofcontinuation applications) already at compiler-generationtime. Only some continuation processing can be done at�Current postal address: Computer Resources InternationalA/S, Bregner�dvej 144, DK-3460 Birker�d, Denmark; e-mail: useanders@diku.dk��Funded by the National Fund for Scienti�c Research (Belgium).This work was done during two stays at DIKU in Copenhagen, 1993;DIKU and K.U. Leuven supported Dirk Dussart's visits to DIKU.

compiler generation time, however, so the resulting pro-grams generated by cogen also contain continuations.We prove our handwritten cps-cogen correct with respectto a cps-specializer. We also give a correctness proof of ahandwritten ds-cogen; this proof is much simpler than thecps-proof, but to the best of our knowledge, no handwrittends-cogen has been proved correct before.1 IntroductionCps-based specializers are more powerful than ds-based specializers. For example, a cps-specializerstraightforwardly specializes ((let y=... in �x.x+x+y) 7)into (let y=... in 14+y) when the let-expression is non-unfoldable. The cps-specializer is able to do so because itexplicitly manipulates a context: a cps-specializer is able tomove the context \apply to 7" across the let-binding intothe let-body.In this paper we show how to hand-write a cps-basedcogen. We derive the handwritten cps-cogen from a (hand-written) cps-specializer. However, to make it easier to followthe derivation, we �rst show how to derive (and prove cor-rectness of) a handwritten ds-cogen Cd from a (handwritten)ds-specializer Sd : the ds-based cogen is much simpler to de-rive than the cps-based cogen. Then we derive and provecorrectness of the handwritten cps-cogen Ccp from a (hand-written) cps-specializer Scp. See the horizontal arrows inFigure 1. ds-specializer Sd �! ds-cogen Cd# #cps-specializer Scp �! cps-cogen CcpFigure 1: OverviewThe cps-specializer Scp can be derived from the ds-specializer Sd (the leftmost vertical arrow in Figure 1)[Bon92]. We shall derive the cps-cogen Ccp from the cps-specializer Scp. In Section 4 we brie
y discuss how to deriveCcp from Cd instead (rightmost vertical arrow); this deriva-tion is relevant if one is to hand-write a cps-cogen for alanguage where a handwritten ds-cogen already exists.We shall consider specialization similar to the one ofLambda-mix [GJ91]. In this paper we only consider a sourcelanguage consisting of the strict (call-by-value) weak-headnormal form pure lambda calculus (variables, �-abstractionand application) extended with a let-construct, see Figure 2.



We include the let-construct in the source language to covera form that cps-based specialization treats better than ds-specialization does [Bon92].Variable= String ; e2Expression0 ; v2Variablee ::= Var v j Lam v e1 j Appe1 e2 j Let v e1 e2Figure 2: Abstract syntax of source languageIn an extended version of the paper, we will also coverthe remaining constructs from Lambda-mix (constants, con-ditionals and �x ), as well as primitive operations and ope-rations on tuples. Conditionals are interesting as a cps-specializer, contrasting to a ds-specializer, is able to handleconditionals with dynamic test but static branches [Bon92].Operations on tuples are interesting as they illustrate thecoding problem that arises when writing a specializer mix,but not when hand-writing cogen. Tuples are as easy to han-dle in a handwritten cps-cogen as in a handwritten ds-cogen:no particular problems with tuples arise due to cps.When hand-writing cogen, we shall need some abstractsyntax constructors in addition to Var, Lam, App and Let.These additional constructors are Var�, Fresh, Lam�, App�and Let�. The semantics of the source language, extendedwith these additional forms, is given in Figure 3. The meta-language used in this paper is strict: �- and let-forms arethus strict as well as environment updates �[: : : 7! : : :]. No-tice that fresh() generates a fresh variable name (a string)and that the forms Lam�, App� and Let� are used to gen-erate expressions rather than values as Lam, App and Letdo. E : Expression � (Variable ! Value) ! ValueE[[Var v]]� = � vE[[Lam v e1]]� = �w :E[[e1]]�[v 7! w]E[[App e1 e2]]� = (E[[e1]]�) (E[[e2]]�)E[[Let v e1 e2]]� = E[[e2]]�[v 7! E[[e1]]�]E[[Var� v]]� = Var (� v)E[[Fresh]]� = fresh()E[[Lam� e1 e2]]� = Lam (E[[e1]]�) (E[[e2]]�)E[[App� e1 e2]]� = App (E[[e1]]�) (E[[e2]]�)E[[Let� e1 e2 e3]]� = Let (E[[e1]]�) (E[[e2]]�) (E[[e3]]�)Figure 3: Semantics of extended source languagePrograms to be partially evaluated will be annotated andwritten in a two-level language [NN88, GJ91]. The two-level language is speci�ed in Figure 4. Each of the com-pound forms now exist in two versions, a static version (e.g.Lam v t1) and a dynamic version (e.g. Lam v t1). The staticversions will be reduced at partial evaluation time, and codewill be emitted for the dynamic versions.It turns out to be helpful for cps-based specializationthat all source expression variables have distinct names. Inthe rest of this paper, variable t therefore only ranges overtwo-level expressions where all variables names are di�er-ent (variables names can always be made distinct by �-conversion).Only programs that are well-annotated may be special-ized. Type rules for checking well-annotatedness are given

