
Repairing Syntax Errors in LR Parsers

RAFAEL CORCHUELO, JOSÉ A. PÉREZ, ANTONIO RUIZ, and MIGUEL TORO
Universidad de Sevilla

This article reports on an error-repair algorithm for LR parsers. It locally inserts, deletes or shifts
symbols at the positions where errors are detected, thus modifying the right context in order to
resume parsing on a valid piece of input. This method improves on others in that it does not
require the user to provide additional information about the repair process, it does not require
precalculation of auxiliary tables, and it can be easily integrated into existing LR parser generators.
A Yacc-based implementation is presented along with some experimental results and comparisons
with other well-known methods.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—parsing

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Automatic method, LR parsing, syntactic error repair

1. INTRODUCTION

The development of a formal theory on context-free grammars led to several
efficient techniques for parsing programming languages. However, syntactic
errors are frequent in practice [Ripley and Druseikis 1978], so it is desirable
to enhance them with error-handling methods that allow parsing to continue
when errors are detected.

Error recovery is a usual error-handling method that consists of isolating
errors and changing the parse stack and the input string so that parsing can
continue on some subsequent valid piece of input. Several authors have reported
on such methods [Anderson et al. 1983; Sippu and Soisalon-Soininen 1982;
Grosch 1990], but the one by Aho and Ullman [1972] is one of the most popular
and it is available in parser generators in widespread use such as Yacc [Johnson
and Sethi 1990] or Bison [Donnelly and Stallman 1990]. These techniques are
efficient enough to be used in real-world compilers, but they do not attempt to
repair errors and often require the user to provide additional information to

This work was supported by the Spanish Interministerial Commission on Science and Technology
under grant TIC-2000-1106-C02-01.
Authors’ address: Dep. de Lenguajes y Sistemas Informáticos, Escuela Técnica Superior
de Ingenierı́a Informática, Avda. de la Reina Mercedes s/n, Sevilla E-41012, Spain; email:
{corchu;jperez;aruiz;mtoro}@lsi.us.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0164-0925/02/1100-0698 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002, Pages 698–710.

Repairing Syntax Errors in LR Parsers • 699

deal with them, for example, error productions. Unfortunately, providing such
information is difficult and the results are not as good as they should be in
general.

This motivated several researchers to work on error-repair methods that are
more powerful because they attempt to recover by repairing the input string
so that it becomes syntactically valid [Pennello and DeRemer 1978; Röhrich
1980; Burke and Fisher 1987; Fischer and Mauney 1992; Dain 1994]. These
techniques are more difficult to implement than simple recovery because they
may require modification of a part of the input already parsed or the remaining
input string; some such techniques require precalculation of auxiliary tables
that are used to decide which kind of repair should be used when an error is
detected, which also requires modification and adaptation of existing parser
generators to calculate them.

This article presents an error-repair algorithm that can be used in LR
parsers. Its main features are that it does not require the user to provide any
information, although it allows for tuning with respect to particular languages
through the setting of repair costs, it does not require precalculation of auxiliary
tables, and it does not require modification of existing LR parser generators.
The rest of the article is organised as follows: Section 2 presents a short in-
troduction to LR parsing; Section 3 presents the algorithm, an example and
several improvements that turn it into a practical tool; Section 4 reports on a
Yacc-based implementation; a comparison with other well-known techniques
is presented in Section 5; finally, Section 6 presents our main conclusions and
future work.

2. LR PARSING

In this section, we review some concepts about grammars and LR parsers we
need to introduce the error-repair algorithm. Further information can be found
in Aho and Ullman [1972], Aho and Johnson [1974] and Hopcroft and Ullman
[1979].

A context-free grammar, or CFG for short, describes the syntax of a language.
We denote them by means of tuples of the form (N , T, S, P) where N denotes a
set of non-terminals, T a set of terminals, S the starting symbol of the grammar,
and P a set of context-free productions. The set V = N ∪ T is usually referred
to as the vocabulary of the grammar. For instance, the following grammar de-
scribes a very simple expression language we use in the following sections:

GE = ({E}, {n,+, (,)}, E, {E ::= n, E ::= E + n, E ::= (E)})
The LR parsing method is a technique for deciding if an input string of

terminal symbols belongs to the language a CFG describes. This method scans
the input string from left to right in a bottom-up manner. It starts in a state
in which no input symbol has been analysed, and attempts to get back to the
starting symbol by finding a sequence of symbols that constitute the right hand
side of a production. If found, it is replaced with the symbol on the left-hand side
of that production; otherwise, an error is detected. For instance, the input string
(n+ n) is accepted by means of the following replacements (E + n) V (E) V E.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

700 • R. Corchuelo et al.

