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Abstract

In this paper, we present a bi-directional demand-driven set-based analysis
which solves only those constraints affecting program points one wants to analyze.
To achieve this goal, we incorporate the notion of demands on set constraints and
analyze programs in two directions: forward to know which values flow into a given
point, and backward to know which program points that a given value flows into.
We prove that for interested program points, our analysis gives exactly the same
results as whole-program set-based analysis. As an experiment of our approach,
we analyzed each program point separately using our demand-driven formulation.
We report the efficiency of our analysis as percentage of constraints solved for each
program point compared with the whole-program analysis.

1 Introduction

When analyzing programs, there are often situations that analysis of whole program
is not needed. For example, one may need analysis results for only a subset of all
functions in the program. For array bound check, only values for array index are
needed. Another situation might be the semantic exhaustiveness check of pattern
matchings in ML-like programs, where one may need only those values flowing into
pattern matchings.

With these motivations, we propose demand-driven formulation of set-based analy-
sis. Set-based analysis [Hei94, Hei93, Hei92] is a static analysis technique that estimates
sets of values by regular tree grammars [Hei93]. Such regular tree grammar’s produc-
tion rules are derived in a form of set-constraints. In set-based analysis, there’s no
solving order defined and due to higher order functions in functional languages, analy-
sis results for a program point can’t be determined until analysis for whole-program is
finished. To overcome this aspect and make it demand-driven, we incorporate notion
of demands to set-based analysis. Starting from initial demands of interested program
points, we add new demands for related program points and solve a constraint only if
we have demand for it. One can view demands as specifying solving order to set-based
analysis.

∗This work is supported by Creative Research Initiatives of the Korean Ministry of Science and
Technology.
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To achieve demand-driven formulation in the presence of higher-order functions,
we solve constraints in two directions. For a given program point, the result of set-
based analysis is approximation of all values computed for the point. To acquire all
such “forward” information of computation in demand-driven way, we sometimes need
opposite “backward” information of all program points on which a given function can
be called. Let’s consider following higher-order program fragment.

let fun f x = case x of ...
fun g h = ... h e1 ...

in ... f e2 ... g f ... end

For the (forward) demand of argument x, we have to collect function f’s actual ar-
guments, e1 and e2 by identifying all call sites of f. e2 might be easily identified
syntactically, but as functions in higher-order programs are first-class objects, e1 can’t
be identified without analyzing all call sites the function f flows into. So, we add
backward demand for f and solve this demand in backward direction identifying that
f flows into the call site h e1.

1.1 Other Approaches for Demand-Driven Analyses

Biswas formulated a demand-driven set-based analysis for the purpose of dead code
elimination [Bis97]. However, in his formulation, initial demand is restricted only
to top-level expression and constraints for arbitrary program points can’t be analyzed
separately. He adds demand constraints to usual value constraints. His approach solves
both value constraints and demand constraints simultaneously. Demand constraints
are solved in such a way that if a program point is included in the demand, then
it is not dead code. In this way, he solves constraints for only non-dead codes, and
when solving is done, program points not in the demand set are identified as dead
codes. Contrary to this use of demands to indicate non-dead codes, demands in our
demand-driven formulation can be any program points of interest.

In Heintze and Tardieu’s demand-driven formulation of pointer analysis for C-like
languages [HT01], similar concept of separating forward flows and backward flows is
used. In a language like C, pointer analysis is answering the query “what may a
program variable p point to?”. To solve indirect assignment in fully demand-driven
way, they solve the backward query “what variables may point to p?”. Our work
can be seen as applying their strategies for demand-driven formulation to set-based
analysis of higher-order languages.

1.2 Paper Organization

The rest of this paper is organized as follows. In Section 2, we define a core ML
language we will use to represent our work. In Section 3, we briefly summarize set-
based analysis for the language. In Section 4, we modify the set-based analysis and
formulate a demand-driven set-based analysis. In Section 5, we prove that our demand-
driven formulation gives the same results for demanded program points. In Section 6,
we report the experimental results for solving each program points separately and
discuss about the results. In Section 7, we conclude the paper.
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V ar x, y variables
Con c data constructors
Expr

e ::= x variable
| c(e1, . . . , en) data construction
| λx.e function abstraction
| e1 e2 function application
| case(e1, c(x1, . . . , xn) ⇒ e2, y ⇒ e3) pattern matching

Figure 1: Syntax

2 The Language

In this section, we introduce a simple language that we will describe our work with.
It is an untyped core ML with data constructors and simplified pattern matching
constructs.