t22Expression; v2Variablet ::= Var v j Lam v t1 j App t1 t2 j Let v t1 t2 jLam v t1 j App t1 t2 j Let v t1 t2Figure 4: Syntax of two-level languagein [GJ91] (not for the let-form, though, but it is simple toadd). Annotating programs can be done automatically bybinding-time analysis, see e.g. [Gom90, Hen91].2 Direct styleFigure 5 speci�es the ds-specializer Sd . Specializer Sd isa part of the Lambda-mix specializer T from Appendix Aof the paper [GJ91], extended with (straightforward) rulesfor the static and dynamic let-forms. Notice that domain2Value is equal to domain Value since Value already includesthe forms generated when evaluating the forms Lam�, App�and Let� (Figure 3).Sd : 2Expression � (Variable ! 2Value) ! 2ValueSd [[Var v]]� = � vSd [[Lam v t1]]� = �w :Sd [[t1]]�[v 7! w]Sd [[App t1 t2]]� = (Sd [[t1]]�) (Sd [[t2]]�)Sd [[Let v t1 t2]]� = Sd [[t2]]�[v 7! Sd [[t1]]�]Sd [[Lam v t1]]� = let n=fresh()in Lam n (Sd [[t1]]�[v 7! Var n])Sd [[App t1 t2]]� = App (Sd [[t1]]�) (Sd [[t2]]�)Sd [[Let v t1 t2]]� = let n=fresh()in Let n (Sd [[t1]]�) (Sd [[t2]]�[v 7! Var n])Figure 5: Ds-specializerNotice that ds-specializer Sd cannot specialize formssuch as t = App (Let v1 : : : (Lam v2 : : :)) (Var v3) as Sd re-quires the body of a Let-form to specialize to an expression:the result of Sd 's call Sd [[t2]]�[v 7! Var n] must be an expres-sion as it is an argument to the abstract syntax constructorLet. But Sd specializes Lam v2 : : : to a function �w : : : :,not to an expression, so expression t is not well-annotatedwith respect to Sd . To specialize the expression, the anno-tations should be App (Let v1 : : : (Lam v2 : : :)) (Var v3) (asit also follows from the well-annotatedness rules of [GJ91]);being underlined, the application would consequently not be�-reduced by Sd during specialization.We now present a ds-cogen Cd derived from the ds-specializer Sd ; see Figure 6. Essentially, instead of perform-ing what Sd does, compiler generator Cd generates code thatwill perform the same operations when evaluated (by E).For example, specializer Sd performs an application whentreating App-forms, but Cd generates an App-expressionwhich, when evaluated, performs an application. And,where Sd generates an App-expression when treating App-forms, compiler generator Cd generates an App�-expressionwhich, when evaluated, generates an App-expression.Notice that Cd takes no environment (�) argument.Avoiding environment manipulation is possible by reusingsource variable names in the treatments of Lam, Let, Lam



Cd : 2Expression ! ExpressionCd [[Var v]] = Var vCd [[Lam v t1]] = Lam v (Cd [[t1]])Cd [[App t1 t2]] = App (Cd [[t1]]) (Cd [[t2]])Cd [[Let v t1 t2]] = Let v (Cd [[t1]]) (Cd [[t2]])Cd [[Lam v t1]] = Letm Fresh (Let v (Var�m) (Lam� (Varm) (Cd [[t1]])))Cd [[App t1 t2]] = App� (Cd [[t1]]) (Cd [[t2]])Cd [[Let v t1 t2]] = Letm Fresh (Let v (Var�m) (Let� (Varm) (Cd [[t1]]) (Cd [[t2]])))Figure 6: Ds-cogenand Let (notice e.g. how Sd 's Lam-rule �w :Sd [[t1]]�[v 7! w]turns into Lam v (Cd [[t1]]) in Cd : source name v is used in-stead of w whereby the binding [v 7! w] can be ignored), butit is non-trivial to see that this does not lead to unexpectedname clashes. The reason is brie
y that Cd performs nosymbolic unfolding and thus preserves the scoping structureof the source program. The handwritten compiler genera-tors [HL91, BW93] did not manipulate environments either(but no correctness proofs were given there). Compiler gen-erators generated by self-application do manipulate environ-ments (see e.g. [GJ91]) and thus they are less e�cient thanthe handwritten ones.The following theorem states that the handwritten co-gen Cd is indeed correct with respect to the specializer Sd(and in particular this also proves that the environment-freetreatment of variables in Cd is correct). The theorem statesthat evaluating the code generated by Cd in environment �yields the same result as specializing by Sd (in environment�):Theorem 1 (Correctness of ds-cogen)8t; � : E[[Cd [[t]]]]� = Sd [[t]]�Proof: By structural induction over two-level expressions.See Appendix A.1 for details. 23 Continuation passing styleFigure 7 contains a cps-specializer Scp, derived fromSd by (non-standard) cps-transformation as described in[Bon92]; continuation � is the identity continuation �x : x.The cps-specializer Scp is more powerful than the ds-specializer Sd : it does not constrain the annotations ofthe body of Let-forms (the type rule for checking well-annotatedness for Let-forms is consequently more liberalfor cps-based specialization than for ds-specialization). Forexample, specializer Scp is able to specialize the formApp (Let v1 : : : (Lam v2 : : :)) (Var v3), hence �-reducing theapplication during specialization (contrasting to Sd , cf. Sec-tion 2).Notice that the identity continuation � is used not onlyto initialize, but also when treating Lam-forms. This non-standard \impure" form of cps turns out to be necessaryto allow the desired liberal treatment of Let-forms, propa-gating � \over the let-binding". The more pure cps-codelet n=fresh() in Scp[[t1]]�[v 7! n](�x : � (Lamn x)) that onemight have expected in the Lam-rule thus gives an incor-rect result if the lambda-body t1 is a Let-form. Indeed, thelet- and �-bindings are reversed. In short, the problem is