The LR parsing method1 is formally defined by means of a deterministic
transition relation −→LR on configurations of the form (S, I), where S denotes
a stack and I is an input string whose last symbol is the end marker $. S
maintains several pairs of the form sq, where s ∈ V ∪ {$} and q denotes the
state the parser enters on scanning an input symbol.2−→LR is a general relation
that needs to be customised for a particular CFG by means of an action function
f and a go to function g whose signatures follow:

f : Q × T ∪ {$} → W
g : Q × N → Q

Here Q = {q0, q1, . . . , qk} denotes a set of parsing states (q0 is usually referred
to as the initial state), and W is a set of parsing actions that control whether
the parser shifts the current input symbol (shift q), reduces the stack (reduce
A ::= α), accepts the input string (accept) or detects an error (error).
−→LR can be defined formally by means of a transition system [Plotkin 1981]:

Shift rule (LR1). This rule formalises the meaning of a shift action. If t1 is
the current input symbol, shift q means that a pair of the form t1q needs to be
piled up and the current input pointer can be advanced.

f (qm, t1) = shift q
([s0q0 · · · smqm], [t1t2 · · · tn])−→LR ([s0q0 · · · smqmt1q], [t2 · · · tn])

Reduce rule (LR2). This rule formalises the meaning of an action of the
form reduce A ::= α. It means that |α| pairs need to be popped off the stack, |α|
being the number of symbols in α; the state qt that then appears on top, and
A are used to determine the pair we need to push in order to continue parsing,
which is of the form Aq, where q = g (qt , A).

f (qm, t1) = reduce A ::= α ∧ r = |α| ∧ g (qm−r , A) = q
([s0q0 · · · smqm], [t1t2 · · · tn])−→LR ([s0q0 · · · sm−rqm−r Aq], [t1t2 · · · tn])

A configuration ([s0q0 · · · smqm], [t1t2 · · · tn]) is said to be accepting if and only
if f (qm, t1) = accept, rejecting if and only if f (qm, t1) = error, and intermediate
in other cases. An input string I is said to be accepted if and only if, starting
at configuration ([$q0], I), we can reach an accepting configuration by applying
−→LR repeatedly; if we can reach a rejecting configuration, it is obviously said
to be rejected.

For instance, Table I shows the action and go to functions for grammar GE
obtained with the well-known LALR(1) method. The application of−→LR to the
initial configuration ([$q0], [(n+ n)$]) yields the results in Table II.

1Without lose of generality, we present our discussion in the context of LR parsers that require one
lookahead symbol. This simplifies the explanations, but can be easily extended to parsers that use
more symbols.
2Notice that it is not strictly necessary to store symbols on the stack, but it facilitates the
explanations.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Repairing Syntax Errors in LR Parsers • 701

Table I. Action and Go To Functions for GE (Empty entries denote errors, shf
denotes shift, and red denotes reduce.)

n + () $ E
q0 shf q2 shf q3 q1
q1 shf q4 accept
q2 red E ::= n red E ::= n red E ::= n
q3 shf q2 shf q3 q5
q4 shf q6
q5 shf q4 shf q7
q6 red E ::= E + n red E ::= E + n red E ::= E + n
q7 red E ::= (E) red E ::= (E) red E ::= (E)

Table II. Application of −→LR to (n+ n)$

Stack Input Rule Action
$q0 (n+ n)$ LR1 shift q3
$q0(q3 n+ n)$ LR1 shift q2
$q0(q3nq2 +n)$ LR2 reduce E ::= n
$q0(q3 Eq5 +n)$ LR1 shift q4
$q0(q3 Eq5 + q4 n)$ LR1 shift q6
$q0(q3 Eq5 + q4nq6)$ LR2 reduce E ::= E + n
$q0(q3 Eq5)$ LR1 shift q7
$q0(q3 Eq5)q7 $ LR2 reduce E ::= (E)
$q0 Eq1 $ accept

3. THE ALGORITHM

The repair algorithm works on rejecting configurations and attempts to find a
repair that transforms the portion of the input string that follows the position at
which an error is detected into a valid one. We consider a repair is a sequence
of insertions, deletions or shifts (with a final insertion or deletion) such that
after applying it to an input string, parsing can either continue for at least N
symbols or leads to an accepting configuration. The definition has been adapted
from the one by Mauney [1983] and differs in that we can incorporate parse-
time input symbols into repairs and parsing can continue normally for at least
N symbols after repairing an error. This is a simple mechanism that improves
the quality of the repairs, as we show in Section 4.1.