Syntax of the language is shown in Figure 1. Here, V ar is a finite set of pro-
gram variables and Con is a finite set of date constructors with predefined arities.
x, λx.e, e1 e2 are components of core ML. c(e1, . . . , en) produces structured values
with data constructor c of fixed arity n. case(e1, c(x1, . . . , xn) ⇒ e2, y ⇒ e3) repre-
sents simplified pattern matching. Recursive functions are omitted for presentational
simplicity because they are not affected by our demand-driven formulation.

We show dynamic semantics of the language in natural semantics form in Figure 2.
The natural semantics establish the relation E ` e → v saying that in environment
E, expression e evaluates to value v. Here, environment E is a finite mapping from
program variables to values. The notation E[x 7→ v] denotes the environment which
has the same mappings as E except for x, which maps to v. We have two kinds of
values, data constructed values and function closures. To enforce static scoping, we
keep track of the environment in which a function is generated as a function closure.

3 Set-Based Analysis [Hei94]

Set-based analysis is a static analysis method, which approximates sets of values for
each programs points by regular tree grammars [Hei93], whose production rules are
derived in a form of set constraints. By collapsing all environments appearing during
evaluation into a single set environment, dependencies between different environments
are ignored and runtime values of the program are approximated in finite time.

The method is separated into two phases. In first phase, initial set constraints
are generated from the source program. This generation transforms the meaning of
the program into set containment relationships with set expressions modeling approx-
imation semantics. Also, every program point is named with set variables. So, after
generation, the source program is not needed anymore. In second phase, we solve
the generated constraints by adding simpler constraints explicitly representing flows
of values. Analysis is done when there are no more constraints to add. The analysis
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Env E ∈ V ar
fin−→ V al environment

V al v ::= c(v1, . . . , vn) constructed value
| 〈E, λx.e〉 function closure

E ` x → E(x)

E ` ei → vi 1 ≤ i ≤ n

E ` c(e1, . . . , en) → c(v1, . . . , vn)

E ` λx.e → 〈E, λx.e〉
E ` e1 → 〈E′, λx.e〉 E ` e2 → v′ E′[x 7→ v′] ` e → v

E ` e1 e2 → v

E ` e1 → c(v1, . . . , vn) E[x1 7→ v1, . . . , xn 7→ vn] ` e2 → v

E ` case(e1, c(x1, . . . , xn) ⇒ e2, y ⇒ e3) → v

E ` e1 → v′ E[y 7→ v′] ` e3 → v

E ` case(e1, c(x1, . . . , xn) ⇒ e2, y ⇒ e3) → v
v′ 6= c(. . . )

Figure 2: Dynamic Semantics

result is explicit set containments for every set variable.

3.1 Set Constraints

We define set expressions and their meanings in Figure 3. We have three kinds of set
expressions. First, variable set expressions denote program points. Two special set
variables are used to handle flows generated by function applications. dom(λx.e) de-
notes actual arguments flowing into λx.e’s formal argument. ran(λx.e) denotes result
values of function application. Second, abstractions and constructed value expressions
denote set of values, which we call atomic set expressions. Lastly, apply and case
expression denote semantics of the language. Meaning of set expression is given by
extending interpretation I, which is a mapping from set variables to sets of values.
Note that we don’t have environments as function closure because single predefined
set environment is used. Restrictions in the extension guarantees that I is sound
approximation of the program.

Set constraints are of the form X ⊇ se meaning that program point X contains the
values denoted by se.

