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Abstract

Existing methods for alias analysis of recursive pointer data

structures are based on two approximation techniques: /s-

hrnziing, which blurs distinction between sub-objects below

depth k; and store-based (or equivalently location or region-

based) approximations, which blur distinction between elements

of recursive data structures. Although notable progress in inter-

procedural alias analysis has been recently accomplished, very

little progress in the precision of analysis of recursive pointer

data structures has been seen since the inception of these ap-

proximation techniques by Jones and Muchnick a decade ago.

As a result, optimizing, verifying and parallelizing programs with

pointers has remained difficult.

We present a new parametric framework for analyzing recur-

sive pointer data structures which can express a new natural class

of alias information not accessible to existing methods. The key

idea is to represent alias information by pairs of symbolic ac-

cesa paths which are qualified by symbolic descriptions of the

positions for which the alias pair holds.

Based on this result, we present an algorithm for interproce-

dural may-alias analysis with pointers which on numerous ex-

amples that occur in practice is much more precise than recently

published algorithms [CWZ90, H.90, LR92, CBC93].

1 Introduction and related work

Alias analysis: definition and applications. Aliasing

occurs when two distinct names (data access paths) denote

the same run-time location. It is introduced by reference

parameters and pointers. The aim of existential alias anal-

ysis algorithms is to determine for each program point 1 an

upper approximation of the exact set of possible pairs of
access paths that may be aliased when 1 is reached. Exis-

tential alias analysis is also called may-alias analysis.

ComDile-time alias information is imDort ant for scalar. .
optimization such as code motion; compile-time garbage-

collection; program verification and debugging; dependence

analysis; parallelism at ion and improving code generation for

instruction-level parallelism [Wa91, HG92, RF93].
Static determination of aliases for reference parameters

and single-level pointers is now a well understood problem

for which there exists accurate polynomial intraprocedu-

ral [SF+ 90] and interprocedural [LR91] algorithms. How-
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ever, determining aliases for recursive pointer datatypes is

a much harder problem [La92b]. Intuitively, this is because

alias sets become potentially infinite, and because transfer

functions are not distributive as with single-level pointers.

Existing methods. Approximate existential alias anal-

ysis methods for pointers can be classified into: store-based
methods and access-paths based methods. These methods

use either jimte graphs (or abstract stores) to represent

potential run-time stores [JM81, JM82, NPD87, RM88,

LH88a, Ha89, HPR89, De90, Sh91, De92a, St92] possibly

augmented with reference count information [Hu86, He88,

CWZ90], set9 oj paws oj acce99 paths to represent alias-

ing [CC77b, We80, ASU86, He90, SF+90, La92a, LR92] or

a combination of the two [CBC93]. Data flow values are

kept finite by either k-limiting [JM81] or by using a finite
number of graph nodes (abstract locations) [J081, JM82]

determined by the allocation context.
All these methods partition an infinite number of run-

time objects (or access paths) into a finite number of equiv-

alence classes. As a consequence, store-based methods will
typically fail to distinguish between elements of recursive

pointer data structures. This is because a finite number of
graph nodes have to be used during the analysis to represent

all the elements of those potentially unbounded structures.

This introduces false cycles and precludes, for instance, dis-

tinguishing either between a linear and a cyclic list, or be-

tween a tree and a graph. Similarly, approximation meth-

ods based on k-limiting fail to distinguish between elements

of recursive pointer data structures that are below depth k.

They can distinguish a tree from a general directed graph.

But as soon as a sub-object below depth k becomes aliased,

aliasing erroneously propagates to all other sub-objects be-

low depth k, contaminating even objects of different types.

[De92b] presents a theoretical framework for alias analy-

sis. The formalism used is based on Eilenberg’s unitary-

prefix monomial decomposition [Ei74], on Parikh’s com-

mutative decomposition [Pa66] and on a storeless semantic

model of aliasing properties based on right-regular equiva-

lence relations. The main result of that paper is the lattice

of unitary-prefix monomial relations on subsets of a regular

language, which is shown to be an abstract interpretation

of the lattice of right-regular equivalence relations. The

present paper provides a practical application to impera-

tive languages of the general theory of [De92b].

[He90] cannot handle cyclic data: as noted in [HHN92],

this is a serious obstacle to its use in languages with point-

ers. [CWZ90] and [He90] can distinguish to some extent

between trees, dags and graphs. The first one extends store-

based methods with reference counting, but is accurate only
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struct List {

char *hd;

struct List *tl;

};

struct List *
Copy(struct List *L) {

struct List *p, *tl;

cl: if (L == null)

Ca: return(L);

c~: p = rnalloc(...);

c,: tl = L+tl;

Gs: P+tl = Copy(tl);
c.: p+hd = L+hd;

c,: return(p);

}

I* Xisanunaliasedlwt *I
Ll: t2 = X;

Y = copy(t2);
L2: X = null;
L3.

Algorithm

[LH88a]

[CWZ90]

[LR92]

[CBC93]

Deutsch

Result at Doint L2

X
x

01

Y“
01

{(x, Sl), (Y, S2),
(Sl+hd, S3), (S2+hd, S3),

(Sl+ti, sl), (s2+tl, S2)}

- {j~;tl+)ahd, Y+(tb)’hd) I

Spurious aliases

{(x+tl+tl,x+tl+tl+tl),
(Y+tbtl,Y+tbtW),
(Y;tl+hd,YM+tl+hd),
. . .

{(X+hd,X+tl+hd),
(Y+hd,Y+tl+hd),
(YytbtWad,X+hd),
. . .}

{(x+tl+tl, Y+tPtl),
(X+tl+tl+hd,Y+ti+tl+hd),
(xMl+tl,Y+tM+tq,

}
““x+ti,x+tl+tl ,

‘(fY+tl,Y+tl+tl)!
(Y~tl+hd,Y+tl+tl+hd),

none

Program property discovered ] [LH88a] [CWZ90] [LR92] [CBC93] Deutsch

PI : X and Y are acvclic ves ves yes
—

Pi : two successive h~ads of Y don’t alias ~es yes

P3: Xand Ytailsdon’t alias yes yes yes yes

P4 : heads ofXand Yarealiased only pairwise yes

Pfi : at point Ls, heads and tails of Y are completely unaliased yes yes

Figure 1: Precision of alias analysis algorithms on a structure-copying program creating two lists whose elements are pairwise
aliased (adapted from [LH88b, p. 103])

intraprocedurally in limited cases, as reference counts can-

not, in general, be decremented safely.

Contributions.

1.

2.

an expressive and parametric program analysis frame-
work for may-alias analysis with pointers.

Our framework embodies an expressive notion of de-
pendency that, for example, allows relationships be-

tween positions in a data structure and aliasing to be
captured. For inst ante, the property:

“the ith element of list X is aliased to

element 2i + 1 of list Y“

can be represented exactly in our semilattice frame-
work. We believe that such a notion of position-

dependent aliases is new. Our alias analysis frame-
work is parametrized by a lattice framework Vfl whose

purpose is to express information about tuples of in-
tegers. In essence, this lattice VI controls qualita-

tively the ability to reason about dependencies (typ-

ical examples of Vd are constant propagation [Ki73],

linear arithmetic constraints [Ka76], arithmetic interv-

als [CC77a], simple sections [BK89] etc., and combi-
nations of these).

an algorithm for interprocedural may-alias analysis

with pointers.

Based on our parametric framework, we define a
polynomial-time, flow-sensitive algorithm for may-
alias analysis for a call-by-value, imperative language

with arbitrary recursion, dynamic allocation, nested

recursive structures, pointer variables and pointers to

functions, excluding casting and’ unions. This encom-

passes a large subset of the C language.