We introduce the algorithm by means of the following transition rule:

Repair rule (LR3).

(S, I) is rejecting ∧ R is a repair ∧ (S, I, []) −→∗ER (S′, I ′, R)
(S, I)−→LR (S′, I ′)

LR3 relies on a new transition relation −→ER that we call the error-repair
transition. It works on configurations of the form (S, I, R), where R is a se-
quence of insertions, deletions or shifts. For instance, if R = [ins t, shf, del] is
a repair, it means that we need to insert t, shift the current input symbol, and
delete the next input symbol to repair the input string.

Given a configuration of the form ([s0q0 · · · smqm], [t1t2 · · · tn]), −→ER deletes
t1, inserts new symbols that are acceptable at state qm in front of t1 or attempts
to parse the remaining input string. This way, repeated application of −→ER

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

702 • R. Corchuelo et al.

explores all of the possible configurations we can reach by inserting, deleting
or shifting symbols when an error is detected. Thus, it eventually finds a con-
figuration (S′, I ′, R) such that parsing can continue normally on (S′, I ′). This
configuration exists because, in the worst case, we can delete the remaining
input string and then insert suitable symbols to complete it.

We define −→ER by means of three rules in which S = [s0q0 . . . smqm], I =
[t1t2 · · · t j · · · tn], and R = [r1, r2, . . . , rk] (m, n ≥ 1, and k ≥ 0):

Insertion rule (ER1). −→ER searches the action function for symbols t0 6= $
such that f (qm, t0) 6= error and creates new configurations in which t0 is in
front of t1.

f (qm, t0) 6= error ∧ t0 6= $ ∧ (S, [t0t1t2 · · · t j · · · tn]) −→∗LR (S′, I)
(S, I, R)−→ER (S′, I, [r1, r2, . . . , rk , ins t0])

Deletion rule (ER2). It also produces a new configuration by deleting t1.

n ≥ 2
(S, I, R)−→ER (S, [t2 · · · tn], [r1, r2, . . . , rk , del])

Forward move rule (ER3). If −→ER is applied to an intermediate config-
uration, it parses the remaining input symbols, that is, applies −→LR, until a
new error is found, an accepting configuration is reached, or N symbols have
been parsed.

(S, I) −→∗LR (S′, I ′) ∧ (j = N ∨ 0 < j < N ∧ f (qr , t j+1) ∈ {accept, error})
(S, I, R)−→ER (S′, I ′, R ′)

where S′ = [s0q0 · · · srqr], I ′ = [t j+1 · · · tn], R ′ = [r1, r2, . . . , rk ,

j︷ ︸︸ ︷
shf, . . . , shf],

r, j ≥ 1, and k ≥ 0.

3.1 An Example

To illustrate how the algorithm works, we confront it with (n1n2$. (Sub-
scripts have been added for the sake of clarity.) Repeated application of
−→LR to the initial configuration ([$q0], [(n1n2$]) yields ([$q0(q3], [n1n2$]),
([$q0(q3n1q2], [n2$]) and an error is detected immediately. A new configuration
of the form ([$q0(q3n1q2], [n2$], []) is then built and rules ER1 and ER2 can be
applied yielding configurations

C1 = ([$q0(q3 Eq5 + q4], [n2$], [ins +])
C2 = ([$q0(q3 Eq5)q7], [n2$], [ins)])
C3 = ([$q0(q3n1q2], [$], [del])

Now, we can inspect configuration C1 and apply rule ER3, which leads to the
following configuration (Notice that ER1 and ER2 are also applicable. Later,
we present some heuristics to speed up the search process that justify our
selection.):

C4 = ([$q0(q3 Eq5], [$], [ins +, shf])