Set constraints are generated from the source program by the rules in Figure 4.
Environment E maps program variables to corresponding set variables. The relation
E ` e . (X , C) says that in environment E, constraints C are generated with new set
variable X denoting program point e.
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SetV ar X set variables
SetExp set expression

se ::= X variable
| λx.e function value
| c(X1, . . . ,Xn) constructed value
| apply(X1,X2) application
| case(Y1, c(W1, . . . ,Wn) ⇒ Y2,W ⇒ Y3) pattern matching

Atomic set expression Special set variables
ae ::= λx.e - dom(λx.e): formal argument (x)
| c(X1, . . . ,Xn) - ran(λx.e): body expression (e)

Meaning of set expressions
V al v ::= c(v1, . . . , vn) constructed value

| λx.e function value
I ∈ SetV ar → 2V al interpretation

Extension of I
- I(λx.e) = {λx.e}
- I(c(X1, . . . ,Xn)) = {c(v1, . . . , vn) | vi ∈ I(Xi), 1 ≤ i ≤ n}
- I(apply(X1,X2)) = {v | λx.e ∈ I(X1), v ∈ ran(λx.e)}

provided λx.e ∈ I(X1) implies I(X2) ⊆ I(dom(λx.e))
- I(case(Y1, c(W1, . . . ,Wn) ⇒ Y2, W ⇒ Y3)) =

{v | v ∈ I(Y2),∃v′ ∈ I(Y1) s.t. v′ = c(. . . )} ∪
{v | v ∈ I(Y3),∃v′ ∈ I(Y1) s.t. v′ 6= c(. . . )}

provided:
1. if c(v1, . . . , vn) ∈ I(Y1) then vi ∈ I(Wi), 1 ≤ i ≤ n
2. if v ∈ I(Y1) and v 6= c(. . . ) then v ∈ I(W)

Figure 3: Set expressions

3.2 Set Constraint Solving

We present set constraint solving rules, E, in Figure 5. E simulates the data flows in
programs by propagating set constraints. For example, for a function call site, rule
E1 links the result of the site with body of functions flowing into the site and rule
E2 links formal argument of those functions to actual argument of the site. Further
simplifications are initiated by flowing values through links established.

We define analysis as the reflexive transitive closure E∗(C) of E(C), a single step
of adding constraints by applying E to C. The closure is the set of initial constraints
C and all added constraints by repeatedly applying E. The main result of set-based
analysis [Hei92] showed that we get explicit representation of safe approximation of
the program by collecting all constraints of the form X ⊇ ae in E∗(C).
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E ` x . (E(x), {})
E ` e1 . (X1, C1) E ` e2 . (X2, C2)

E ` e1 e2 . (Y, {Y ⊇ apply(X1,X2)} ∪ C1 ∪ C2)

E ` ei . (Xi, Ci), i = 1..n

E ` c(e1, . . . , en) . (Y, {Y ⊇ c(X1, . . . ,Xn)} ∪ C1 ∪ . . . ∪ Cn)

E[x 7→ dom(λx.e)] ` e . (X , C)
E ` λx.e . (Y, {Y ⊇ λx.e, ran(λx.e) ⊇ X} ∪ C)

E ` e1 . (Z1, C1)
E[x1 7→ W1, . . . , xn 7→ Wn] ` e2 . (Z2, C2)
E[y 7→ W] ` e3 . (Z3, C3)

E ` case(e1, c(x1, . . . , xn) ⇒ e2, y ⇒ e3).
(Y, {Y ⊇ case(Z1, c(W1, . . . ,Wn) ⇒ Z2,W ⇒ Z3)} ∪ C1 ∪ C2 ∪ C3)

Figure 4: Set constraint generation

E1
X ⊇ apply(X1,X2) X1 ⊇ λx.e

X ⊇ ran(λx.e)

E2
X ⊇ apply(X1,X2) X1 ⊇ λx.e

dom(λx.e) ⊇ X2

E3
X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c(. . . )

X ⊇ Y2

E4
X ⊇ case(Y1, c(. . . ,Wi, . . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c(. . . ,Zi, . . . )

Wi ⊇ Zi

E5
X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c′(. . . ) c 6= c′

X ⊇ Y3

E6
X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c′(. . . ) c 6= c′

W ⊇ c′(. . . )

E7
X ⊇ X ′ X ′ ⊇ ae

X ⊇ ae

Figure 5: Exhaustive solving (E)
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4 Bi-directional Demand-Driven Set-Based Analysis

In this section, we develop a demand-driven set-based analysis by modifying Heintze’s
exhaustive set-based analysis presented in Section 3. Our demand-driven set-based
analysis solves from arbitrary initial demands of interested program points, only those
constraints affecting them and gives the same results as exhaustive set-based analysis
for them.