that continuations that dump their argument in the body-position of a generated lambda-expression are not allowed tobe propagated over the binding when specializing Let-forms;the continuation �x : � (Lamn x) is such a disallowed form.The code in Figure 7 does not contain any such \ill-behaved"continuations. We refer to [Bon92] for further details.We are now ready to present the handwritten cps-cogenCcp, see Figure 8. Compiler generator Ccp is derived in thesame way from Scp as Cd was derived from Sd : instead ofperforming what Scp does, Ccp generates code that will per-form the same operations when evaluated. Deriving the Ccp -rules for Lam and App involves some additional steps thathave no analogue in the Cd -derivation; these steps will be de-scribed below. Notice that similarly to Cd , compiler genera-tor Ccp performs no operations on environments, contrastingto what a compiler generator generated by self-applicationwould do. Also notice that Ccp has a continuation argument:we want Ccp to perform continuation reductions already atcogen-time rather than suspending all continuation process-ing to appear in the programs generated by cogen (such asimpler cps-cogen can be written, but it is certainly less in-teresting).We shall now explain why the Lam- and App-rules lookthe way they do. At a �rst try, we might optimisticallyhave written the Lam- and App-rules in the following more\natural" way:Ccp[[Lam v t1]]� = � (Lam v (Ccp[[t1]]))Ccp[[App t1 t2]]� = Ccp [[t1]](�x :Ccp [[t2]](�y :App (Appx y) �))Let us �rst consider the incorrect Lam-rule. Noticethat Ccp [[t1]] is a function (from continuations to expres-sions) whereas the second argument to constructor Lammust be an expression of type Expression. We can �xthis problem by a special two-level �-expansion that con-verts a function to an expression (a �-form into a Lam -form): f 7! Lam n (f (Var n)) where n is fresh to avoidname shadowing. Instead of Ccp [[t1]], we would thus writeLam n (Ccp[[t1]](Var n)). But now there is a problem with theexpression Ccp[[t1]](Var n) as Ccp's second argument must bea function (a continuation), not an expression such as Var n.We therefore perform another kind of two-level �-expansion,this time converting an expression into a function: e 7!�x :Appe x. We then obtain Ccp [[t1]](�x :App (Var n) x). TheLam-rule of Figure 8 has now emerged.In a similar way, the App-rule of Figure 8 is obtainedfrom the incorrect one by �-expanding � in the incorrect ex-pression App (Appx y) � into Lam n (� (Var n)); App's sec-ond argument must be an expression, not a function.



Scp : 2Expression � (Variable ! 2Value) � (2Value ! 2Value) ! 2ValueScp[[Var v]]�� = � (� v)Scp[[Lam v t1]]�� = � (�w :Scp[[t1]]�[v 7! w])Scp[[App t1 t2]]�� = Scp[[t1]]�(�x :Scp[[t2]]�(�y : (x y) �))Scp[[Let v t1 t2]]�� = Scp[[t1]]�(�x :Scp[[t2]]�[v 7! x]�)Scp[[Lam v t1]]�� = � (let n=fresh() in Lam n (Scp[[t1]]�[v 7! Var n]�))Scp[[App t1 t2]]�� = Scp[[t1]]�(�x :Scp[[t2]]�(�y : � (App x y)))Scp[[Let v t1 t2]]�� = Scp[[t1]]�(�x : let n=fresh() in Let n x (Scp[[t2]]�[v 7! Var n]�))Figure 7: Cps-specializerCcp : 2Expression � (Expression ! Expression) ! ExpressionCcp[[Var v]]� = � (Var v)Ccp[[Lam v t1]]� = � (Lam v (let n=fresh() in Lam n (Ccp [[t1]](�x :App (Var n) x))))Ccp[[App t1 t2]]� = Ccp[[t1]](�x :Ccp[[t2]](�y :App (App x y) (let n=fresh() in Lam n (� (Var n)))))Ccp[[Let v t1 t2]]� = Ccp[[t1]](�x :Let v x (Ccp[[t2]]�))Ccp[[Lam v t1]]� = � (Letm Fresh (Let v (Var�m) (Lam� (Varm) (Ccp[[t1]]�))))Ccp[[App t1 t2]]� = Ccp[[t1]](�x :Ccp[[t2]](�y : � (App� x y)))Ccp[[Let v t1 t2]]� = Ccp[[t1]](�x :Letm Fresh (Let v (Var�m) (Let� (Varm) x (Ccp [[t2]]�))))Figure 8: Cps-cogenThe �-expansions used here resemble the �-conversionsused in [DF92] to separate \administrative" from \non-administrative" continuations in cps-transformation. Also,similar �-conversions were used for binding-time improve-ments in [Bon91].We note that expression Lamn (� (Var n)) in the App-rule generates continuations that are present in the pro-grams generated by Ccp. Thus, even though Ccp per-forms continuation processing (�-reductions), it also gener-ates code that still contains (some) continuation processing.This is again analogue to the distinction between \admin-istrative" and \non-administrative" continuations in cps-transformations: only administrative continuations can be�-reduced during cps-transformation.To prove correctness of Ccp with respect to Scp, wemust prove the following: for all t and �, it holds thatE[[Ccp [[t]]�]]� = Scp[[t]]��. That is, evaluating the expressiongenerated by Ccp in some environment � gives the same re-sult as specializing t in the same environment. Both Ccp andScp are initially called with the identity continuation �. Toprove this equality inductively, we need a more general the-orem that holds not only when the continuations are �. Canwe hope to simply replace � by � and then expect that theequality holds for all �? The answer is unfortunately \no".The reason is simple: the type of Scp's continuation param-eter is 2Value ! 2Valuewhereas the type of Ccp's continua-tion parameter is Expression ! Expression. However, givena Ccp -type continuation �, we can construct a Scp -type con-tinuation: �a : let m=fresh() in E[[� (Varm)]]�[m 7! a]. Theidea here is to evaluate the expression generated by apply-ing � to an argument, taking care not to evaluate a whichalready is a 2Value (this is the reason why the continua-tion is not simply �a :E[[� a]]�). This leads to the followingcorrectness theorem.