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Repairing Syntax Errors in LR Parsers • 703

Here, a new error is detected at state q5, so ER1 is now the only applicable
rule and it produces two new configurations:

C5 = ([$q0(q3 Eq5)q7], [$], [ins +, shf, ins)])
C6 = ([$q0(q3 Eq5 + q4], [$], [ins +, shf, ins +])

Now, we can apply rule ER3 to C5 so that we reach the following repair:

C7 = ([$q0 Eq1], [$], [ins +, shf, ins)])

Therefore, inserting a+, shifting n2, and then inserting a) is a repair for the
incorrect input string (n1n2$, and it transforms it into (n1+n2)$. Nevertheless,
there are infinitely many other repairs. For instance, starting at configuration
C2, we can also reach a repair that transforms the erroneous input into (n1)+
n2$, starting at C3 we can transform it into (n1)$, and starting at configuration
C6, we can transform it into (n1 + n2 + · · · + nk)$ for any k ≥ 3.

3.2 Problems and Solutions

Unfortunately, the algorithm described above suffers from several drawbacks:

(1) Several repairs might be possible because of the non-determinism embod-
ied in the definition of −→ER. Deleting the remaining input and inserting
adequate symbols is always possible, but it should be avoided as well as
repairs that result in too many changes to the input string if others that
require fewer changes are possible.

(2) −→ER may generate an infinite set of configurations, so a huge search space
might be unsuccessfully explored before finding a suitable repair, which
results in a waste of user and computer time. Furthermore, if we do not
use an adequate search procedure, it might loop while traversing an infi-
nite branch. For instance, when state q5 is on top of the stack, inserting
a + and then an n is always possible and would produce an infinite set of
configurations.

(3) There is no upper limit to the amount of insertions, deletions or shifts a
configuration may need to become repaired.

Fortunately, these problems can be solved efficiently, according to the re-
sults we present in Section 4. As for the first two problems, Anderson and
Backhouse [1981] proposed a method called least-cost recovery that associates
a cost with each operation on the input string. Thus, each repair has an as-
sociated cost that can be used to select among several repairs and to prune
the search space. If this method is used, then the least-cost repair is always
chosen and the first repair −→ER finds can be used to prune configurations
with a higher cost, that is, a configuration is explored as long as its cost is
smaller than that of the best configuration found so far. However, finding out
these costs is a difficult task where intuition and experimentation are the most
powerful tools we can use. Therefore, if no good costs are available, we can
use a simpler heuristic: we select the configuration that results in the small-
est number of changes to the input string. If there are several possibilities,
we then let the user favor the one with a smaller number of insertions or

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

704 • R. Corchuelo et al.

deletions, and if there are still several possibilities, one of them is selected
arbitrarily.

Preventing the parser from looping while traversing an infinite branch is
easy if we do it in a breadth-first manner. Nevertheless, we still have not intro-
duced an upper limit to the amount of insertions, deletions or shifts, and some
errors could take arbitrarily long to become repaired. For instance, repairing
an input string of the form ((· · · ((n$ takes longer as the number of mismatched
parentheses increases. In practice, limiting the repair process to a portion of
Nt symbols, the number of insertions to Ni, and the number of deletions to Nd
(where Nt , Ni and Nd are constants), proved to work well and produced good
results, as we show in Sections 4.1 and 4.2. However, if we introduce these lim-
its, the algorithm might not produce a result because there might not exist a
repair of the input involving 4 insertions and 3 deletions in a fixed-sized region
of 10 symbols, for instance. In those cases, reverting to an efficient secondary
recovery mechanism is a good idea, and we have selected panic mode [Holub
1990]. This method consists of scanning down the stack until a state accept-
ing the erroneous symbol is found or the stack is emptied. In the former case,
parsing resumes, and in the latter the stack is restored, the erroneous symbol
is deleted and the procedure applied again to the resulting configuration. If the
input string is emptied, then the procedure fails to recover.

Finally, another improvement that significantly reduces the size of the search
space consists of not examining configurations in which the last operation is
a deletion for further insertions. For instance, if state q5 is on top of the stack
and n is the current input symbol, deleting n and then inserting + or) results
in the same configurations as inserting + or) and then deleting n. This way, we
avoid duplication of effort in many usual cases.