4.1 Making it Demand-Driven

Let’s consider the rule E1 of exhaustive solving E in Figure 5.

X ⊇ apply(X1,X2) X1 ⊇ λx.e

X ⊇ ran(λx.e)

Here, we add the constraint that X contains ran(λx.e). We need this constraint if we
want to know what values program point X evaluates to, i.e., if we have demand for
X . So, we need the following demand-driven rule with the notation D(X ) meaning
that we have demand for X .

D(X ) X ⊇ apply(X1,X2) X1 ⊇ λx.e

X ⊇ ran(λx.e)

Next step is adding new demands to ensure that we solve all necessary constraints.
Let’s continue considering the case E1. We have to ensure that all premises in the
original rule E1 are added in demand-driven solving. All constraints with apply(. . . )
are directly generated from the source program. So, the premise, X ⊇ apply(X1,X2),
is guaranteed to be in demand-driven solving. However, the other premise, X1 ⊇ λx.e,
can be added during solving process. We can guarantee that this premise is added in
demand-driven solving with FD(X1), i.e., we need to know what values X1 evaluates
to. So, we can write the following demand-add rule.

D(X ) X ⊇ apply(X1,X2)
D(X1)

Note that from D(X ), we can identify X ⊇ apply(X1,X2) right away because it is a
generated constraint.

Demand-add rules specify solving sequence. For example, the rule we have just
defined specifies solving sequence as follows: To solve constraints for X which is a call
site of apply(X1,X2), we first find all functions X1 evaluates to.

Using similar approach, we can make all rules demand-driven and get associated
demand-add rules except for the case E2 of dom(λx.e), which we will discuss next.

4.2 Demand for Formal Argument

Let’s consider the rule E2.

X ⊇ apply(X1,X2) X1 ⊇ λx.e

dom(λx.e) ⊇ X2
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We can make the rule itself demand-driven as follows:
D(dom(λx.e)) X ⊇ apply(X1,X2) X1 ⊇ λx.e

dom(λx.e) ⊇ X2

However, we can’t get the associated demand-add rule as other cases. From D(dom(λx.e)),
we have only the clue that λx.e flows into some X1. Finding out all such X1 from λx.e
is not trivial because X1 ⊇ λx.e might be a newly added constraint during solving.

Naive approach of following demand-add rule works, but it is not fully demand-
driven in the sense that we solve all call sites regardless of initial demands:

D(dom(λx.e)) X ⊇ apply(X1,X2)
D(X1)

In order to avoid this too loose demand-add rule, we need to consider solving
constraints in the opposite direction. The information needed here is all call sites
that λx.e flows into. So, we make it fully demand-driven by solving λx.e in the
opposite backward direction. We specify solving directions with the notations FD(X )
for ordinary forward solving of X and BD(se) for the opposite backward solving of
se. With these two solvings, demand-add rule for forward formal argument is stated
as follows:

FD(dom(λx.e))
BD(λx.e)

That is, we need to know where λx.e flows into (backward needness) if we need to
know what values flow into formal argument x (forward needness).

4.3 Bi-directional Demand-Driven Solving

Our demand-driven solving rules consist of forward rules and backward rules inter-
leaved. We solve some constraints in forward direction and some in backward direction.
For the presentational simplicity, we include forward demand FD(X ) and backward
demand BD(ae) or BD(X ) as special kinds of set constraints.

Forward demand-driven solving, F, finds all constraints of the form X ⊇ se if we
have the forward demand, FD(X ). The solving rules and demand-add rules of forward
solving are shown in Figure 6. Two rules are indexed with the same number for solving
rule and corresponding demand-add rule.

