
Polymorphic Time Systems for Estimating Program

Complexity

Vincent Dornic � 1;2

Pierre Jouvelot 1;3

David K. Gi�ord y 3

1CRI, Ecole des Mines de Paris, France

2DRPA, Bull Louveciennes, France

3LCS, Massachusetts Institute of Technology, USA

fdornic,jouvelotg@ensmp.fr

gifford@mit.edu

Abstract

We present a new approach to static program analysis that permits each expression in

a program to be assigned an execution time estimate. Our approach uses a time system

in conjunction with a conventional type system to compute both the type and the time of

an expression. The time of an expression is either an integer upper bound on the number

of ticks the expression will execute, or the distinguished element long that indicates that

the expression contains a loop and thus may run for an arbitrary length of time. Every

�Financially supported in Ecole des Mines de Paris by Bull under a CIFRE contract.

ySupported by DARPA/ONR Grant No. N00014-89-J-1988

1

function type includes a latent time that is used to communicate its expected execution

time from the point of its de�nition to the points of its use. Unlike previous approaches

a time system works in the presence of �rst-class functions and separate compilation. In

addition, time polymorphism allows the time of a function to depend on the times of any

functions that it takes as arguments. Time estimates are useful when compiling programs

for multiprocessors in order to balance the overhead of initiating a concurrent computation

against the expected execution time of the computation. The correctness of our time system

is proven with respect to a dynamic semantics.

Categories and Subject Descriptions: D.1.3 [Programming Techniques] { Concurrent Pro-

gramming: Time system; D.1.m [Programming Techniques] { Miscellaneous: Type systems;

D.3.1 [Programming Languages] { Formal De�nitions and Theory; D.3.2 [Language Classi-

�cation] { Applicative Languages; D.3.4 [Programming Languages] { Processors: Compilers,

optimization.

General Terms: Languages, Performance, Veri�cation.

Additional Key Words and Phrases: Time System, Type Systems, Complexity Analysis, Poly-

morphic Typed Language, Time and Type Checker, Fixpoint Operator.

1 Introduction

We present a new approach to static program analysis that permits each expression in a program

to be assigned an execution time estimate. Our approach uses a time system in conjunction with

a conventional type system to compute both the type and the time of an expression. The time

of an expression is either an integer upper bound on the number of ticks the expression will

execute, or the distinguished element long that indicates that the expression may contain a loop

and thus may run for an arbitrary length of time.

The overall goal of this research is to produce a usable means of estimating at compile

2

time how long expressions in a higher-order programming language will take to execute. Such

information is useful as a documentation for the programmer or as a speci�cation for a library

module designer, e.g. for real-time programming. By pointing out the computation kernels (hot

spots) in large programs, a smart compiler can use it to decide where optimization e�ort should

be concentrated. Ultimately, the most promising application of such time information will be in

the determination of useful, as opposed to maximal, parallelism for concurrent evaluation.

As a �rst step in this direction, we describe below how to distinguish expressions that have

a statically bounded execution time from others and, when they are bounded, how to obtain an

upper bound approximation of their running time. Although this taxonomy may seem simplistic,

previous work suggests that even a simple system for evaluating execution time of expressions can

be of great practical value for parallel computing [7,6] or optimizing compilers[2]. For instance,

in code generators for parallel MIMD architectures, even a coarse estimate of how long an

expression might take to evaluate can be useful when deciding whether a parallelizable construct

is worth parallelizing. SIMD compilers need to know whether a function mapped over a vector

will take a bounded amount of time to execute since this makes such a mapping expression a good

candidate for vector code generation. This information can also be of use in advanced compilers

that rely on partial evaluation to perform sophisticated optimizations; knowing whether a given

expression can be safely evaluated at compile-time, since it is of bounded time complexity, is of

outmost importance. Our system is able to answer such questions

In short, we have developed the �rst static system for estimating program execution times

that permits separate compilation of program components. Our work is an extension of previous

work in static semantics, including type and e�ect systems. Type systems determine what

expressions compute, while e�ect systems determine how expressions compute. These static

systems are based upon rules that allow the dynamic properties of programs to be e�ciently

estimated by a compiler. A static system is said to be consistent when it is shown to provide a

conservative approximation of the dynamic behavior of expressions.