4. THE IMPLEMENTATION

We have incorporated the repair algorithm into PC-Yacc [Lane 1989], a widely
available, efficient implementation of Johnson’s Yacc. It was not modified, but
the driver we need to interpret the LALR(1) tables it produces. We maintain
a queue of configurations (S, I, R) and explore them sequentially. New config-
urations are added at the end of the queue, thus simulating a breadth-first
traversal. As for the parameters of the algorithm, we have found through ex-
perimentation that setting N = 3, Nt = 10, Ni = 4 and Nd = 3 produces good
repairs.

The implementation was complicated by the fact that PC-YACC uses de-
fault reductions and row compression [Aho et al. 1986] to compact the parsing
tables it produces. The main consequence of default reductions is that error
detection may be delayed because of an undesirable default reduction on scan-
ning an erroneous symbol. This is a well-known issue that also arises in SLR
and LALR parsers. Burke and Fisher [1987], for instance, used a technique
called deferred parsing that solves it, but slows down parsing by about 10%.
We have implemented a simpler solution: consider a configuration of the form
([s0q0 · · · smqm], [t1t2 · · · tn]) so that f (qm, t1) = reduce A ::= α; to determine if
t1 is a valid symbol we do not actually need to do the reduction, we only need

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Repairing Syntax Errors in LR Parsers • 705

Table III. Quality of Repairs

Authors Excellent Good Poor Unrepaired Acceptable
Pennello & DeRemer 42.0% 28.0% 12.0% 18.0% 70.0%
Dain (σ = 5) 67.0% 14.0% 18.2% 0.8% 81.0%
Corchuelo & al. (without costs) 57.2% 25.2% 16.8% 0.8% 82.4%
Corchuelo & al. (with costs) 62.3% 24.3% 12.6% 0.8% 86.6%
Fischer & LeBlanc 75.0% 21.0% 4.0% 0.0% 96.0%
Burke & Fisher 77.6% 20.0% 2.4% 0.0% 97.6%

to consult state qm−|α|. If f (qm−|α|, t1) is not a reduction, then we can decide
whether t1 is valid or not; otherwise, we can repeat the same procedure until
the chain of reductions finishes. This method can be implemented efficiently,
and the experiments we conducted showed that the slowdown it produces is
negligible (less than 0.1%).

4.1 Repairs

Our performance evaluation focused on Pascal owing to two reasons: (i) the lan-
guage we use to teach our students compilers is a Pascal clone, so we have many
genuine syntactically-invalid programs they submit for compilation; (ii) many
authors have used the well-known collection of erroneous Pascal programs by
Ripley and Druseikis [1978] to evaluate the quality of their algorithms, so com-
parisons with them is possible for Pascal.

The quality of a repair is usually measured using the categories proposed by
Pennello and DeRemer [1978]. Table III presents a summary that compares our
algorithm with other authors’ proposals that are examined in Section 5. Notice
that about 87% of the repairs were acceptable (excellent or good), with only
12.6% judged poor using insertion/deletion costs; the quality using our simpler
heuristic still rates comparably with about 82% of acceptable repairs.

The parser was not able to repair the errors in the input, that is, it resorted
to panic mode, only in the following situation:

FUNCTION SEARCH(X: ORDER;): BOOLEAN;
VAR Q: INTEGER;

BEGIN X := 1 END;

When the error is detected at the closing parenthesis, a block of formal pa-
rameters has just been reduced and the semicolon after it indicates that a new
block should begin there. The algorithm thus deletes the closing parenthesis
and inserts a new identifier, which transforms the input into:

FUNCTION SEARCH(X: ORDER; NEW ID: BOOLEAN;
VAR Q: INTEGER;

BEGIN X := 1 END;

Now, a new error is detected at the key word BEGIN. The algorithm might
have inserted a string to complete the header, but this would have required the
insertion of more than 4 symbols. The suite contains 197 errors, and we think
that resorting to panic mode in one situation is quite an acceptable ratio.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

706 • R. Corchuelo et al.

Fig. 1. Time to repair individual errors, and performance of the prune heuristic.