Theorem 2 (Correctness of cps-cogen)8t; �; � : E[[Ccp [[t]]�]]� =Scp[[t]]�(�a : let m=fresh() in E[[� (Varm)]]�[m 7! a])Proof: By structural induction over two-level expressions.See Appendix A.2 for details. 2In this theorem, as well as in Appendix A.2, we implic-itly assume some restrictions on � when quantifying by8t; : : : ; � : : :: continuation � must be related to two-level ex-pression t in the sense that � only ranges over those contin-uations that are generated when computing Ccp [[t1]]� wheret is a subexpression of t1. That is, we only consider the rel-evant continuations, not all continuations. Notice that theidentity continuation � is a relevant continuation (possiblevalue for �).The desired correctness property now follows as a corollary:Corollary 3 (Correctness of cps-cogen)8t; � : E[[Ccp [[t]]�]]� = Scp[[t]]��Proof: Follows from Theorem 2 since�a : letm=fresh() in E[[� (Varm)]]�[m 7! a] �=�a : let m=fresh() in E[[Varm]]�[m 7! a] E=�a : let m=fresh() in a Lemma 8= �a :a = � 2(Lemma 8 can be found in Appendix A.2.) In the proof ofTheorem 2, a number of lemmas are used; these are foundin Appendix A.2. It is worth noticing that the lemmas onlyhold when t and � are restricted as described earlier: allvariable names in t must be distinct (�-conversion, cf. Sec-tion 1), and � must be relevant.



4 Deriving Ccp from CdIn retrospect, when comparing Cd and Ccp , we notice thatCcp could have been derived from Cd rather than from Scp :by cps-transforming the Cd , taking into account to use thenon-standard cps Lam-rule, and performing appropriate �-expansions for the Lam- and App-rules. This way of derivingScp might be useful in a context where a handwritten ds-cogen already exists, for example if one were to write a cps-cogen for the ML-cogen described in [BW93]. We believethat this can be done without great di�culty.5 Related workAlready in the REDFUN-project was a cogen for a subset ofLisp written by hand [BHOS76]. The motivation was thatthe specializer could not be self-applied.In [Hol89], a handwritten cogen was based on macro ex-pansion. In the paper [HL91], a ds-cogen for a staticallytyped language is described. The ideas from [HL91] wereused for hand-writing a ds-cogen for a subset of StandardML [BW93].Quite recently the work by Lawall and Danvy in [LD94]came to our attention. Lawall and Danvy show how thecps-specializer from [Bon92] can be almost automaticallyderived from a ds-specializer by inserting the control oper-ators shift and reset (see [DF90]) at selected places and cpsconverting the resulting specialiser. They also devote someattention to how their ideas could be used in the context ofa handwritten cogen.6 ConclusionWe have demonstrated how an e�cient cps-based cogen canbe written by hand. The handwritten cogen performs noenvironment manipulations, contrasting to cogens generatedby self-applying specializers. The cps-cogen is derived natu-rally from a cps-specializer, except that some non-standard�-expansions are needed in the treatment of Lam- and App-forms to shift between functions and expressions. We havegiven correctness proofs for the cps-cogen as well as for ads-cogen.We believe that our handwritten cogen is a good start-ing point for hand-writing cps-based cogens for larger strictfunctional languages. Our work does not immediately carryover to lazy languages as the cps-transformation we haveused is the strict cps-transformation. However, it is plau-sible that a similar development could be made for a lazylanguage using call-by-name cps-transformation (with lossof sharing as a consequence).AcknowledgementsWe would like to thank Neil Jones, Torben Mogensen, JuliaLawall for the fruitful discussions on the subject; also thanksto Karel De Vlaminck and Eddy Bevers for his indispensablecontributions in the �nal stages of the paper.A Proofs of the theorems 1 and 2Both proofs are by induction over t; the case analysis is overthe syntactic forms speci�ed in Figure 4. All equalities areannotated to explain why equality holds. Notice that �-and �-equalities are used: �/� do not in general hold for the