The basis of our method is a time system that annotates function types with their expected

latent time. Latent times communicate the expected behavior of functions from their point of

3

de�nition to their points of use. Execution times are members of a lattice that uses integers

to represent precise time estimates and the distinguished element long to represent times for

functions that may recurse. Time systems are an extension of e�ect systems [14]. A time system

generalizes an e�ect system by changing its rules to accommodate a lattice of times.

Our work is based upon the assumption that a fully expressive language, supporting �rst-

class functions, is necessary for practical applications and that even very simple time informa-

tion can be of use for e�cient code generation [7]. Unlike other systems for complexity analysis

[23,12,18,4,16,8], we do not restrict the source language used by the programmer. Restrictive

approaches emphasize computing precise time estimates at the cost of source language expres-

siveness. Other methods also assume the availability of whole programs in order to assess their

time complexity. This is unacceptable when programming in the large where modules, such as

mathematical libraries, are independently developed and used. Our system alleviates this restric-

tion by extending the type system of the programming language to describe the time complexity

of expressions.

In the remainder of this paper, we survey related work (Section 2), describe our source

language and its dynamic semantics (Section 3), specify our type and time checking system

(Section 4), prove its consistency with the dynamic semantics (Section 5), describe our time

estimation algorithm and prove that it is correct (Section 6), show how the �xed point opera-

tor Y �ts into our framework (Section 7) and conclude with some observations about possible

extensions (Section 8).

2 Related Work

Early research showed that it is impossible to statically determine the execution time of arbitrary

programs [21]. Subsequent work thus turned to approximations of program execution times.

Approximations of program complexity fall into three broad classes called worst-case, best-case

and mean-case.

Wegbreit pioneered the �eld of automatic program complexity analysis with the METRIC

4

project [23]. His experimental system is able to analyze short and simple Lisp programs. It

consists of two separate phases. The �rst one, called the dynamic phase, extracts a set of

mutually recursive equations corresponding to the expressions of the source code. The second

one, the static phase, tries to solve this set of equations in order to compute all complexity

measures. In this last phase, various methods such as generating function di�erentiation and

matching a data base of known patterns are used. This two-tiered organization is present in

almost all of the systems we survey below.

The ACE system [12] uses this framework to analyze FP programs. FP [1] is a purely

functional language that manipulates lists; it does not support �rst-class functions or side e�ect

primitives. The dynamic phase is a rewriting system that extracts and normalizes the recursive

equations. A pattern matching process is performed against a data base of standard cases. The

results are worst-case growth factors such as \linear" or \polynomial". Le Metayer does not

explain how the ACE data base is maintained.

Sands [18] proposes an extension of Le Metayer's dynamic phase that handles full functional

languages (i.e. with �rst-class functions) and proves the correctness of his rewriting system. He

also presents in [19] an adaptation for lazy high-order languages.

Rosendahl [17] describes and proves correct a rewriting system that, given a Lisp program,

returns a time bound program, i.e. a program that outputs the computation time instead of its

result. The major drawback of his method is that the time bound version of a program may

not terminate if the original program does not. It also only accepts programs without �rst-class

functions.

To obtain mean-case results, the distribution of variables' values over their domains is re-

quired. Unfortunately, they are not easy to manipulate and indeed may change during the

program execution (e.g. due to side e�ects in a complex data structure). Flajolet and Vitter

bypass this problem [4] by supposing uniform input distributions and analyzing programs that

are distribution-transformation free. This class of programs mainly contains tree manipulation

algorithms, like tree covering and small rewriting systems (e.g. formal derivation) viewed as tree

transformers. A major problem is that the output distribution may not be uniform; this is why

5

the function composition operator is generally not admissible in their framework.

Ramshaw [16] proposes a set of inference rules that speci�es the distribution of variables'

values at all program control points. The distribution after a given instruction is computed from

the distribution at the previous control point. With this information on distributions, mean-case

complexity analysis is possible. Ramshaw's system only deals with �rst-order control structures

(like assignment, test and loops) and simple data structures (such as integers or booleans).