Backward demand-driven solving, B, finds all constraints of the form X ⊇ se if
we have the backward demand, BD(se). We present solving rules and demand-add
rules in Figure 7. We formulated these rules similar to the way we did for the forward
solving. For example, B2 is derived from E2 by adding the premise BD(X2) to ensure
that we add dom(λx.e) ⊇ X2 only if we have the backward needness for X2 as follows:

BD(X2) X ⊇ apply(X1,X2) X1 ⊇ λx.e

dom(λx.e) ⊇ X2

To guarantee that non-trivial premise X1 ⊇ λx.e is included in the backward solving,
we devise following demand-add rule B2D:

BD(X2) X ⊇ apply(X1,X2)
FD(X1)
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F1
FD(X ) X ⊇ apply(X1,X2) X1 ⊇ λx.e

X ⊇ ran(λx.e)

F2
FD(dom(λx.e)) X ⊇ apply(X1,X2) X1 ⊇ λx.e

dom(λx.e) ⊇ X2

F3
FD(X ) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c(. . . )

X ⊇ Y2

F4
FD(Wi) X ⊇ case(Y1, c(. . . ,Wi, . . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c(. . . ,Zi, . . . )

Wi ⊇ Zi

F5
FD(X ) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c′(. . . ) c 6= c′

X ⊇ Y3

F6
FD(W) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c′(. . . ) c 6= c′

W ⊇ c′(. . . )

F7
FD(X ) X ⊇ X ′ X ′ ⊇ ae

X ⊇ ae

F1D
FD(X ) X ⊇ apply(X1,X2)

FD(X1)

F2D
FD(dom(λx.e))

BD(λx.e)

F3,5D
FD(X ) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3)

FD(Y1)

F4D
FD(Wi) X ⊇ case(Y1, c(. . . ,Wi, . . . ) ⇒ Y2,W ⇒ Y3)

FD(Y1)

F6D
FD(W) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3)

FD(Y1)

F7D
FD(X ) X ⊇ X ′

FD(X ′)

Figure 6: Forward demand-driven solving F
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This rule specifies that to consider all program points that an actual argument of a call
site flows into, we have to first find out all functions flowing into the call site. Other
rules are derived according to similar ideas.

Demand-driven set-based analysis repeatedly applies rules F and B. Let C′ be the
union of the generated constraints and initial forward demands. We define FB(C′) to
be newly added constraints by applying F and B to C′ once. Then, solving process is
represented by the reflexive transitive closure, FB∗(C′).

5 Equivalence

In this section, we prove that for the program points we want analyze, our demand-
driven set-based analysis gives the same results as the original exhaustive analysis. We
prove the equivalence by using similar strategy and notations Heintze used to prove
equivalence of his demand-driven pointer analysis [HT01].

Equivalence guaranteed by our demand-driven formulation is restricted to top-level
structure in case of constructed values. Suppose we have forward demand for X and
constraint X ⊇ c(X1) is in the solution. In this case, values for X1 are not guaranteed to
be in the solution. This is not surprising since we only guarantees that all constraints of
the form X ⊇ se are in the solution and we don’t have constructed value set expression
of the form c(ae). Solution of set-based analysis is a regular tree grammar specifying
how to build values in the solution [Hei93].

This is not severe restriction. First, one may actually need to know only top-level
structure of values. In those situations, our method is more efficient than finding values
for all components together. Second, if values for components are needed, those values
can be solved by invoking the analysis again with demands for needed components.
In reinvocations, constraints solved in previous invocations are saved and need not be
solved again. So there’s not much performance loss by solving constraints through
successive steps for components.

Now, we prove the equivalence. Let’s first define following assertions to represent
result constraints of demand-driven solving. Let C be generated constraints and C′ be
the union of generated constraints and initial forward demands.

• X `F X ⊇ se
this assertion states if FD(X ) ∈ FB∗(C′) then X ⊇ se ∈ FB∗(C′).

• se `B X ⊇ se
this assertion states if BD(se) ∈ FB∗(C′) then X ⊇ se ∈ FB∗(C′).

Lemma 1 (Soundness) If X ⊇ se ∈ FB∗(C′) then X ⊇ se ∈ E∗(C).