typed (Cd and Sd are both simply typed) strict weak-headnormal form lambda-calculus. �/� thus only hold when ter-mination properties do not change; we only use �/� whenthis is the case. We use �-abstraction to prevent duplicat-ing expressions of form fresh(). Also notice that in bothproofs we rely on the fact that the variable m, introduced inthe Lam- and Let-rule in both ds- and cps-cogen, is unique:m does not occur in input programs and can not be gener-ated by application of fresh(). By construction it is assuredthat 8t1: neither Ccp[[t1]]� (where � is relevant) nor Cd [[t1]]contains m as a free variable, nor that any de�nition of mshadows another de�nition of m (see Figure 6 and Figure 8).A.1 Proof of Theorem 1See Figure 9.A.2 Proof of Theorem 2We �rst give the lemmas needed for the inductive proof ofTheorem 2. Notice that Lemma 8 was also used in theproof of Corollary 3. We use M and E to range over meta-expressions (as opposed to e that ranges over object expres-sions). Recall (Section 3) that only two-level expressions twith all variable names distinct and only well-behaved con-tinuations � are considered when quantifying over t and �.Lemma 4 (Environment simpli�cation)8t; � : if v is bound in t then8� : let m=fresh() in E[[� (Varm)]]�[v 7! : : :] =let m=fresh() in E[[� (Varm)]]�that is, term �(Var m) will not contain any free occurrencesof v.Proof: Continuation � is generated independently of t, sowhen applied to (Varm) it cannot (since all source vari-able names are distinct) generate expressions with any (andhence no free) v-occurrences. 2Lemma 5 (Extracting out �'s argument)8t; � : if t is one of the forms Var v, Lam v t1, Lam v t1 orApp t1 t2 then, when computing Ccp[[t]]�, thefollowing equality holds for (all relevant instances of)the expressions � E in the right-hand sides of thesides of the rules for Var, Lam, Lam and App:8� : E[[� E ]]� =(�a : let m=fresh() in E[[� (Varm)]]�[m 7! a]) (E[[E ]]�)Proof: First notice that since �[m 7! a] is strict in a, wemay �-reduce (�a : : : :) (E[[E ]]�). We thus have to proveE[[� E ]]� = let m=fresh() in E[[� (Varm)]]�[m 7! E[[E ]]�].We shall refer to the left- and rigth-hand sides of this equal-ity as lhs and rhs below.Let e be the value of (meta-)expression E , let e1 be thevalue of (meta-)expression � E , and let e2 be the value of(meta-)expression � (Varm); notice from the type of � (Fig-ure 8) that the values e, e1 and e2 are all expressions. Itthen holds that e1 always contains at least one leaf which isa copy of e, and this leaf is always placed in a strict position,i.e. when evaluating e1, e is guaranteed also to be evaluated(\evaluation" is done by E); apart from the e-leaves, the restof e1 is independent of e. These properties of e1 are easilyinductively proved by considering all possible relevant con-tinuations �.



E[[Cd [[Var v]]]]� Cd= E[[Var v]]� E= � v Sd= Sd [[Var v]]�.E[[Cd [[Lam v t1]]]]� Cd= E[[Lam v (Cd [[t1]])]]� E= �w :E[[(Cd [[t1]])]]�[v 7! w] induction= �w :Sd [[t1]]�[v 7! w] Sd=Sd [[Lam v t1]]�.E[[Cd [[App t1 t2]]]]� Cd= E[[App (Cd [[t1]]) (Cd [[t2]])]]� E= (E[[Cd [[t1]]]]�) (E[[Cd [[t2]]]]�) 2 inductions=(Sd [[t1]]�) (Sd [[t2]]�) Sd= Sd [[App t1 t2]]�.E[[Cd [[Let v t1 t2]]]]� Cd= E[[Let v (Cd [[t1]]) (Cd [[t2]])]]� E= E[[Cd [[t2]]]]�[v 7! E[[Cd [[t1]]]]�] 2 inductions=Sd [[t2]]�[v 7! Sd [[t1]]�] Sd= Sd [[Let v t1 t2]]�.E[[Cd [[Lam v t1]]]]� Cd= E[[Letm Fresh (Let v (Var�m) (Lam� (Varm) (Cd [[t1]])))]]� E=E[[Let v (Var�m) (Lam� (Varm) (Cd [[t1]]))]]�[m 7! fresh()] �=let n=fresh() in E[[Let v (Var�m) (Lam� (Varm) (Cd [[t1]]))]]�[m 7! n] E=let n=fresh() in E[[Lam� (Varm) Cd [[t1]]]]�[m 7! n; v 7! E[[Var�m]]�[m 7! n]] E; E; E=let n=fresh() in Lam n (E[[Cd [[t1]]]]�[m 7! n; v 7! Var n]) m not free in Cd [[t1]]=let n=fresh() in Lam n (E[[Cd [[t1]]]]�[v 7! Var n]) induction=let n=fresh() in Lam n (Sd [[t1]]�[v 7! Var n]) Sd= Sd [[Lam v t1]]�.E[[Cd [[App t1 t2]]]]� Cd= E[[App� (Cd [[t1]]) (Cd [[t2]])]]� E= App (E[[Cd [[t1]]]]�) (E[[Cd [[t2]]]]�) 2 inductions=App (Sd [[t1]]�) (Sd [[t2]]�) Sd= Sd [[App t1 t2]]�.E[[Cd [[Let v t1 t2]]]]� Cd= E[[Letm Fresh (Let v (Var�m) (Let� (Varm) (Cd [[t1]]) (Cd [[t2]])))]]� E=E[[Let v (Var�m) (Let� (Varm) (Cd [[t1]]) (Cd [[t2]]))]]�[m 7! fresh()] �=let n=fresh() in E[[Let v (Var�m) (Let� (Varm) (Cd [[t1]]) (Cd [[t2]]))]]�[m 7! n] E=let n=fresh() in E[[Let� (Varm) (Cd [[t1]]) (Cd [[t2]])]]�[m 7! n; v 7! E[[Var�m]]�[m 7! n]] E; E; E=let n=fresh() in Let n (E[[Cd [[t1]]]]�[m 7! n; v 7! Var n]) (E[[Cd [[t2]]]]�[m 7! n; v 7! Var n]) m not free in Cd [[t1]],Cd [[t2]]=let n=fresh() in Let n (E[[Cd [[t1]]]]�[v 7! Var n]) (E[[Cd [[t2]]]]�[v 7! Var n]) 2 inductions=let n=fresh() in Let n (Sd [[t1]]�[v 7! Var n]) (Sd [[t2]]�[v 7! Var n]) v not free in t1 (�-conv.)