4.2 Efficiency

The algorithm is also efficient, in both space and time. We tested it on a 200
Mhz Pentium computer in which the amount of available data memory was
limited to 64 KBytes. The parser never ran out of memory, thus proving that
it does not produce a significant memory overhead. Figure 1 summarises the
time our algorithm took to repair errors and compares it with other proposals.
As shown, more than 80% of the errors were repaired in less than 0.1 seconds,
whereas other algorithms that produce better quality repairs obviously take
longer to repair. Our pruning techniques were also proved very adequate, as
shown in the same figure, because they helped us cut more than 70% of the
search space in 50% of the cases.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Repairing Syntax Errors in LR Parsers • 707

5. RELATED WORK

We first present some state-of-the-art continuation-based methods. Continua-
tions were defined by Röhrich [1980] as strings that can be inserted at the po-
sitions where errors occur and allow the parser to be restarted without further
errors. He proposed a method that consists of generating a continuation and
deleting symbols from the remaining input until an anchor symbol contained
in the continuation is found; the appropriate prefix of the continuation is then
inserted and parsing resumes on the anchor. Dion [1982] improved Röhrich’s
idea and developed a method that generates a least-cost continuation, deletes
some input symbols and inserts a prefix of the continuation to resume parsing.
It is analogous to the LL(1) algorithm by Fischer et al. [1980] and uses user-
defined insert/delete costs to precalculate two tables called S[A] and E[A, t]
(A ∈ N , t ∈ T); S[A] gives the lowest cost string derivable from A, and E[A, t]
the lowest cost prefix that allows t to be derived from A. Unfortunately, the size
of these tables is usually comparable to the size of the parsing tables for the
grammar under consideration. Fischer and LeBlanc [1988] improved Dion’s
algorithm using a scheme that allows repairs as effective as Dion’s to be is-
sued using smaller tables. Dain [1994] developed another continuation-based
method that consists of generating the set of prefixes of continuation strings
of length σ and replacing a prefix of the remaining input string with the one
whose distance is minimum according to the similarity criterion by Wagner and
Fischer [1974].

Our method is continuation-based, but it does not generate continuations
without taking into account the remaining input, as is the case with the above-
mentioned methods. For instance, Röhrich’s method generates only an arbitrary
continuation and, thus, tends to produce poor quality repairs. Both Dion’s and
Fischer and LeBlanc’s methods select the least-cost continuation according to
user-defined insertion/deletion costs, but the problem is that some of its sym-
bols might be already part of the input string, which implies we are deleting
and inserting them and increasing the cost of the repair. Our algorithm, in-
stead, takes input symbols into account and they are not considered when we
calculate the cost of a repair. Dain’s method selects the prefix of the continua-
tion that best matches the input string, thus taking input symbols into account.
However, the problem is that this method needs to generate the whole set of
prefixes of continuation strings by exploring the valid transitions at the state
where an error is detected, which implies the method requires more and more
memory and time as σ increases. Unfortunately, the whole search space has
to be explored and no validation is performed, which results in poor repairs if
several errors are close.

Furthermore, the only continuation-based method that can be easily in-
corporated into existing LR parser generators is Dain’s because it requires
modification only of the driver used to interpret parsing tables. The other
continuation-based methods require significant modification to produce addi-
tional information. Fischer and LeBlanc’s method even requires using a special
LR closure algorithm in order to generate least-cost continuations and the re-
sulting parsing tables may be slightly larger than usual.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

708 • R. Corchuelo et al.

Pennello and DeRemer [1978] and Burke and Fisher [1987] presented two
proposals that deserve special attention. The former is an implementation of
the general idea by Graham and Rhodes [1975] in the context of LR parsers
that improves the proposal by Mickunas and Modry [1978]. It consists of two
phases: forward move, whose goal is to gather right context, and repair, in
which a number of edit operations are performed on the input string. The first
phase is carried out by means of a forward move automaton (FMA) that allows
parsing the remaining input until a new error is found or a reduction across
the erroneous symbol is attempted; if the FMA halts before reaching the end
of the input string, it begins parsing again from the symbol following the last
symbol it was able to shift (seven times at least). The FMA performs all possible
parses in parallel, so the forward move produces a sequence of configurations
that represent all partial parses of the remaining input. The repair phase tries
to link the sequence of configurations the FMA produces with the configuration
in which the error was detected by deleting the erroneous symbol, replacing it,
or inserting a new one; if none succeeds, the stack is then backed up and the
procedure is applied again. Furthermore, before trying insertions, the algorithm
tries to attach the erroneous symbol to the right context. If it fails, the proposal
lacks a systematic method for dealing with close errors in the right context;
however, the authors suggest using a technique called stack forcing, which
analyses the stack and attempts to insert symbols in it so that it can be linked
to the configurations the FMA produced.