Hickey and Cohen [8] extend Ramshaw's approach to complex data structures by employing

Kozen's semantics of stochastic programs [11]. They also propose an extension that covers purely

functional languages like FP.

Gray's dissertation addresses the issue of automatic insertion of futures in Lisp programs

[7] by introducing the notion of quickness to model execution time. The quickness attempts

to express a non-recursive vs. recursive taxonomy but is closely related to future constructs

insertion.

Wadler [22] shows that strictness information is useful to compute execution times in lazy

languages.

3 Language De�nition

We present the CT language, which will be used throughout the paper. CT is a kinded poly-

morphic strongly typed language [15] in which functions are �rst-class citizens. It uses a type

and time system. CT has the full power of the pure lambda calculus. More usual data and

control constructs can be trivially desugared in this kernel language; we address the issue of

side-e�ects in the conclusion. Because it is derived FX-87 language [5], CT shares some of its

syntax and semantics1. The goal of the FX-87 language design was to accommodate side e�ects

in a functional language by adding e�ect information into types. We use this approach for CT

in a time complexity information context.

Our time domain contains the natural integers, which abstract clock ticks, plus a special

1It is even inspired by FX-87 in its name since CT is to complexity what FX is to side-e�ects.

6

value, long, describing an unbounded amount of time. Function types in CT include a latent

time that describes their expected execution time. For example, the classical polymorphic Lisp

function car will have the CT type

(poly (t1 type)

(poly (t2 type)

(subr 1 ((pairof t1 t2)) t1)))

where pairof is the type constructor for CONS cells (which could be easily added to our base

language). The type constructor for abstractions is subr and includes the latent time, here 1,

of the function. In the same way, the factorial function type is (subr long (int) int). The

type constructor for polymorphic types, poly, is used here to abstract the types of the CAR and

CDR of the CONS cells.

The CT language has three levels of speci�cation, namely the kinds (k), the descriptions (d,

split between types and times) and the expressions (e).

k 2 Kind

k ::= type j time

d 2 Descr

d ::= t j m

t 2 Type

t ::= (drec i t) Recursive Type

(subr m (t) t) Abstraction Type

(poly (i k) t) Polymorphic Type

i

7

m 2 Time

m ::= 1 j 2 j 3 j ::: j long

(sumtimemm) Time Accumulation

i

e 2 Expr

e ::= i

(lambda (i t) e) Abstraction

(e e) Application

(plambda (i k) e) Polymorphic Abstraction

(proj e d) Projection

i 2 Id Identi�er

The expression domain de�nes the lambda calculus (abstraction and application) with poly-

morphism (polymorphic abstraction and projection). lambda denotes computational abstrac-

tion while plambda corresponds to type and time abstraction and is a compile-time construct.

A plambda expression has a poly type that describes its polymorphism. The proj expression

specializes a polymorphic expression to a particular type and can thus be seen as the compile-

time equivalent of function application. The following example shows how the polymorphic car

function whose type is given above can be used, once projected (twice since we only provided

here, without loss of generality, single-arity plambda):

(lambda (p (pairof int int))

(+ ((proj (proj car int) int) p) 1))

This example de�nes a function that expects a pair p of integers and returns its �rst element

incremented by one.

The type of a lambda is a subr type. A subr type includes a latent time that describes the

execution time of the function. When function type declarations are introduced by users, they

8

must write a latent time speci�cation as well as the argument and return types. A latent time

description is chosen from the set IN+
! of positive integers augmented with long which represents

!.

Recursive types are built with the drec type constructor. The bound identi�er i may appear

in the type t. For example, a potentially in�nite list of integers has type (drec t (pairof int t)).

The complete dynamic semantics of CT is given below. It is quite similar to the standard

dynamic semantics for purely functional call-by-value languages, such as the one proposed by

[20]. Its unique aspect is that each rule maintains an elapsed time clock. We chose to charge

unit time for all elementary computation steps, such as function application or variable access.

Di�erent values could be used to model a particular computer architecture.

The usual standard semantics can be obtained by erasing all the time counting information.

The value domain contains basic values, like booleans (Bool) and integers (Int), and closures

built as tuples of identi�ers, expressions and states. The v relation denotes domain inclusion

on maps such as states or environments and Sti stands for the state St with the binding of i

removed.