=let n=fresh() in Let n (Sd [[t1]]�) (Sd [[t2]]�[v 7! Var n]) Sd= Sd [[Let v t1 t2]]�.Figure 9: Correctness of ds-cogenIt now follows that lhs and rhs have identical termina-tion properties (since e is always evaluated in e1) and thate1 and e2 are identical, except at those leaves where e1 con-tains e and e2 contains the value of m (we shall be sloppyand just write m below). To prove lhs = rhs, we thenjust have to consider the di�ering leaves, i.e. we have toprove E[[e]]�[: : :] = E[[(Varm)]]�[m 7! E[[e]]�; : : :] where �[: : :]and �[m 7! E[[e]]�; : : :] are the environments that E will usewhen evaluating the e/(Varm) leaves. But we know thatE[[(Varm)]]�[m 7! E[[e]]�; : : :] = E[[e]]� since m was fresh andhence is not shadowed in � (Varm). We thus have to proveE[[e]]�[: : :] = E[[e]]� which holds if no free variables of e areshadowed (and rebound) in � e.But no � ever shadows any variable: the only relevantcontinuations which potentially may shadow free variablesare the continuations �x :Let v Fresh : : : generated by Ccp 'sLet-rule. However, since all source variable names are dis-tinct and since � is relevant and hence has been generated in-dependently of t1, variable x cannot possible become bound
to any expression containing any (and hence no free) occur-rences of variable v when computing Ccp[[t1]](�x : : : :). 2Lemma 6 (Reordering � and let)8� : �a : let m=fresh() in E[[� (Varm)]]�[m 7! a] =let m=fresh() in �a :E[[� (Varm)]]�[m 7! a]Proof: Both sides of the equality terminate equally often.The di�erence between the two expressions is then only thatthe left-hand side generates a di�erent m each time the func-tion is applied whereas the right-hand side uses the same m.But as the value of E[[� (Varm)]]�[m 7! a] is independentof which particular fresh variable m denotes, the equalityfollows. 2Lemma 7 (Reordering E and let)8E 1;E 2 : n not free in E2 ) E[[let n=fresh() in E1]]E2 =let n=fresh() in E[[E 1]]E2



Proof: Follows from strictness of E in its �rst argumentand that the let-form is strict. The condition \n not free inE 2" ensures that no undesired shadowing occurs. 2Lemma 8 (Removing super
uous fresh variable generation)8M :M not free in E ) letM=fresh() in E = EProof: Trivial as expression fresh() always terminates nor-mally. 2Let us now give the inductive proof of Theorem 2.We use the textual abbreviation � for the continuation(�a : letm=fresh() in E[[� (Varm)]]�[m 7! a]) that occursin Theorem 2 and in Lemma 5. For each possible t, wethus have to prove E[[Ccp [[t]]�]]� = Scp [[t]]��. Notice that,using the abbreviation, Lemma 5 states that E[[� E ]]� =� (E[[E ]]�).For proof of theorem 2 see Figure 10 and Figure 11.References[BHOS76] Lennart Beckman, Anders Haraldson, �Osten Os-karsson, and Erik Sandewall. A partial evaluatorand its use as a programming tool. Arti�cial In-telligence, 7:319{357, 1976.[Bon88] Anders Bondorf. Towards a self-applicable par-tial evaluator for term rewriting systems. InDines Bj�rner, Andrei P. Ershov, and Neil D.Jones, editors, Partial Evaluation and MixedComputation, pages 27{50. North-Holland, 1988.[Bon91] Anders Bondorf. Automatic autoprojection ofhigher order recursive equations. Science ofComputer Programming, 17(1-3):3{34, Decem-ber 1991. Revision of paper in ESOP'90, LNCS432, May 1990.[Bon92] Anders Bondorf. Improving binding times with-out explicit cps-conversion. In 1992 ACM Con-ference on Lisp and Functional Programming.San Francisco, California. LISP Pointers V, 1,pages 1{10, June 1992.[BW93] Lars Birkedal and Morten Welinder. Partialevaluation of Standard ML. Technical Re-port DIKU-report 93/22, DIKU, Department ofComputer Science, University of Copenhagen,October 1993.[DF90] Olivier Danvy and Andrzej Filinski. Abstractingcontrol. In 1990 ACM Conference on Lisp andFunctional Programming. Nice, France, pages151{160, June 1990.[DF92] Olivier Danvy and Andrzej Filinski. Represent-ing control. Mathematical Structures in Com-puter Science, 2(4), 1992.[DNBV91] Anne De Niel, Eddy Bevers, and Karel DeVlaminck. Partial evaluation of polymorphicallytyped functional languages: the representationproblem. In M. Billaud et al., editors, Ana-lyse Statique en Programmation �Equationnelle,Fonctionnelle, et Logique, Bordeaux, France,Octobre 1991 (Bigre, vol. 74), pages 90{97.Rennes: IRISA, 1991.