The forward move phase bears some resemblance to our forward move rule,
but there are two important differences: (i) the FMA does not attempt to correct
new errors, whereas our technique is applied recursively in order to repair
nearby errors; (ii) the FMA does not take the left context into account, whereas
our technique can perform reductions across the error detection point in an
attempt to correct it. Furthermore, the FMA requires about 20–50% of the
space needed to store the parsing tables for the grammar under consideration,
and it cannot be generated by existing parser generators unless we modify
them. The need to parse the remaining input (or seven fragments at least) also
introduces additional penalty and makes the time an error needs to become
repaired dependent on the length of the input string, which is undesirable.
The quality of the repairs is worst among the algorithms we have compared in
Table III. The number of poor repairs is similar to our proposal, but the number
of unrepaired errors is significantly greater. Furthermore, stack forcing may
require inserting a non-terminal symbol into the stack, which is not desirable
because it can invalidate semantic actions. The error messages the algorithm
produces are apt to be confusing because they include non-terminal symbols
that usually do not make sense to the final user.

The technique by Burke and Fisher [1987] consists of three phases: it first
attempts to repair the error by inserting or deleting a single symbol, substi-
tuting the erroneous symbol for another, or merging the next two symbols into
one; if this simple repair fails, the method tries then to use scope recovery,
which attempts to close one or more open scopes; if it fails, then some text sur-
rounding the erroneous symbol is deleted. The main problem this technique
faces is that in LL, LALR, SLR or LR implementations that perform default

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

Repairing Syntax Errors in LR Parsers • 709

reductions, an erroneous symbol may induce several undesirable reduce actions
that inevitably transform the parse stack, which frequently leads to poor re-
pairs. Burke and Fisher [1987] used a technique called deferred parsing that
may be viewed as double parsing: one parser goes ahead as much as possible,
whereas the other is k steps behind, so that unparsing to the a state k steps be-
fore is very easy. The algorithm by Burke and Fisher produces, to the best of our
knowledge, the best quality repairs; its main problem is that deferred parsing
slows down parsing of valid inputs for any k > 0, which is not desirable in gen-
eral. The authors report that this penalty is about 10% in both space and time,
and that setting k > 1 does not result in significantly better repairs for Pascal.
To an extent, our implementation simulates deferred parsing with k = 1 be-
cause we examine the stack to check if the current input symbol is valid before
performing a reduction, but this does not entail neither significant time nor
space overhead.

6. CONCLUSIONS AND FUTURE WORK

A repair algorithm for LR parsers has been presented and defined formally. It
improves on others because it does not require the user to provide additional
information, it does not require precalculation of auxiliary tables, it uses input
symbols to complete repairs, and it can be incorporated into existing LR parser
generators by only modifying the drivers that are provided to interpret parsing
tables. From this point of view, it does not only compare to Dain’s proposal, but
improves it in both quality and efficiency.

The experimental results show that it is efficient enough to be used in prac-
tical applications in which it is necessary to spend little time or memory at
repairing. The average time per error is the smallest among the algorithms we
examined, but the quality of the repairs still rates comparably with state-of-
the-art methods.

In the future, we are going to incorporate it into Bison, which stores pars-
ing tables in a format that is not compatible with PC-Yacc. Much attention
is also going to be paid to the application to LL and LR hard-coded parsers
[Bhamidipaty and Proebsting 1998].

ACKNOWLEDGMENTS

The authors wish to thank their referees for their careful reading and thought-
ful suggestions, and Dr. David Ripley for sharing his collection of erroneous
Pascal programs with us.

REFERENCES

AHO, A. AND JOHNSON, S. 1974. LR parsing. ACM Comput. Surv. 6, 2 (June), 99–124.
AHO, A., SETHI, V., AND ULLMAN, J. 1986. Compilers: Principles, Techniques and Tools. Addison-

Wesley, Menlo Park, California.
AHO, A. AND ULLMAN, J. 1972. The Theory of Parsing, Translation and Compiling. Prentice Hall,

Englewood Cliffs, New Jersey.
ANDERSON, S. AND BACKHOUSE, R. 1981. Locally least-cost error recovery in Early’s algorithm. ACM

Trans. Program. Lang. Syst. 3, 3 (July), 318–347.