[i v] v St

[D.Env]

St ` i ! v , 1

St` (lambda (i t) e)!hi; e; Sti,1 [D.Lambda]

St ` e0 ! hi; e0; St0i , n0

St ` e1 ! v1 , n1

St0[i v1] ` e0 ! v , n

[D.Apply]

St ` (e0 e1) ! v , 1 + n+ n0 + n1

9

Sti ` e ! v , n

[D.Plambda]

St ` (plambda (i k) e) ! v , n

St ` e ! v , n

[D.Proj]

St ` (proj e d) ! v , n

4 Type and Time Checking System

The time and type checking system for CT is composed of two sets of rules. The �rst one

speci�es the kind checking of descriptions and the second speci�es the type and time checking

of expressions. Type and time checking assumes that kind declarations are error-free.

We begin by describing the properties of types and times. The type descriptions admit an

equivalence relation �. This relation takes into account the �-renaming of bound variables in

recursive and polymorphic types, but is otherwise structural:

(drec i t) � t[in(drec i t)] [E.Fold]

j 62 FV(t)

[E.Drec]

(drec i t) � (drec j t[inj])

t0 � t00

t1 � t01

m � m0

[E.Subr]

(subr m (t1) t0) � (subr m0 (t01) t00)

10

j 62 FV(t)

[E.Poly]

(poly (i k) t) � (poly (j k) t[inj])

where d[ind
0] denotes the substitution of i by the description d0 in d.

The binary operator sumtime is the additive law of composition on the time domain. Al-

though it is associative and commutative, the time algebra is not a monoid; there is no unit

element for the additive law. However, the time long is an absorbing element for the sumtime

operator:

(sumtimem1 (sumtimem2 m3))�(sumtime (sumtimem1 m2)m3)

(sumtimem1 m2)�(sumtimem2 m1)

(sumtimem long)�long

(sumtimem1 m2)�m1 +m2 i� mi 6=long

An important aspect of this algebra is shown by the following equation on times: m = (sumtimemm0)

for which the only solution for m is long for all values of m0. This property is important since

recursive functions always produce time equations of this form and thus have a long latent com-

plexity. We see this admittedly rather limited but nonetheless useful time measure for recursive

expressions as a �rst step towards and a general framework for more speci�c information about

looping constructs, such as polynomial or exponential complexity in terms of their arguments'

size.

The kind rules for types and time follow. TK is a type and kind environment (TK-envi-

ronment) that maps identi�ers to kinds and types. Given a TK-environment, the relation \has

kind", noted ::, maps a description to its kind.

[i :: k] v TK

[K.Env]

TK ` i :: k

11

TK[i :: type] ` t :: type

[K.Drec]

TK ` (drec i t) :: type

TK ` m :: time

TK ` ti :: type

[K.Subr]

TK ` (subr m (t1) t0) :: type

TK[i :: k] ` t :: type

[K.Poly]

TK ` (poly (i k) t) :: type

TK ` mi :: time

[K.Sumtime]

TK ` (sumtimem0 m1) :: time

The type and time rules for variable, lambda abstraction, application, polymorphic abstrac-

tion and projection follow. Added to the classical relation \has type" (noted :) is the relation

\takes time" (noted $) that denotes an upper bound on the time required to execute an expres-

sion.

TK ` e : t $ m

t � t0 ^ m � m0

[S.Equiv]

TK ` e : t0 $ m0

[i : t] v TK

[S.Env]

TK ` i : t $ 1

12

TK[i : t1] ` e : t0 $ m

TK ` t1 :: type

[S.Lambda]

TK ` (lambda (i t1) e) : (subr m (t1) t0) $ 1

TK ` e0 : (subr ml (t1) t0) $ m0

TK ` e1 : t1 $ m1

[S.Apply]

TK ` (e0 e1) : t0 $ (sumtime (sumtimem0 m1) (sumtimeml 1))

TK[i :: k] ` e : t $ m

[S.Plambda]

TK ` (plambda (i k) e) : (poly (i k) t) $ m

TK ` e : (poly (i k) t) $ m

TK ` d :: k

[S.Proj]

TK ` (proj e d) : t[ind] $ m

Note that we have not de�ned any primitive expression for recursion. This is because the

drec type constructor allows us to express recursive types. Thus the �x point operator Y is

expressible in our kernel language (see Section 7).