Why is it significant? An example Our method pro-
vides a solution to an open problem [LH88a, CWZ90, He90,
HHN92]: how to improve the accuracy of alias analysis in
the presence of recursive pointer data structures.

The information obtained by our analysis is generally
much more precise than that obtained by previous methods.
Figure 1 presents the analysis results of several methodsl
on an example due to Larus & Hilfinger [LH88b, p. 103].
The spurious aliases are due to k-limiting (Larus&Hilfin-
ger, Landi&Ryder) or to collapsing together different heap
nodes (Chase et aL, Choi et al.). As can be seen, the anal-
yses arein general not strictly comparable in precision. In

Figure 1, we therefore consider specific program properties
Pi, ..., P5 andexamine which anslyses candiscover each of

them.
Section 2 presents our parametric join semilattice for

alias analysis and the corresponding intraprocedural trans-
ferfunctions. Theinterprocedural framework, based on the

notion of generic object names, is presented in Section 3.
Section 4discusses thetime complexity ofour method, and
our prototype implementation is discussed in Section 5. Fi-
nally, we assess the precision of the sdias information dis-

covered by our framework in Section 6.

I Node labels computed by the method [LH88a] arc not shown.

In the entry [CWZ90], graph nodes are annotated with approxi-

mate reference counts. For themethod[CBC93], the S1, S2, . . .

areheap names (allocation sites). Alias pairs areshown for read-

ability without the external level of dereferencing. For instance

the pair (X+hd, Y+hd) is really (*( X+Dhd), .( Y+hd)).
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2 The intraprocedural framework

2.1 The join semilattice

2.1.1 S ymbol.ic access paths

An access path is a string of selectors connected by the field

component operator “.”. Selectors include structure field

names, variable names and the dereferencing operator “*”.

Z is the set of all selectors for a given program. Access paths

are internally represented in postfix notation. For instance

the C language pointer expression X->lef t, which is by

definition equivalent to (*X) . lef t, is represented in postfix

notation as the access path X*. left. The algorithms we

present below operate on access paths in postfix form. For

readability y, however, we will write access paths using the

ordinary C language representation.

A symbolic access path (SAP for short) is an access path

possibly containing symbolic expressions of the form 13k,
where B is a set of access paths called a bums, and k

is a variable. 13° denotes the empty access path e, and
Bn+l is the set 13. Bn. Consider for instance the SAP2

f = X+(ti+=)ihci. If i = O then f denotes the set {X+hd};

if i = I then j denotes the set {X+tl+hd} and so on. Con-

sider the SAP g = T+{iefi+, ~ight+}~ key. If j = O then

g denotes the set {T’+key}; if j = 1 then g denotes the

set {7’+ left+key, Z’+mght+key} and so on. What kind of

symbolic expressions can occur in a symbolic access path?

The basis of a recursive pointer type t is a set of access

paths B = Basu(t) such that: (1) if an access path x yields

an object of type twhen applied to an object of type t then

~ S B“; (2) B is minimal. Figure 2 presents recursive

types and their associated bases. The function Basis maps

a recursive pointer type name to its corresponding basis.
Bases can be represented by deterministic finite automata

(DFA) over the alphabet of accessors E, and states of the

DFA are just type names. Bases for mutually recursive
types are defined similarly, see Appendix.

Definition 2.1 (Symbolic access paths) A symbohc ac-

cess path is a strtng of the form el. ez. . .e~, where for each

1 < i < n, e, is ezther:

1. a selector s E E;

2. an expression of the form Bk, where k is a coefictent

variable and B = Basis(t) M the basts of some recur-

swe type t.

We write fv(~) to denote the set of coefficient variables

occurring in the SAP ~. In practices a basis can be rep-

resented uniquely by its corresponding type name, and a

global table can be maintained by mapping type names to

bases represented by DFA.

2,1.2 The numeric lattice

Our lattice for alias analysis is parametrised by a nu-

meric lattice @’. V~ determines which class of relations

between positions in aliased data structures can be cap-

tured. Independent (mono-dimensional) numeric lattices

include: constant propagation [Ki73], arithmetic intervals

[CC77a, M084] and arithmetic congruences [Gr89], Rela-

tional (multidimensional) numeric lattices include: linear

2 The internal, postfix representation of the symbolic access

path f is X*.(tl*)i.hd.

3The theoretically inclined reader is encouraged to consult

[De92b] and [De92e., $3] for a theoretical account of the correc-

tion bet we en SAPS, the unit ary-pretix monomials of Eilenberg’s

treatise [Ei74] and Parikh’s commutative decomposition [Pa66].

struct List { char *hd; struct List *tl; }

struct Li.st2 { struct List *hd; struct List2 *tl; }

struct Tree { char *key; struct Tree *left ,*right; }

Basis(hwct List) = {tZ+}

Basts(stwct .List2) = {tl+}

Basis(struct Tree) = {Iefl+, right+}

Figure 2: Recursive pointer types and their corresponding

bases

equahtzes [Ka76], hnear inequahties [CH78], simple secttons
[BK89, CC92], linear congruence equalities [Gr91] and con-

gruent~al trapezoids [Ma91]. We will now list our assump-

tions about the numeric lattice and its associated opera-

tions, so as to keep our construction parametric by avoiding

dependence on a particular numeric lattice.

Hypothesis 2,1 (Properties of the numeric lattice)
Given a finite set of varzables V, the numerical latttce V[(V)

is equipped with the followzng abstract operators which are

upper approximations of their exact counterparts an P(V +
N) (sets of maps from variables to integers):

1.

2.

3.

4.

5.

6.

the bwaary operations A (meet] and V (join) upper ap-

proximate mtersectton and unzon on sets; 1 represents
exactly the empty set;

projection: if U ~ V then ProjectH(K) U) c VU(U) is

the projection of K E VU(V) onto U;

extension: if K E V“(V) then K T U c VU(U U V) w

the exterwon of K to U U V;

resolution of a linear system: zf S i9 a system of ltnear

equations over V then S[(S) is an upper approxima-

tion tn V[(V) of the set of integer sohhons to S;

intersection with a linear system: zf S u a system of
linear equatzons over V and K G V!(U) then Cfl(K, S)

zs an upper approxzmatzon in Vti(U U V) of the set of

integer sotutzons to S that are also in K;

meet of spaces of different dimensions: if K1 E V!(U)

and K2 E VI(V), K1 Ah Kz a~’(Kl t V) A (K2 t U).

In adchtzon we define T = SK(0). FznaUy, t$ VB(V) has

mjinite hezght then it is equipped wdh a widening operator

V [CC77a] to ensure terminatzora of fixpoint computations.

The relational lattices enumerated above satisfy this hy-

pothesis (except the lattice of simple sections [BK89] which

must be extended as explained in [CC92, $9.1]). Each in-

dependent numeric lattice L can also be accommodated by

defining Vu as the n-fold (smash) product of L. V! can also

be defined using one of the systematic methods for combin-

ing analysis frameworks proposed in [CC79, $10]. By abuse

of notation, we will write Vu instead of Y“(V) when V is

clear from the context. If K E VI(V) then Dom(K) = V

(Dom(K) is the domain of K).

2.1.3 The parametric semilattice UR(V” )

Definition 2.2 (Symbolic alias pairs) A symbolic alias

pair is of the form ((fI, f2), K), where fl and fz are sym.

bolic access paths; K c Urn; Dom(K) = fv(~l) U fv(f2) and

the coejjicient variables of fl and f2 are d~s~omt.