[GJ91] Carsten K. Gomard and Neil D. Jones. A par-tial evaluator for the untyped lambda-calculus.Journal of Functional Programming, 1(1):21{69,January 1991.[Gom90] Carsten K. Gomard. Partial type inference foruntyped functional programs. In 1990 ACMConference on Lisp and Functional Program-ming. Nice, France, pages 282{287, June 1990.[Hen91] Fritz Henglein. E�cient type inference forhigher-order binding-time analysis. In JohnHughes, editor, Conference on Functional Pro-gramming and Computer Architecture, Cam-bridge, Massachusetts. Lecture Notes in Com-puter Science 523, pages 448{472. Springer-Verlag, August 1991.[HL91] Carsten Kehler Holst and John Launchbury.Handwriting cogen to avoid problems with statictyping. In Draft Proceedings, Fourth AnnualGlasgow Workshop on Functional Programming,Skye, Scotland, pages 210{218. Glasgow Univer-sity, 1991.[Hol89] Carsten Kehler Holst. Syntactic currying: yetanother approach to partial evaluation. Stu-dent Report 89-7-6, DIKU, University of Copen-hagen, Denmark, July 1989.[Lau91] John Launchbury. A strongly-typed self-applicable partial evaluator. In John Hughes,editor, Conference on Functional Programmingand Computer Architecture, Cambridge, Mas-sachusetts. Lecture Notes in Computer Science523, pages 145{164. Springer-Verlag, August1991.[LD94] J. Lawall and O. Danvy. Continuation-basedpartial evaluation. In 1994 ACM Conferenceon Lisp and Functional Programming. Orlando,Florida, June 1994.[NN88] Hanne R. Nielson and Flemming Nielson. Au-tomatic binding time analysis for a typed �-calculus. In Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Pro-gramming Languages. San Diego, California,pages 98{106, 1988.



E[[Ccp[[Var v]]�]]� Ccp= E[[� (Var v)]]� Lemma 5= � (E[[Var v]]�) E= � (� v) Scp= Scp[[Var v]]��.E[[Ccp[[Lam v t1]]�]]� Ccp= E[[� (Lam v (let n=fresh() in Lam n (Ccp [[t1]](�x :App (Var n) x))))]]� Lemma 5=� (E[[Lam v (let n=fresh() in Lam n (Ccp[[t1]](�x :App (Var n) x)))]]�) E; Lemma 7; E=� (�w : let n=fresh() in �u :E[[Ccp[[t1]](�x :App (Var n) x)]]�[v 7! w;n 7! u]) induction=� (�w : let n=fresh() in �u :Scp[[t1]]�[v 7! w;n 7! u](�a : letm=fresh() inE[[(�x :App (Var n) x) (Varm)]]�[v 7! w;n 7! u;m 7! a])) n not free in t1; �; E=� (�w : let n=fresh() in �u :Scp[[t1]]�[v 7! w](�a : let m=fresh() in u a)) Lemma 8 twice=� (�w : �u :Scp[[t1]]�[v 7! w](�a :u a)) � twice= � (�w :Scp [[t1]]�[v 7! w]) Scp= Scp[[Lam v t1]]��.E[[Ccp[[App t1 t2]]�]]� Ccp=E[[Ccp[[t1]](�x :Ccp[[t2]](�y :App (Appx y) (let n=fresh() in Lamn (� (Var n)))))]]� induction=Scp [[t1]]�(�a : let m=fresh() in E[[(�x :Ccp [[t2]](�y :App (Appx y) (let n=fresh() inLam n (� (Var n))))) (Varm)]]�[m 7! a]) �; renaming a to x=Scp [[t1]]�(�x : let m=fresh() in E[[Ccp[[t2]](�y :App (App (Varm) y) (let n=fresh() inLam n (� (Var n))))]]�[m 7! x]) induction=Scp [[t1]]�(�x : let m=fresh() in Scp[[t2]]�[m 7! x](�a : let m0=fresh() in E[[(�y :App (App (Varm) y)(let n=fresh() in Lam n (� (Var n)))) (Varm0)]]�[m 7! x;m0 7! a])) m not free in t2 ; �; E; Lemma 7; E=Scp [[t1]]�(�x : let m=fresh() in Scp[[t2]]�(�a : letm0=fresh() in (x a) (let n=fresh() in �w :E[[� (Var n)]]�[m 7! x;m0 7! a; n 7! w]))) m, m0 not free in � (Var n); Lemma 8 twice; renaming a to y, w to a, n to m=Scp [[t1]]�(�x :Scp [[t2]]�(�y : (x y) (letm=fresh() in �a : E[[� (Varm)]]�[m 7! a]))) Lemma 6=Scp [[t1]]�(�x :Scp [[t2]]�(�y : (x y) (�a : let m=fresh() in E[[� (Varm)]]�[m 7! a]))) Scp= Scp[[App t1 t2]]��.E[[Ccp[[Let v t1 t2]]�]]� Ccp= E[[Ccp[[t1]](�x :Let v x (Ccp[[t2]]�))]]� induction=Scp [[t1]]�(�a : let m0=fresh() in E[[(�x :Let v x Ccp [[t2]]�) (Varm0)]]�[m0 7! a]) �; E; renaming a to x=Scp [[t1]]�(�x : let m0=fresh() in E[[Ccp [[t2]]�]]�[m0 7! x; v 7! x]) induction=Scp [[t1]]�(�x : let m0=fresh() in Scp[[t2]]�[m0 7! x; v 7! x](�a : let m=fresh() inE[[� (Varm)]]�[m0 7! x; v 7! x;m 7! a])) m0 not free in t2 ; m0 not free in � (Var m); Lemma 8=Scp [[t1]]�(�x :Scp [[t2]]�[v 7! x](�a : letm=fresh() in E[[� (Varm)]]�[v 7! x;m 7! a])) Lemma 4=Scp [[t1]]�(�x :Scp [[t2]]�[v 7! x](�a : letm=fresh() in E[[� (Varm)]]�[m 7! a])) Scp= Scp [[Let v t1 t2]]��.Figure 10: Correctness of cps-cogen (Part 1)



E[[Ccp[[Lam v t1]]�]]� Ccp= E[[� (Letm Fresh (Let v (Var�m) (Lam� (Varm) (Ccp[[t1]]�))))]]� Lemma 5=� (E[[Let m Fresh (Let v (Var�m) (Lam� (Varm) (Ccp[[t1]]�)))]]�) E; �; E=� (let n=fresh() in E[[Lam� (Varm) (Ccp[[t1]]�)]]�[m 7! n; v 7! E[[Var�m]]�[m 7! n]]) E; E; E=� (let n=fresh() in Lam n (E[[Ccp[[t1]]�]]�[m 7! n; v 7! Var n])) m not free in Ccp [[t1 ]]�=� (let n=fresh() in Lam n (E[[Ccp[[t1]]�]]�[v 7! Var n])) induction=� (let n=fresh() in Lam n (Scp[[t1]]�[v 7! Var n](�a : let m=fresh() in E[[� (Varm)]]�[v 7! Var n;m 7! a])))E; Lemma 8; � = �a :a= � (let n=fresh() in Lam n (Scp[[t1]]�[v 7! Var n]�)) Scp= Scp[[Lam v t1]]��.E[[Ccp[[App t1 t2]]�]]� Ccp= E[[Ccp[[t1]](�x :Ccp[[t2]](�y : � (App� x y)))]]� induction=Scp [[t1]]�(�a : let m=fresh() in E[[(�x :Ccp [[t2]](�y : � (App� x y))) (Varm)]]�[m 7! a]) �; renaming a to x=Scp [[t1]]�(�x : let m=fresh() in E[[Ccp[[t2]](�y : � (App� (Varm) y))]]�[m 7! x]) induction=Scp [[t1]]�(�x : let m=fresh() in Scp[[t2]]�[m 7! x](�a : (let m0=fresh() inE[[(�y : � (App� (Varm) y)) (Varm0)]]�[m 7! x;m0 7! a]))) m not free in t2; �; renaming a to y=Scp [[t1]]�(�x : let m=fresh() in Scp[[t2]]�(�y : (letm0=fresh() inE[[� (App� (Varm) (Varm0))]]�[m 7! x;m0 7! y]))) Lemma 5=Scp [[t1]]�(�x : let m=fresh() in Scp[[t2]]�(�y : (letm0=fresh() in� (E[[App� (Varm) (Varm0)]]�[m 7! x;m0 7! y])))) E=Scp [[t1]]�(�x : let m=fresh() in Scp[[t2]]�(�y : (letm0=fresh() in � (Appx y)))) Lemma 8 twice=Scp [[t1]]�(�x :Scp [[t2]]�(�y : � (Appx y))) Scp= Scp[[App t1 t2]]��.E[[Ccp[[Let v t1 t2]]�]]� Ccp= E[[Ccp[[t1]](�x :Letm Fresh (Let v (Var�m) (Let� (Varm) x (Ccp [[t2]]�))))]]� induction=Scp [[t1]]�(�a : let m0=fresh() in E[[(�x :Letm Fresh (Let v (Var�m) (Let� (Varm) x(Ccp [[t2]]�)))) (Varm0)]]�[m0 7! a]) �; E; �; E; E; E; E; E; renaming a to x=Scp [[t1]]�(�x : let m0=fresh() in let n=fresh() in Let n x (E[[Ccp[[t2]]�]]�[m0 7! x;m 7! n; v 7! Var n]))m not free in Ccp [[t2]]�= Scp [[t1]]�(�x : let m0=fresh() in let n=fresh() in Let n x (E[[Ccp [[t2]]�]]�[m0 7! x; v 7! Var n]))induction= Scp[[t1]]�(�x : let m0=fresh() in let n=fresh() in Let n x (Scp[[t2]]�[m0 7! x; v 7! Var n](�a : (letm00=fresh() inE[[� (Varm00)]]�[m0 7! x; v 7! Var n;m00 7! a])))) m0 not free in t2; m0 not free in � (Varm00); Lemma 8=Scp [[t1]]�(�x : let n=fresh() in Let n x (Scp[[t2]]�[v 7! Var n](�a : (let m00=fresh() inE[[� (Varm00)]]�[v 7! Var n;m00 7! a])))) Lemma 4=Scp [[t1]]�(�x : let n=fresh() in Let n x (Scp[[t2]]�[v 7! Var n](�a : (let m00=fresh() inE[[� (Varm00)]]�[m 7! a])))) Scp= Scp[[Let v t1 t2]]��.Figure 11: Correctness of cps-cogen (Part 2)