Proof: This is trivial since demand only restricts solving process. We start demand-
driven solving with the same value constraints, and all solving rules in F and B are
restricted version of the same rules in E each with an additional premise for demand.
2
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B1
BD(ran(λx.e)) X ⊇ apply(X1,X2) X1 ⊇ λx.e

X ⊇ ran(λx.e)

B2
BD(X2) X ⊇ apply(X1,X2) X1 ⊇ λx.e

dom(λx.e) ⊇ X2

B3
BD(Y2) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c(. . . )

X ⊇ Y2

B4
BD(Zi) X ⊇ case(Y1, c(. . . ,Wi, . . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c(. . . ,Zi, . . . )

Wi ⊇ Zi

B5
BD(Y3) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c′(. . . ) c 6= c′

X ⊇ Y3

B6
BD(c′(. . . )) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3) Y1 ⊇ c′(. . . ) c 6= c′

W ⊇ c′(. . . )

B7
BD(ae) X ⊇ X ′ X ′ ⊇ ae

X ⊇ ae

B1D
BD(ran(λx.e))

BD(λx.e)

B2D
BD(X2) X ⊇ apply(X1,X2)

FD(X1)

B3D
BD(Y2) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3)

FD(Y1)

B4D
BD(Zi)

BD(c(. . . ,Zi, . . . ))

B5D
BD(Y3) X ⊇ case(Y1, c(. . . ) ⇒ Y2,W ⇒ Y3)

FD(Y1)

B7D
BD(ae) X ′ ⊇ ae

BD(X ′)

Figure 7: Backward demand-driven solving B



October 2, 2002 ROPAS-2002-18 12

Lemma 2 (Completeness) If X ⊇ se ∈ E∗(C) then X `F X ⊇ se and se `B X ⊇
se.

Proof: We prove by induction on the proof tree of derivations of X ⊇ se ∈ E∗(C).

• Base cases
Base cases of X ⊇ se ∈ E∗(C) are generated constraints C. All these constraints
are included in forward (backward) solving since C′ ⊇ C.

• X ⊇ apply(X1,X2) X1 ⊇ λx.e

dom(λx.e) ⊇ X2

X ⊇ apply(X1,X2) ∈ FB∗(C′) (base case)

i) dom(λx.e) `F dom(λx.e) ⊇ X2

We assume FD(dom(λx.e)) ∈ FB∗(C′).
X ⊇ apply(X1,X2) ∈ FB∗(C′) (base case)
BD(λx.e) ∈ FB∗(C′) (by F2D)
X1 ⊇ λx.e ∈ FB∗(C′) (by I.H. λx.e `B X1 ⊇ λx.e)
dom(λx.e) ⊇ X2 ∈ FB∗(C′) (by F2 applied to above results)

ii) X2 `B dom(λx.e) ⊇ X2

We assume BD(X2) ∈ FB∗(C′).
X ⊇ apply(X1,X2) ∈ FB∗(C′) (base case)
FD(X1) ∈ FB∗(C′) (by B2D)
X1 ⊇ λx.e ∈ FB∗(C′) (by I.H. X1 `F X1 ⊇ λx.e)
dom(λx.e) ⊇ X2 ∈ FB∗(C′) (by B2 applied to above results)

• X ⊇ X ′ X ′ ⊇ ae
X ⊇ ae

i) X `F X ⊇ ae
We assume FD(X ) ∈ FB∗(C′).
X ⊇ X ′ ∈ FB∗(C′) (by I.H. X `F X ⊇ X ′)
FD(X ′) ∈ FB∗(C′) (by F7D applied to above results)
X ′ ⊇ ae ∈ FB∗(C′) (by I.H. X ′ `F X ′ ⊇ ae)
X ⊇ ae ∈ FB∗(C′) (by F7 applied to above results)

ii) ae `B X ⊇ ae
We assume BD(ae) ∈ FB∗(C′).
X ′ ⊇ ae ∈ FB∗(C′) (by I.H. ae `B X ′ ⊇ ae)
BD(X ′) ∈ FB∗(C′) (by B7D applied to above results)
X ⊇ X ′ ∈ FB∗(C′) (by I.H. X ′ `B X ⊇ X ′)
X ⊇ ae ∈ FB∗(C′) (by B7 applied to above results)

• Other cases are proved similarly. 2
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Theorem 1 (Equivalence) For all FD(X ) ∈ C′, X ⊇ se ∈ E∗(C) iff X ⊇ se ∈
FB∗(C′).
Proof: It follows immediately from Lemma 1 and Lemma 2. 2

6 Experimental Results and Discussion

We have implemented prototypes of both exhaustive analysis and demand-driven anal-
ysis over nML programming language system to measure the performance of demand-
driven analysis. We analyzed source code after pattern matching compilation based
on decision tree model [BM85], which transforms ML’s complex pattern matching to
the restricted form of the core language. For other parts of full ML not represented in
core language, we extended the core analysis with similar ideas in [Hei94] except that
we didn’t analyze arithmetics.