In addition we say that a pair ((~1, ~z ), K) is named

canonzcaily if the sequence of coefficient variables occurring

in left to right order in the SAPS fl and -fz is a sequence of
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Algorithm u (Join of symbolic alias relations)

Input: two symbolic alias relations QI, QZ E UR(Vn)

Output : their join Q1 u Q2

Method:

e := elUg2;

exhaustively apply the following on g:

if (( A, A), K) E e ~d (( fl, f2), ~’) E Q then
replace these two pairs by ((.fl, f2), ~V ~’);

return g

Example:

~1 ={((x+(~z+)k’~~, Y+(tl+)k’hd), Sn{kl=o, k2=o})}

ez={((X+(tl+)k’hd, Y+(i/+)k~hd), St{kl=l, k2=l})}
if V[ is the lattice of arithmetic intervals ~CC77a]:

ell-i~2= {(( X+(t/+)kl /ad, Y+(t/+)kz hd), SB{O<k1,k2<l})}

if Vu is Karr’s lattice [Ka76]:

e1ue2={((X+(t/+ )kl M, Y+(t/+)kz hd), Sfl{kL=k2})}

Figure 3: The join operator

predefine variables, say kl, kz, . . . The operator Rename

maps a symbolic alias pair ((~1, ~2), K) to its canonically

named counterpart, and extends componentwise to sets of

symbolic alias pairs. For instance:

(( X(+tl)kl +hd(+t[)’z+hd, Y(M)ka%d),Sfl{k, = k, +k,})

is a symbolic alias pair which is canonically named.

Proposition 2.3 (Symbolic alias relations) The set

UR(VU) oj symbolic ahas relations over Vu M a semtlattice

with least eiement ~ = @ and join U where:

1. a symbolic alias reiat~on Q ouer Vfl is a set of canon-

ically named svmbolzc alias pairs over VU such that if

((fI;t2),W Ee and ((fi,fzj,~’) E e then ~= ~’i-
2. the jotn operator is computed pointwise, see Figure 3.

2.1.4 Termination of fixpoint computations

The parametric semilattice UR(VU) we have just defined has

infinite chains: (1) because the number of possible SAPS is

not bounded; and (2) because V! may have infinite chains

(for instance the lattice of intervals [CC77a]).

We define the normalisation operation Factor which

maps a SAP j to a SAP ~’ in which potentially unbounded

subsequences of ~ (paths through recursive data struc-

tures) have been replaced by bases guarded by new coef-

ficient variables. For instance, Factor applied to the SAP

t = x+t~+tl+hd would return a pair (~’, S) consisting of

the SAP ~’ = X+(tl+~hd and of the system of equations

S = {i = 21. The ahrorithm Factor is shown in Fi~ure 15.

W: exte~d Factor-by overloading: given a symb~lic alias

relation e, Factor(e) is a symbolic alias relation obtained by

normalizing (with Factor and Rename) the symbolic alias

pairs contained in Q.

The widening Q1V P2 of two symbolic alias relations is

defined as follows: (1) normalise c1 and Q2 using Factor;

(2) apply pointwise the numeric widening operator V (this

is similar to the join operator)4. This operator V is in-

serted in the data flow equations at points contained in a

feedback set W of the dependence graph of the equations.

For instance, the feedback set can be defined as the set of

intervals headers or loop headers, see Appendix for details.

A4atchG(X-Wh+ X+(t[+)i) = {({z= 1}, hd)}

Match3(X+(ti+)’hd, X+t2) = {({i= j + 1}, +(t[+)jhd)}

Compl({i = j+ l,k = 2}, {j}) =

{Sn{o < k < l},Sd{k ~ 3}, Sfl{i = O}}

if e = {(( X+(t/+)ihd, Y+(tl+)jhd), Sfl{i = j})} then :

Equwa/enceCLzss u(Y+hd, e) = {( Y+hd, T),

(X+(tl+)’hd,Sfl{i = O})}

StripPrejizB(*X, {(.Y, T), (X+tl+hd, T)})= {(tl+hd, T)}

StripPrefZrB(*( X+t/), {(.Y, T), (*( X+(t/+)’hd), Sti{i ~ O})}) =

{((t/+ )khd+, SK{k ~ 1})}

StarC20surefl({ (t2+t2+, T)}, #tract Li$i) =

{((tl+)’, S!{i mod2 = 0})}

StarClo9urefl({ ((t[+)’tl+, SK{i > 2})}, struct Li8t) =

{((tl+)’)sn{t 2 0})}

if P = {( X+(ti+)i, S~{i > l})}, Q = {((t/+ )i, Sfl{i > 2})} then :

P.Q = {( X+(t[+)i(,t/+)J, Sfl{i ~ l,j ~ 2})}

P.* = {(*( X+(t/+)l), SB{i > l})}

Figure 4: Elementary operations: examples

2.2 The function space

We have defined the parametric semilattice UR(V[) of

symbolic alias relations, and we equipped it with a join

operation U, a least element 1 and widening operator V

to ensure the termination of fixpoint iterations. We now

define transfer functions that model the effects of individual

program stat ements on symbolic alias relations.

2.2.1 Elementary operations

Transfer functions operate on sets of symbolic alias pairs,

which contain svmbolic access Daths. Therefore, we define.
operations to manipulate these symbolic representations.

Examples are presented in Figure 4 and full definitions ap-

pear in the Appendix.

The binary operator Match determines if a symbolic ac-

cess pat h ~ can enerate (cent ains) a particular access path,
$

or a prefix of it . More precisely, &fatchM(M, N) takes as

parameters: (1) a relational operator M which must be one
of {~, 3, =}; (2) two access paths kf and N, one of which

at most is symbolic. MatchM(M) N) returns a set of so-

lutions the form (S, A), where the residual A is a (possi-

bly symbolic) access path and S is a system of equations.

Each (S, A) is such that the equation A4 w N.A is true for

each assignment of the numerical coefficients of kf, N and

A which is a solution of equation system S.

The operator Corngd takes a system of linear equations S

and a set of variables U, and returns Compl(S, U), a set of—..
elements of Vt whose union upper approximates the comple-

ment of the system S with respect to the positive integers.

Variables of U occurring in the system S are assumed to be

arbitrary positive integers which are eliminated.

A symbolic path set is a set of pairs (~, K), where j is a

symbolic access path, and K an element of Vu. Such sets

will be used to represent finitely possibly infinite sets of

access paths. For instance {(X+( tl+)’hd+( tl+)J hd, St{i =

4 If the numeric lattice V H has no intinite chains, then the

widening operator on symbolic alias relations can be defied sim-

ply as: elV@~ = l’tactor(e~) l-l Factor(@z).

5This is necessary because alias relations are right-regular

[J081]: if r is aliased to # then for each path 6 (such that x.6

exists), 7r.6 is aliased to 7r’.6.
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Algorithm Killn(~)(Q) (Deletion of a fixed access path n)

Input: a symbolic alias relation g E UR(VK)

Output : a symbolic alias relation Kill~(~)(p)

Ifethod:
J.- .- 0;

$oreach symbolic alias pair ((~1, fz), ~) E Q do

K := KillPath(T, f,, K) ;

K := KillPath(T, j,, K) ;

if (K # 1) then p’ := Q’ u{((fl, f2), K)}

return .q’

Algorithm KillPath(n, f, K)

Input: an access path m, a SAP f, and an element K of Vu

Output : an element KiUPath(x, f, K) of Vfl

Method:

A := {Com?l(S, fi(A)) I (S, A) $ Match= (~, f)}

K :=KA
(A v \

(K Ah K’) ;

\BG4K’eB )
return K

Example:
KdtPath(X+tZ+hd, X+(t{+)kl M, Su{lq = 1}) = 1

KiUPath(XWMd, X+(t[+)kI hd, S~{kl ~ 1}) = S[{kl ~ 2}

KiUPath(XM, X+(tJ+)kl hcf, S[{kl > O}) = Sfl{kl = O}

Figure 5: The transfer function Kill[(r)

j})} denotes an infinite set of access paths which is contezt.

free but not regular.