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

710 • R. Corchuelo et al.

ANDERSON, S., BACKHOUSE, R., BUGGE, E., AND STIRLING, C. 1983. An assessment of locally least-cost
error recovery. Comput. J. 26, 1 (Feb.), 15–24.

BHAMIDIPATY, A. AND PROEBSTING, T. 1998. Very fast Yacc–compatible parsers (For very little Ef-
fort). Softw. Pract. Exper. 28, 2 (Feb.), 181–190.

BURKE, M. AND FISHER, G. 1987. A practical method for LR and LL syntactic error diagnosis and
recovery. ACM Trans. Program. Lang. Syst. 9, 2 (Apr.), 164–197.

DAIN, J. 1994. A practical minimum distance method for syntax error handling. Comput.
Lang. 20, 4 (Nov.), 239–252.

DION, B. 1982. Locally least–cost error correctors for context–free and context–sensitive parsers.
Ph.D. thesis, University of Wisconsin at Madison.

DONNELLY, C. AND STALLMAN, R. 1990. Bison: the Yacc–compatible parser generator. Free Software
Foundation, 675 Mass Ave, Cambridge, MA 0219, USA.

FISCHER, C. AND LEBLANC, R. 1988. Crafting a Compiler. Benjamin/Cummings Series in Computer
Science. The Benjamin–Cummings Publishing Company, Menlo Park, California.

FISCHER, C. AND MAUNEY, J. 1992. A simple, fast, and effective LL(1) error repair algorithm. Acta
Inf. 29, 2, 19–120.

FISCHER, C., MILTON, D., AND QUIRING, S. 1980. Efficient LL(1) error correction and recovery using
only insertions. Acta Inf. 13, 2, 141–154.

GRAHAM, S. AND RHODES, S. 1975. Practical syntactic error recovery. Commun. ACM 18, 11 (Nov.),
639–650.

GROSCH, J. 1990. Efficient and comfortable error recovery in recursive descent parsers. Struct.
Program. 11, 3, 19–140.

HOLUB, A. 1990. Compiler Design in C. Prentice Hall, Englewood Cliffs, New Jersey.
HOPCROFT, J. AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley, Reading, Massachusetts.
JOHNSON, S. AND SETHI, R. 1990. Yacc: A parser generator. In Unix Research System. Vol. II.

Saunders College Publishing, Philadelphia, Pennsylvania, 347–374.
LANE, A. 1989. Generating parsers with PC–Yacc. Dr. Dobb’s Journal of Software Tools 14, 6

(June), 76–77, 79, 81, 110–112.
MAUNEY, J. 1983. Least–cost syntactic error repair using extended right context. Ph.D. thesis,

University of Wisconsin at Madison.
MICKUNAS, M. AND MODRY, J. 1978. Automatic error recovery for LR parsers. Commun. ACM 21, 6

(June), 459–465.
PENNELLO, T. AND DEREMER, F. 1978. A forward move algorithm for LR error recovery. In Confer-

ence Record of The 5th Annual ACM Symposium of Principles of Programming Languages. ACM,
Tucson, Arizona, 241–254.

PLOTKIN, G. 1981. A structural approach to operational semantics. Tech. Rep. DAIMI FN–19,
Computer Science Department, Aarthus University.

RIPLEY, G. AND DRUSEIKIS, F. 1978. A statistical analysis of syntax errors. Comput. Lang. 3, 4,
227–240.

RÖHRICH, J. 1980. Methods for the automatic construction of error correcting parsers. Acta
Inf. 13, 2 (Feb.), 115–139.

SIPPU, S. AND SOISALON-SOININEN, E. 1982. Practical error recovery in LR parsing. In Conference
Record of the 9th Annual ACM Symposium on Principles of Programming Languages. ACM,
Albuquerque, New Mexico, 177–184.

WAGNER, R. AND FISCHER, M. 1974. The string-to-string correction problem. J. ACM 21, 1 (Jan.),
168–173.

Received July 2000; revised November 2001; accepted May 2002

ACM Transactions on Programming Languages and Systems, Vol. 24, No. 6, November 2002.