We have experimented by solving each program point separately. For each program
point, we start analysis from generated constraints from source program and with single
forward demand for the point. As mentioned in Section 5, for the initial program point
of interest, we solved for full structure of values by reinvocating the analysis for the
components of structured values. We included significant libraries such as list libraries
in the source program and analyzed them together.

Summary of experimental results are shown in Figure 8. First four programs are
widely used benchmarks for ML. dsba is our analyzer itself. patcomp is a pattern match
compiler for nML. evalcps is an interpreter and continuation passing style (cps) con-
verter of simple functional language. Initial constraints are generated constraints from
the program roughly indicating program size. We show maximum and average per-
centages of constraints added for demand-driven solving of a program point compared
to exhaustive solving. Maximum percentage indicates the program point solving the
largest number of constraints. We show average of all program points though it may
not be much meaningful because of high variance.

More detailed results are shown in Figure 9. For each program, we give percentages
of program points solving 0-5%, . . . , 95-100% of constraints compared to exhaustive
solving. We could see some interesting points with the results.

• Many program points solve 0-5%.
This behavior is quite natural since many program points do simple computation.
For example, in extreme, program points for constants solve 0%.

• Many program points solve near maximum percentages.
In mono-variant analysis, all function calls are merged. So, if the result of a
function call is needed, we have to analyze all other call sites of the function,
which can be the cause of this behaviour. Also, we can think that mono-variance
is causing clustering of program points with many 0’s in Figure 9.

• 44%, 36.9% maximum percentages for fft and nucleic.
What we observed from this behaviour is that demand-driven formulation re-
flects crude approximation done in base analysis and doesn’t solve unnecessary
constraints due to those approximation. fft and nucleic are intensive numer-
ical applications. However, we didn’t analyzed arithmetics. Analysis result for
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Program Initiala Exb DD solving(%) c

(lines) constraints solving Max. d Avg. e

fft (238) 1348 1982 44.0 5.2
nucleic (3398) 15770 18574 36.9 0.8
kb (500) 3826 140518 83.9 33.7
lexgen (1282) 9035 50285 72.3 23.1
dsba (3162) 13740 115087 77.9 31.4
patcomp (1406) 6609 350493 84.0 39.5
evalcps (604) 2987 21136 85.8 21.2

aInitial generated constraints from source program
bConstraints added during exhaustive solving
cDemand-driven solving of each program points separately
dMaximum percentage of constraints added compared to exhaustive solving
eAverage percentage of constraints added compared to exhaustive solving

Figure 8: Experimental results (summary)

e1 + e2 is >, meaning all values are possible. So, values for e1 and e2 are not
needed to get this > value. When we modified demand-driven formulation to
enforce demand for e1 and e2, we got 61.4% maximum percentage for fft and
89.8% for nucleic. Also, fft uses arrays intensively. We analyzed arrays by col-
lapsing all cells of an array into a single reference cell as Heintze did in [Hei94].
Again, this approximation discards any need for array indexes other than needs
for themselves. When we also enforced demands for array indexes in addition to
arithmetic arguments, we got 80% maximum percentage.

7 Conclusion

We have developed a demand-driven approach for set-based analysis. By incorporating
demands to the analysis, only those constraints related to interested program points
are solved. To get fully demand-driven formulation, we solved some constraints in
forward direction and some in backward direction. We have proved that our approach
is equivalent to original exhaustive approach in the sense that for the initial demands,
our approach gives exactly the same results. We have implemented prototypes of our
analysis and experimental results show interesting aspects of demand-driven analysis.
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