The binary operator Equivalence C[assd (m, g) computes a

symbolic path set which represents the set of access paths to

which the access path x is aliased in .q. Implicit aliases that

can be deduced by reflexive, symmetric and right-regular
closure are taken into account. This operation is based on

ilfatche. In addition, symbolic operations (intersection and

projection) on the numerical lattice element K have to be

performed to extract relevant information.

The operation StrzpPrefi~”(~, P) computes a symbolic

path set denoting the set of access paths obtained by strip-

ping the prefix r out of the access paths represented by P.

This operation is also based on Match.

The operator StarCtosured(P, t) computes a symbolic

path set denoting the star closure of the set of access paths

denoted by P, where t is the recursive type to which paths

of P can be applied. This is based on Match and Factor.

The infix operation “.” computes a representation of the

concatenation of (the access paths denoted by) two sym-

bolic path sets P and Q. Given a symbolic path set P and

an access path T, we also write P.r for P.{(T, T)}.

2.2,2 Deletions (kills)

The transfer function Kill”(z), where ~ is a fixed access
path, deletes all the alias pairs whose left or right compo-

nent contains T (or an extension of m). Deletions are used

to model: (1) when a variable goes out of scope at the exit

from a lexical unit (local block or procedure); (2) assign-

ments: X = Y first kills *X, then generates aliases int re-

duced by the alias pair (*X, *Y) (using the function GenH).

Assignments to a component also kills aliases, for instance

X+tl = Y first kills *( X+tl), then generates aliases induced

by (*( X+ti), *Y). Kill”(~) is presented in Figure 5.

Algorithm Gen[(lhs.u, rhs)( Q)

Input: two access paths Ihs.u and rhs s.t lhs.u ~

rh,9 and ih~.u ~ rhs; a symbolic alias relation p

output : a symbolic alias relation e’ which incorpo-

rates the aliases generated by the assignment lhs. a + rhs

Method:

E := Equivalence Classi (lhs, Q); /* aliases of lhs */

B : = StripPrefixH(rhs, E);

C := StarClosrmeti(B.u, Z’ypeoj(rhs));

P := E.u.C;

e’ := Qu RewriteK(rhs, P)(Q);

return e’

Figure 6: The transfer function Genl

2.2.3 Alias introduction

What are the effects of the assignment of rhs to ihs.u, where

cr is simple selector ? For instance, we have lhs = X+tl,
u H * and rhg G *Y for the assignment X+ti = Y. Assume

without loss of generality that the access paths rhs and ihs

are not comparable by the prefix relation (otherwise first

copy rhs: assignments such as X = X+t.1 are decomposed in

the two assignments tmp = X+%1 and X = tmp, followed by

KiU”(*trnp)). We describe exactly the aliases introduced:

1.

2.

3.

if lhs is not aliased: it generates the pair (lhs. u, rhs); in

addition, an incoming alias pair (rhs.~’, r“) generates

the pair (lhs.u.x’, T“) (and symmetrically); an incom-

ing pair (rhs.~’, rhs.z’ ) generates (Ihs.u.z’, Uts.u.z”).

In short, we say that the effect of this assignment is

Rewrite(rhs, {lhs.a});

if ihs is aliased to the access paths E = {ihs, rl, T2 . .}

and no ~i cent ains rhs as a prefix: as an assignment

to lhs must also assign to all of the aliases of lhs, the

net effect is Rewrite(rhs, E.cr);

if lhs is aliased to the access paths E = {lhs, m, m . . .},

and B ~ E, with B =- {rhs.fll, ;hs.~zl~. .} tie

aliases of lhs cent aining rhs as a prefix: the effect

is Reunite (rhs, E.a. ({flI, &, . . .}. cr)* ) (this assignment

creates cycles).

This case analysis describes precisely the aliases gener-

ated by an assignment [J081, De92a], in terms of (pos-

sibly infinite) sets of alias pairs. We now define an ab-

stract counterpart of this operation which does not oper-

ate on sets of alias pairs, but on (finite) symbolic alias re-

lations. The abstract counterpart of Rewrite, the opera-

tion Rewrite [(rhs, P), maps a symbolic alias relation e to

a symbolic alias relation p’ = Rewrite n(rhs, P)(e). As for

Rewrite, rhs is an access path, but P is a symbolic path set.

The transfer function Genti is shown in Figure 6,

+

m = {((*( Y+(ti+);hd), *( Z+(tt+)jhd)), Sl{i = j})}

[
x = Y%l; f

m = {((* X,*( YWZ)}, T),
((*( Y+(tl+)ahd), *( Z+(tZ+)jhd)),S~{, = j}),

((*( X+(tl+)’hrf), *( Z+(tl+)Jhd)),S1{J = ~+1})}

Transfer function: f = Genti(*X, *( Y+tl)) o Kill[(*X)

Figure 7: Analysis of an assignment
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r-J=i+c’T{(’I’al)’”;”HF(f’’”””’fnR
-#-i ‘ --1- . “_Returnn

@.xit
}

Figure 8: Interprocedural information flow

Example 2.4 Assume the altasing Just before the assign-
ment shown in Figure 7 is described by the symbolic alias re-

lation Q1, then aliasmg after this assignment is e, = f (Ql).

3 The interprocedural framework

Interprocedural methods for non-distributive problems

over large semilattices limit information loss by analysing

procedures separately [CC77C, SP81, JM82], keyed by some

token abstracting the call context. However this usually re-

sults in information loss for recursive procedures, as each

recursive call can generate a new semilattice value. There-

fore, following [CC77C, Ha79, MR89, LR92], we perform

therefore generalisation of data flow values through func-

tion calls and instantiation through function returns. Con-

sider two alias pairs (z, ml) and (z, 7rz ) reaching the entry

of a function F( z, g). If ml and mz are not visible in F and

in the functions called by F, we can generalise these two

alias pairs by a single alias pair (x, U). U is a generic ob-

ject name. The key observation, due to [MR89, LR92], is

that F operates unsjmndy on all the aliases of z that are

not visible. Then F will be analysed with the incoming pair

(z, U), and the aliasing at the output of F can be propa-

gated back by instantiation. This is done by applying the

transformation [U ~ m, U I-+ Tz].

We assume in the rest of the text that no two distinct

variables have the same name. This can be achieved, for

instance, by prefixing each variable by the name of its static

definition point (e.g. procedure name).

3.1 Generic objects

In order to perform instantiation and generslkation on

symbolic alias relations, we enrich symbolic access paths

with generic objects of the form U[kl, . . . . k~], where U is

a name. Intuitively, U[kl, . . . . k~] stands for an unknown

symbolic access path whose coefficients are Icl, . . . . kfi.