5 Consistency

This section states that the static semantics of CT is consistent with its dynamic semantics.

The proof has two aspects. First, like in any other type checking system, we must prove the

consistency between the type of an expression and the value it produces. Note that types contain

time information. Then, we must show that the time speci�ed by our static system is an upper

bound of the actual execution time as de�ned in the dynamic semantics.

13

To accomplish these proofs we will need some additional relations. We will start by intro-

ducing a �nite map from identi�ers to kinds. It corresponds to the \K" of TK.

De�nition 1 (Kind Environment) A kind environment, K, is a �nite map from identi�ers

to kinds, K 2 Id! Kind.

We can thence de�ne the consistency between values and types, and between states and

TK-environments. The function dom returns the domain set of the map given as argument.

De�nition 2 We de�ne the consistency between a value v and a type t with respect to a kind

environment K as the following ternary relation:

K j= v : t ()

if t � bool then v 2 Bool

if t � int then v 2 Int

if t � (subr m (t1) t0) then v = hi; e; Sti and

9 TK s.t.

8>>>><
>>>>:

K j= St : TK

TK[i : t1] ` e : t0 $ m

TK ` t1 :: type

if t � (poly (i k) t0)

then 8d 2 Descr; K ` d :: k) K j= v : t0[ind]

if t � (drec i t0)

then K j= v : t0[in(drec i t0)]

In the same way, we de�ne the consistency between a state St and a TK-environment TK with

respect to a kind environment K.

K j= St : TK ()8>>>><
>>>>:

K = TK on Id! Kind

dom(St) � dom(TK) ^ dom(St) \ dom(K) = ;

8i 2 dom(St); K j= St(i) : TK(i)

14

Now, we can express our consistency theorem; note that it only applies to terminating eval-

uations. It uses the � relation between integers and times which is the natural extension to !

of the standard total ordering on integers.

Theorem 3 (Consistency) Let St be a state, e an expression, v a value, n an integer, TK a

TK-environment, t a type, m a time and K a kind environment.

St ` e ! v , n

TK ` e : t $ m

K j= St : TK

9>>>>=
>>>>;

=)

8><
>:

K j= v : t

n � m

Proof (Theorem 3) By induction on the value of n and by case analysis of the expressions [3].

2

6 Algorithm

Below, we give an algorithm that checks that a given expression is correct with respect to

the static semantics. We assume the existence of a kind checking algorithm called KCA that

implements the kind checking rules.

KCA 2 TK-environment � Descr �! Kind

KCA is straightforwardly de�ned by induction on description expressions and is thus omitted.

The algorithm TTCA:

TTCA 2 TK-environment � Expr �! Type � Time

computes a type and a time description for any expression in a given TK-environment.

TTCA(TK,e) = case e in

i => if [i : t] v TK then (t; 1)

(lambda (i t1) e)

=> let (t0;m) = TTCA(TK[i : t1],e)

15

((subr m (t1) t0); 1)

(e0 e1) => let (t;m0) = TTCA(TK,e0)

let (t1;m1) = TTCA(TK,e1)

if sim(t; (subr ml (t1) t0))

then (t0; (sumtime (sumtimem0 m1) (sumtimeml 1)))

(plambda (i k) e)

=> let (t;m) = TTCA(TK[i :: k],e)

((poly (i k) t);m)

(proj e d)

=> let (t;m) = TTCA(TK,e)

let k = KCA(TK,d)

if sim(t; (poly (i k) t0)) then (t0[ind];m)

else => FAIL

The pattern-matching function sim checks whether two type expressions are similar, i.e.

convertible by the � relation. It is de�ned by structural induction on the type domain with

a special proviso for recursive types [9]. The similarity checking of time expressions is slightly

more involved since it requires their normalization to either long or a lexicographically-sorted

list of time variables and a constant.

The following theorem expresses the fact that this algorithm is correct with respect to the

static semantics.