3.2 Function calls

A call S1: y= Foal,..., an); S2: to a function F with

formal parameters fl, . . . . ~fi is modelled by the transfer

function Callp as follows:

(@ II~ry, ~~hr~us~, @) = Cdn{(fl, al),..., (fw, %)}(&all)

All is the symbolic alias relation describing the aliasing

at program point SI; QthrO”sh rCpeSentS the aliaSeS Of @cdl

that are not affected by F and that do not affect F, they

can be directly propagated to point Sz; ~~~t,Y represents the

aliases of ~=all plus those induced by the binding of each for-

mal fi to the corresponding actual a;, see also Figure 8. The

alias relation e=n~,Y contains only the symbolic alias pairs

relevant to F, and generalisation has been performed. The

set of symbolic alias pairs @ represents the substitution to

be applied upon return from F. @ associates generic ob-

jects (introduced during the generalisation) with the sym-

bolic access paths they represent. The arguments al, . . . . an

are temporaries which are killed by the call: this discipline

avoids the introduction of spurious aliases between a formal

parameter and a dead argument.

Algorithm Calli{(jl, al ), . . . . (~~, a~)}(eca]l)

Input: formals ~1 ,..., fn, distinct arguments al,..., aw,

a symbolic alias relation ~call

Output: the symbolic alias relations @~t,Y, ~ih,~~sh and o

Method:

foreachi=l, . . ..n do

Q.all := [Killf(a;.*) o Gen~(~i.*, a;.*)] (gc~u)

done;

support : = {fl , . . . . fn} u GlobalVartables;

Qentry : = 0; Qthr.augh ,= 0; @ ,= 0;

f oreach symbolic pair ((gl, g2), ~) C QC.11 do

if gl end gz era in support then

@.nt ry := @entry U {((91, 92), ‘)};

if neither gl nor gz is in gupport then

ethrough := &%hr.ush U {((91, g2), ~)];

if g2 is in support and gl is not in support then

(@entry,@) : = Generalise” (((gl, gz), K), gentry, @);

if gl is in support and gz is not in support then

(eentry, e) := Generaksen(((gz, gl ), ~), @entry)@)

done;

return (@entry, pthrOu5h, @)

Figure 9: The interprocedural transfer function Callt

The transfer function Calln is shown in Figure 9. The

function Generali$et(((gl, gz ), ~), Qentry, @) f3enera~ses the

symbolic pair ((gl, gz ), ~) by replacing gt with a generic

object U[kl, . . . , kn], where n is the number of coefficients

of g2, and updating accordingly Qentry ad @. The generic
object name U is determined uniquely by the factorised

form of the symbolic path gz.

3.3 Function returns

The propagation of aliases back to a calling point is mod-

elled by the transfer function Returnn:

Q,.tu,n = Returni(@e~it , Qthrough, @)

where the symbolic alias relations et hrmgh and @ have b-n

computed by the corresponding Callfl, and @exit is the sym-

bolic alias relation describing aliasing at the exit of a func-

tion F. The newly computed symbolic alias relation ~,~t ~.~

describes the abasing just upon return from F. ReturnK es-

sentially instantiates each generic object name occurring in

Qexit. Each generic name is red-d by the Swbofic ac-
paths it represents, as described by @. Because we consider

a call-by-value language, formals need not be replaced by

corresponding locals. Finally, the aliases Qthr..sh are added

dkectly to the result Qr,t”,~.

The transfer function Returnfl is shown in Figure 10.

Given a variable or a generic object name u, the func-

tion Instantiate[(u, K, ~) returns a set of pairs (u’, K’) ob-

tained by replacing u by the symbolic access paths asso-

ciated with u in @ and adjusting accordingly K. For in-

stance if@ = {(( UI[k], z+(tl+)thd), SK{k = 10 – 1})}, then

htantiaten(Ul[j], Sfl{j = 2i}, @) = {(z+(t~+)~hd, S[{j =

10 – 1, j = 2i})}. As in the intraprocedural case, widening

operators must be inserted in the interprocedural equations

in order to ensure termination of fixpoint iterations, see Ap-

pendix.

Example 3.1 Consider the following program fragment:

void F(struct List *L) {

Fl: result = L+tl;

Fz :

}
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Algorithm Ret?JrnH(@,it, @th,~~~h, ~)

Input : the symbolic alias relations ee.i~, &%h,o~@ and @

Output: the symbolic alias relation .QM.,.

Method:

er=turn : = 0;
@ := @ U {(g, g) [ g E Global Variables};

f oreach symbolic pair ((df, v~), ~) 6 Qexit

if u and v are globals or generic names then

foreach (W’, ~l)C InstantuzteH(u, ~,@) end

(v’, ICz) E Instantiate[(v, K, @)

do

K’ := KIAhKz;

if (K’ # 1) then

Qreturn := Qr.t.r. u Re~~~e{((~’~, v’fIO, ~’)}

done

fi;

(h.turn : = Lbeturn U Qthrough ;
return Qr.turn

Figure 10: The interprocedurs.1 transfer function Retur-nfl

P, F(a);

P2

The corresponding data jlow equations are then:

{

(FI, e, 0) = Calln{(L, a)}(R)

Fz = [Genfl(*restdt, *(-L+tl)) o Kill[(*result)] (F,)

Pz = Return”(Fz, LI) @)

Because the functson F is not recursive, widening operator-a
are not needed. Assume that ahasmg at point PI is:

PI = {((*a, *X), T),

((*( X+(tl+)k’hd), *( Y+(tl+)k’hd)))S1 {kl = kz+l}),

((*(a+ (ti+)k’hd), *( Y+(tl+)k’hd)), S“{kl = kz+l})}

The solution of the above data flow equations is then:

FI = {(( U,, *.L), T),...
(( U,[k,]:*(&tl+)k2 hd)),S[ {k, = k,})}

@ = {((Ul, *X), T),

‘(( U2[k,],”*(Y+(tl+ )’2hd)), Si{kl = k,+l})}

e = {((*( X+(ti+)k’hd), *( Y+(tl>)k2hd)), Sti{kl = kz+l}))

Fz = FI u {((*result, *( U1. ti)), T),

((*result, *(L+tl)),T),

((UZ[k~], *(result*(t~+)k’ hd)), S${kl = k~+l})}

P2 = {((*result, *( X+ti)), T),

((*( X+(tl+)k’ hd), *( Y~(tl~)’2 hd)), St{k, = kz+l}),

((*(remdt>(tl+) k’hd), *( Y+(tl+)k2hd)), .S”{kl = k2}))

3.4 Extended interprocedural framework

As with any iterative program analysis, the precision of

our basic interprocedural framework can be improved by

keeping several symbolic alias relations at each program

point of a procedure, each qualified by a different token.

This is to avoid non-realizable interprocedural paths. The

seminal papers [CC77C, SP81, JM82] present systematic

and direct methods to perform this extension. [LR92] uses

alias sets of size one as tokens, [CBC93] uses calling points

and/or incoming alias sets (which can result in exponen-

tial behaviour, see [ML+ 93]). We clearly separated the ba-

sic interprocedural framework from its extensions, unlike

[LR92, ML+ 93]. Our framework can therefore easily be ex-

tended to an arbitrary token set. This is an issue orthogonal

to the present contribution. Pointers to functaons can be

accommodated using a technique similar to [De90].

struct List *

Reverse (struct List *X, *Y) {
struct List *p, *q;

if (X == null)
q=x;

else {

p = X+tl;

X+tl = Y;

q = Reverse (p, X) ;

return(q) ;

}
Gz: 1 = Reverse (l, null) ;

Gs:

Figure 11: A destructive list-reversal function

4 Complexity

We define: n the number of program points, m the max-

imal length of a normalised symbolic access path, A the

number of distinct normalised symbolic access paths, and

the parameter ~, which varies between 1 (for control flow

graphs with fixed outdegree) and 2 (for control flow graphs

in which every program point depends on all the others).

h(v) is the height of the numerical lattice Vti on v coefficient

variables. In terms of the number of node evaluations, the

worst case complexity of our analysis is O(np x AZ x h(2rn)).

h(v) is v + 1 for the constant propagation lattice, 4V for the

lattice of intervals, v + 1 for the lattice of linear equalities

and 8V2 + 4V for the lattice of simple sections. m is the

length of the longest access path that traverses each recur-

sive pointer type at most once. In real programs, m is likely

to be small and even bounded.

5 Prototype implementation

Our interprocedural program analysis framework has

been rxototvDed in Standard ML, as a Parametric mod-. . .
ule (functor) taking as a parameter a module implementing

the numeric framework V[. Excluding the numerical lat-

tice, which is 22OO lines long, the implementation of the

semilattice and its transfer functions requires 6000 lines of

Standard ML. Symbolic alias relations are implemented by

two-level tries: a first trie maps each symbolic access path

to a trie mapping symbolic access paths to elements of the

numerical lattice VI. The numerical lattices we have ex-

perimented with are: (1) the lattice of arithmetic intervals

[CC77a]; (2) the combination of the lattice of intervals and

of the lattice of linear equalities [Ka76] (see [CC79] and

[Gr92] for an explanation of how to devise an optimal com-

bination). Data flow equations augmented with widening

operators are solved using standard iterative techniques.

Preliminary experimentation - not yet of statistical value

- indicates that the number of iterations was less than 10

and took less than 30 seconds to analyse programs of less

than about 50 lines.

6 Precision of the analysis

We have shown in the introduction that our frame-

work can discover position- dependent aliasing properties.

But how well does our framework perform when the ex-

act dependence between aliased positions cannot be cap-

tured? Consider the program fragment shown in Figure

11. Reverse destructively reverses the list X, without in-

troducintr cvcles. Exact relationships between initial and

final pos~ions in X cannot be captured, as it would require

information about the length of X. Assume that 1 cent ains
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some sharing, for inst ante that its 10 first elements point

to z. Aliasing at point G2 is thus:

{

((*(l+(tl+)ihd), *Z), Sf{i < 9}),

‘2= ((*(l+ (tl+)’hd), *(l+(tl+)’hd)), Sf{i, j < 9])
}

Our analysis discovers in four iterations over Reveree that

aliasing at G3 is:

{

((*(l+ (tl+)’hrf), *Z), So{i ~ O}),

“ = ((*(i+ (tl+)’hd), *(l+(tl+)Jhd)), Sfl{i, j > O})
}

We have correctly detected that no cycles have been in-

troduced by Reverse. Such information is important for

optimisation, for instance to perform software pipelin-

ing [HHN92, RF93]. In contrast, [LH88a, HPR89, De90,

CWZ90, LR92, St92, CBC93] report that the list 1 may

be cyclic at G3. [He90] would probably detect that 1 is

not cyclic. However, as noted in [HHN92], [He90] is not

of general applicability as it cannot handle graph-shaped

data. The store-based methods [LH88a, HPR89, 13e90,

St92, CBC93] fail because of their inability to distinguish

an unbounded data structure from a cyclic data structure

(this is independent of the parameter k of [St92, CBC93]).

The addition of reference counting proposed by Chase et

al. also fails, asdiscussed intheir paper [CWZ90, p.309, $8].

Regardless of the value of the parameter k of their analysis,

[LR92] also report a cyclic list as it detects spurious aliases

of the form (*(l+tl+tl),*(l+tl+ti+ti)).
Landi & Ryder’s method is based on sets of pairs crfk-

limited access paths. Itwill not report aliasing when a data

structure is completely unaliased, unlike store-based meth-

ods. However, as soon as one subcomponent of an object

u located at depth >k become aliased, spurious aliasing of

all the subcomponents of u below depth k will be reported.

This is a class of situations in which our method is markedly

superior to k-limited methods.

7 Conclusion

Alias analysis for pointers is a long-standing and criti-

cal issue in optimizing, verifying and parallelising imper-

ative languages. It is becoming even more crucial since

the advent of superscalar architectures and massively par-

allel processing, which place a higher demand on optimizing

compilers to restructure code.

Virtually every existing alias analysis method is based

on two approximation techniques proposed by Jones and

Muchnick: store-based approximations and k-limiting. As

was pointed out by several researchers, these techniques are

not sufficiently accurate to apply optimisation methods to

programs with pointers.

Based on our previous theoretical results in seman-

tics, formal language theory and abstract interpretation

[De92b, De92a], we have proposed a method for may-alias

analysis which radically departs from the currently preva-

lent store-based andk-limited approximation methods. The

key concept is that of symbokca ccesspathsq ualified by in-

teger coefficients denoting positions in data structures. Us-

ing existing numerical approximation techniques developed

for scalar and array analysis, we can finitely represent the

set of positions for which a given pair of symbolic access

paths holds. We obtained thus a practical, flow-sensitive

interprocedural analysis framework which can detect a new

class of may-alias properties that were out of reach of ex-

isting alias analysis methods.

We have implemented a prototype to assess the practical

feasibility of our approach. Preliminary experimentation

demonstrates that our algorithm is significantly superior,

in that it can extract accurate pointer information that

other methods fail to detect, even on elementary pointer

programs, Although we have not yet experimented with

our approach on medium to large size programs, the para-

metric nature of our method gives us confidence about the

scalability of our approach. We are currently undertaking

systematic experimentation on real C programs.

We conjecture that many other applications ofourorigi-

nal concept opposition- degremfentp roperties to thedetermi-

nation of properties of dynamically allocated pointer data

structures are possible.
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A Appendix

Generating bases for mutually recursive pointer

types. Given the mutually recursive types tl, . . . . t~, we
define Basw(t;) as the minimal set of access paths B such

that B“ generates all paths mapping objects of type t: to

objects of type t, without traversing objects of type tj with

j < i. This ordering condition is necessary to ensure that

each path from tj to itself that traverses tihas a unique

factorisation in Baszs(tj ). See Figure 12 for an example.

The algorithm Match. itfatch~(ill, N) is defined by it-

erative decomposition. The only more complex case occurs

when the leading term of M is an iterated basi8 Bk such

no proper prefix p of N consisting only of accessors is prop-

erly in B and that some p is in a prefix of B. For instance:

MatchH(BkM’, sons+ tl+N’) with B = sons+ (tl+)xhd. In

this case we compute the derwative of B w.r.t, sons+tl+
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struct MTree { char *key; struct TreeList *sons; }

struct TreeList { struct MTree *hd;

struct TreeList *tl; }

Basis(stmctkfl%ee) =sons+(tl+)’hd+

Baszs(stmct TTee.L2st) = {t/+}

Figure 12: Mutually recursive pointer types and thei~ cor-

responding bases

(see [Br64]), which yields a set {B; ,..., l?:} of regular ex-

pressions in monomial form [Ei74] (no U appears in B; un-

less it is contained in a star expression). For our example,

we get one regular expression {( ti ●) * hd}, and the matching

proceeds with MatchH(( tl+)k’ hd.M’, IV’).

The algorithm Factor (Figure 15). The normalisation of

a SAP f is performed in three steps. First, subsequences of

(a copy f’ of) f beginning with a selector u and traversing

a recursive type t are replaced by a term of the form Bk,

where B is the basis of the type t. The system of equations

S is augmented with either k = O (if the traversal is partial)

or k = 1 (if the subsequence performs a full traversal of i!).

Second, if the type of ~’ is a recursive type, a basis .Bk is

appended to f, and k = O is recorded in S. The third step

simplifies ~’ by replacing occurrences of the form Bk .Bk’

by Bk” and recording the equation k“ = k + k’. We then

extend Factor to symbolic alias relations in Figure 16.

The widening operator V(Figure 14). Given twosym-
bolic alias relations QI and gz, their widening glV~2iscom-
puted by first normalizing their SAPS (using Factor). The

f oreach loop then applies the widening operator associated

to the numeric lattice V[ to the numeric spaces Kand If’

of each symbolic alias pair defined in both ~1 and Qz.

Placement of widenings. Widening operators must be

inserted in the interprocedural data flow equations [CC77a]

as follows: (1) determine a jeedback set W of the dependence

graph of the equations such that any cycle traverses at least

a node from W; (2) if the data flow equation X; = t(Xj )

is in the feedback” set, with t some transfer function, then

replace it by Xi = Xi Vt(Xj ). W can be defined, for in-

st ante, as the set of (int erprocedural) loop headers, see

[C081, p.334].

The algorithm E@ualenceClass[ (Figure 17). The func-

tion Equivalence Class” (z, g) computes a symbolic path set

P representing the set of access paths to which m is aliased

in e ss follows: each pair ((fl, fz), K) of Q is examined (with

Match~ ) to check if ~1 (resp. ~Z ) can generate a prefix of r.

In this case, the SAP A represents the paths which must be

appended to fl (resp. $2) to generate m (thk is necessary

because of right-regular reduction). The system of numeric

equations S describes the values’ of the coefficients of fl

(resp. f,) for which fl (resp. ~z) generates a prefix of z,

and the corresponding values of the coefficients of A. The

numeric space K is then intersected with S, and projected

onto the coefficients occuring in ~Z (resp. ~1 ) and A, yield-

ing K’. For the example of Figure 17, we have: S = {i=l}

and A = {hd}, C“(Sti{i=j-l}, S) = S]{i=j–l, i=l} and

K’ = S“{j=2}. The pair (fZ.A, K’) is then added to P.

Finally, P is adjusted to take reflexivity into account. The

remaining algorithms, see Figures 18, 19, 20 and 21, are

based on conceptually similar mechanisms.

Pointers to functions. Among the global variables, we

distinguish the set F of function names. Given a par-

ticular function name f, the assignment p = f generates

(in particular) the alias pair ((*p, *f), T). To analyse the

higher-order function call y = (*q)(al, . . . . an), where g is

of function pointer type, we compute ~he symbolic path set

Q = EguiuaienceC1ass” (*q, ecall ). Q then contains directly

the set of function names potentially called. This is a tech-

nique similar to [De90].

Exploiting sparsity of data flow equation systems.
Alias analysis is an interesting candidate for sparse evalu-

ation graph techniques [CCF91, DGS94]. These methods

simplify data flow equations by eliminating copies and ex-

ploiting idempotence of the join (or meet) operator. Oppor-

tunities for such simplification occur in data flow equations

for alias analysis: copies occur because of statements that

do not involve pointers, and joins can be typically elimi-

nated at the end of conditionals that does not involve point-

ers. We are investigating the incorporation of the new ap-

proach [DGS94] in our analyser and plan to evaluate the

impact on performance.

Compaction methods. Because aliasing is symmetric,

we perform symmetric reduction by: (1) defining a total

order < on SAPS (which ignores coefficient names); (2)

enforcing that each symbolic alias pair ((f, g), K) satisfies

f ~ g. This can divide the number of alias pairs by two.

Because aliasing is reflexive, we perform refiezive reduction,

by discarding a symbolic alias pair ((j, g), K) if it generates

only reflexive alias pairs. Because ~ and g can be symbolic,

reflexive reduction is based on the Match operation. Not

every alias analysis can perform reflexive reduction in gen-

eral. For instance, an alias pair (u, v) where u and v are of

length k cannot be safely removed in the analysis of [LR92].

Because aliasing is right-regular (e.g z aliased to y implies

z. 6 aliased to y. 6) we also perform right-regular reduction.

The symbolic alias pairs produced by our framework are

generally not right-regularly closed, but there are neverthe-

less opportunities for right-regular reduction. These three

reduction methods should not be applied to the sets of sym-

bolic alias pairs El used in CallP and Returnn, as they do not

denote symmetric relations. These reductions can however

safely be applied to all other symbolic alias relations. Un-

like the transitive reduction method proposed in [CBC93],

these compaction methods provably do not result in loss of

precision.

Generation of data flow equations. We have ex-

plained how to handle assignments, function calls and re-

turns. We now illustrate the translation of other statements

through the example in Figure 13.

Function return values are handled by assigning the re-

turn value to the global variable result (see cecit ~, Cetwit2 ).

Because Copy is recursive, the dependence graph of the

equations in Figure 13 cent ains two cycles: Centry +

cjnl+c~ -+... + CI -+ Cantrv and C’exit -+ Cezit= +

C’r + C6 + Ca,l + Cezit. Two widening operations have

thus been inserted; one at function entry (see Centr~) and

one at function exit (see Cecit ).

Conditional branches guarded by pointer comparisons

can be taken into account [CC77C, p.2711. For instance, the

transfer function corresponding to if (L == null) then . . .

is KillH(*Z) (see Cz). Other predicates, such as pointer

equality testing can be handled similarly.
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Cent.g = Cent. g~(Cinl l-l CtT12 )

c1 = Cent.y

C2 = Kill[(*L)(Cl)

Cen,tl = GenH (*result, *L)(C2 )

c, = c1
C4 = Kill

Crj = Genfl(*tl, *( L%1))(C4)

(Cim~ , Cthmughl YE)I) = CallK{(L, tI)}(C6)

C6J = ~etwnn (Cecit, Cthroughl ! ‘1)

C6,2 = Kill[(*(P+41))( C6,1 )

c.?+ = Genfl(*(P%l), *result) (C6,, )

C6 = Killl (*result) (Ctj,, )

C7,1 = Kill[(*(P+hd))(C6)

C7 = GenH(*(P+hd), *(-L+= M))(C77,1)

Ce=it, = Genfl(*restdt, *P)(C7)

Ce=~t. = C’ezit V(cezitl U ce22it2 )

L2,1 = GenB(*t,, *X)(L1)

(tin,, Cthmmgh,, 02) = Callfl{(L, t2)}(JZ2,1)

~2,2 = R.dUTnn(cezit, Cthrough2, ‘2)

L2,3 = Kill”(*Y)(L2,2)

L2,4 = GenH(*~ *result) (L,,,)

Lz = Kill[(*result)( Lz,, )

Ls = Kill

Figure 13: Data flow equations corresponding to the pro-

gram of Figure 1

Algorithm V (Widening on symbolic alias relations)

Input : two symbolic alias relations ,g, .Q, c UR(V[)

Output : their widening el VQ,

Method:

e
.—.- 0;

QI := I’actor(Ql);

Q, : = Factor;

f oreach symbolic alias pair ((~1, i2), ~) ~ QI do

if there exists a pair ((.fI) ~2), ~’) C Q2 then

e := Qu {(( fl, f2), ~vK’)];

e, := !$?2 – {(( fl, Jf2)) ~’)};

else

e := eu{((fl, fz), ~)};
return ~ U Q2;

Example:

let ~1 = {((*( X~hd), *( Y+M)), T)}

Q2 = {((*( X+tZ+hd), *( Y+tZ+hd)), T)} U L?I

if VI is the lattice of arithmetic intervals [cc77a]:

QiVQ2 = {((*( X+(tl+)’hd), *( Y+(tl+)Jhd)), Sfl{O<i, j<l})}

if Vfl is Karr’s lattice [K%76]:

QIVQ2 = {((x( X~(tl~)’hd), *(YA(tl~)~hd)),St{i=j})}

Figure 14: The widening operator V

Algorithm Factor(f)

Input: a symbolic access path f

output : a normalised symbolic access path j’ and a sys-

tem of linear equations S relating the variables off and f’

Method:

s ,= 0; y := j;
apply the following to f 1 b left to right order:

let f’=el . . . ei . . . en such that:

(1) e; is a selector e; G X and

(2) Typeof(el . . . .5;-1) is a recursive type t;
let B := Basis(t) and k be a fresh variable;

if there exists a minimal j in [i + 1, n]

such that Typeof(e; . . . r?j ) = t then

f’ := e~... el-~k~ej+l+en; .en; S := SU{k= 1};

else

Y := e~... e;_ BkBe;een; .en; S := SU{k= O};

fi

if Typeo~(f’) is a recursive type t then

~ := ~a$is(t) and let k be a fresh variable;

*if’ := f’.Bk; s :=su{k= o};

exhaustively apply the f ollowlng to f’:

if f’ is of the form e~ . . . ei_l.B~.B~’.ei+z . . . en then

let k“ be a fresh variable;

f’ :=el . . . e;–l. B~’’. e;+2 . . . en;

S := Su{k’’=k+k’}
fi

return (~’, S)

We also define a similar algorithm, Factor(g, ty), where g

is a symbolic access path g, and ty is a type name. g is a

partial access path which can be applied to objects of type

ty. This is used by Star ClosureU.

Example:

Factor(X+ti+(tl+ )iM) = (X+(tl>)jhd, {j = i + 1})

Factor(tl+tl+hd, .struct List) = ((ti+)jhd, {j = 2})

Figure 15: The normalisation algorithm Factor(f)

Algorithm Factor(@)

Input : a symbolic alias relation e E UR(Vfl )

Output : a normalised symbolic alias relation F’actor(Q)

Method:
/.= 0;

$oreach symbolic alias pair ((fl, fz), ~) E Q do

(91, S1 ) : = Factor(fl );

$,s2) := Factor(fz);

‘ := Projectfl(Cti(K, S~ U S2), fU(g1) LJfrJ(92))

e’ := Q’ u Reraame{((gl, gz), ~’)1

done;

return e’

The algorithm Factor used above is defined in Figure 15.

Example:

F’actor{((T+le&rtght+ key, K), T)}
= {((T+ {ie&, right~}k’ key, K), Sfl{kl = 2})}

Figure 16: The normalisation algorithm Factor(e)
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Algorithm EquivalenceClas# (~, e)

Input: an access path ~, a symbolic alias relation Q

Output: a symbolic path set P

Method:

P := 0;
f oreach symbolic alias pair ((~1, fz), ~) C e do

foreach (S, A) E lfatch=(~, fl) do

K’ := Project” (CH(K, S), jv(~2.A));

if (If’ # 1) then P := P U {(~2. A, K’)};

done;

foreach (S, A) G Matche(~, fz) do

K’ := Project[(Cf(K, S), fv(jl.A));

if (K’ # 1) then P := PU{(~l. A, K’)};

done

done;

P := Pu{(~, T)};

return P

Example: if g={((Y+(tl+)i, h(tl+)~), ~h{i=j–l})} then:

EquivalenceClass”( Y+t6+hd, e)

= {(Y+tl+hd, T), (L+(tb)ihd, Sb{j = 2})}

Figure 17: Equivalence class of an access pith

Algorithm Rewrite~ef,(~, P)(e)

Input: an access path z, a symbolic path set P and a sym-

bolic alias relation e

Output: a symbolic alias relation e’

Method:

Q’ := o;
rename P et. coeffe. of P and Q are di.ejoint;

f oreach symbolic alias pair ((~1, fz), ~) E e do

foreach (S, A) E Matche(r, fl) do

foreach (g, K’) E P do

K“ := Projectfl(CH(KA~ K’, S), fv(g)ufv(fz.A));
if (K” # 1) then

e’ := e’ U Rename{((g, ~z.A), K“)}

done;

f oreach (S, A) c Match3(fl, ~) do

foreach (g, K’) c P do
K,,

:= ProjectH(@(K’A,K’, S), fv(g.A)Ufv(~,));

if (K” # 1) then

e’ := e’ u Rename{ ((g.A, .f2), K“)]

done

done;

return e’

/* Rewr~te~ight is defined similarly *I

Algorithm llewrden(~, P)(@)

Input: an access path ~, a symbolic path set P and a sym-

Algorithm Strip%ej@(r, P) bolic alias relation .g

Input: an access path m, a symbolic path set P Output: a symbolic alias relation e’

Output: a symbolic path set P’ Method:

Method: e’ := Rewrite~e~,(~, P)(.Q);

P’ := 0;

foreach (f, K) c P
e’ := Q’ 1-lRewrite~i~hi(r, P)(Q U e’);

f oreach (S, A) c Matcha(f, ~) do
e’ := Q’ u Rename{((f, m), K) I (f, K) c P};

K’ := Project[(C[(K, S), fv(A));
return Q’

if (K’ # 1) then P := PU {( A, K’)}
Figure 20: The operator Rewritefl

done;

return P!

Example:

StripPrefiz[(X+tl, {( X+(t/+)k’ hd, Sfl{kI ~ 2})})

= {(+(tl+)’’hd, sn{k, > l})}

Figure 18: Algorithm StripPrefiz”

Algorithm P.Q (Concatenation of symbolic path sets)

Input: two symbolic path sets P, Q

Output: a symbolic path set P. Q denoting the concat en a-

tion of the access paths denoted by P and Q

Method:

u := 0;

rename P so that the coefficients appearing in

P and Q are dietinct;

foreach (fl, KI) c P

foreach (~z, Kz) c P

U := U U {( fI.f2, & Ah K2)]

return U

Example: let P = {( L+(tl*~hd*, Sti{j = 2})}

and Q = {((tl~)khd, SK{k ~ 1})}, then:

P.Q = {( L+(tl+)jhd+(tl+ )khd, Si{j = 2, k ~ 1})}

Figure 19: Concatenation of symbolic path sets

Algorithm GeneraliseH(((il, f2), K), @entry, ~)

Input: a symbolic alias pair ((fl, $2), K), the Symbofic

alias relations ,Q.n~,Y and @

Output: the symbolic alias relations e&y and ~’
Method:

f; := Make GenericName( fz);

let (ul, . . ..%) =fi(f. ) ad (vi,...,%)=fif~););
s := {U1=V1, . . ..%=WJ.

.&y : = eewY u Rename{ ((f<, f,), S$(S))};

K’ := Project”(Cu(K, S), fv(fo U fv(~l));

f+ := @ u Rename{ ((~~, ~1), K’)};

return(&Y, W)

Exarnde:

Gene~alisen(((* (l+tl), *(a+(tl+)ihd)), SB{i ~ 2}), 0, 0)

= (kt.y, ~)

uith e.~t,~ = {((u, [j], *(a+(t~+)ih~)), s“{~ = ~])}

end El = {(( Ul[k], *( Ml)),S”{k > 2})}

The operator Make Generic Name(~) returns a symbolic ac-

cess path f’ consisting of a generic object U[ki, . . . . km],

where n is the number of coefficient variables occurring in

f. The name U is determined uniquely from f, ignoring

coefficient names and the kl, . . ., k= are fresh variables.

Figure 21: Generalisation of symbolic access paths
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