Theorem 4 (Correctness) Let TK be a TK-environment, e an expression, t0 and t1 two types

and m0 and m1 two times.

TK ` e : t0 $ m0

(t1;m1) = TTCA(TK; e)

9>=
>;

=)

8><
>:

t0 � t1

m0 � m1

Proof The proof is straightforward and works by structural induction on the expressions and

by case analysis on the type and time checking rules 2

16

7 An Example: The Fix Point Operator

As discussed above, we can express Y in terms of the CT language. When Y is applied to a

potentially recursive function it returns a function of long latent time. When Y is applied to

a non-recursive function it returns a function with the same latent time as its input. Syntactic

sugar can be used to package the Y operator as follows:

e ::= :::

(rec (f i) e)

Thus, we could write the factorial function in the following way:

FACT � (rec (f i) (if (= i 0) 1 (* i ((f) (- i 1)))))

We use a call-by-value version of the �x point operator Y because CT is call-by-value. Looping

self-applications in call-by-name Y are delayed by placing an abstraction around the expression

(x x).

Y � �f.(�x.(f �.(x x)) �x.(f �.(x x)))

(rec (f i) e) � (Y �f:�i:e)

Y is expressible in our language as follows:

Y �

(plambda ((t type)(m1 time)(m2 time))

(lambda ((f (subr m1

((subr (sumtime m1 6) () (subr m2 (t) t)))

(subr m2 (t) t))))

((lambda ((x (drec tx

(subr (sumtime m1 3) (tx) (subr m2 (t) t)))))

(f (lambda () (x x))))

(lambda ((x (drec tx

17

(subr (sumtime m1 3) (tx) (subr m2 (t) t)))))

(f (lambda () (x x)))))))

where one can note that x has a recursive type because it accepts itself as an argument. After self-

application, the recursive type disappears. In our de�nition of Y we have generalized abstraction

and application to multiple arguments.

The type for Y follows:

Y : (poly ((t type)(m1 time)(m2 time))

(subr (sumtime 6 m1)

((subr m1

((subr (sumtime 6 m1) () (subr m2 (t) t)))

(subr m2 (t) t)))

(subr m2 (t) t)))

The type of Y is used when type and time checking recursive programs, such as the FACT

example shown above. To obtain the type of FACT given below we assumed that the primitives

=, * and - were of latent time 1. Since conditional expressions are viewed as function calls

and not special forms in our static semantics, the time of an if expression is the sumtime of

the predicate, consequent, and alternative expressions. A better estimate for if that takes into

account the non-strictness of conditionals requires a max operator in the time algebra.

FACT : (poly ((m3 time)(m4 time))

(subr 1

((subr m3 () (subr m4 (int) int)))

(subr (sumtime 16 m3 m4) (int) int)))

Computing the factorial function by applying Y to FACT requires the following projection:

((proj Y int 1 long) (proj FACT 7 long)) : (subr long (int) int)

18

When Y is applied to FACT, the projection of Y is constrained by the following equations. The

reader can verify that long is the only solution for m4 in this system:

m1 � 1

(sumtime 6 m1) � m3

m2 � m4

t � int

m2 � (sumtime 16 m3 m4)

8 Conclusion

This paper has introduced the idea of a time system as a new approach for performing time

complexity analysis. The key idea in a time system is to use the type of a function to communicate

its expected execution time from point of its de�nition to its point of use.

The time system presented here has two shortcomings. First, it uses a very simple time

description domain. Second, it requires programmers to include latent times in their function

type declarations. The advantages of our time system include:

� It handles a full functional language with �rst-class functions. Time polymorphism allows

the time of a function to depend on the times of functions it takes as formal parameters.

� It handles separate compilation because latent times communicate time information across

compilation boundaries.

� It has been proved consistent with the dynamic semantics.

Extensions of our technique to space analysis and side-e�ects handling are relatively easy.

Static analysis of memory utilization can be accomplished by changing the unit costs used in

the time rules to represent storage utilization, and by changing the lambda rule to account for

the storage used by closures. Also, by adding a reference type to the set of type constructors,

side-e�ects can be trivially taken into account. The only di�culty lies in the consistency proof

which now has to handle a store and use the notion of maximal �xpoint introduced in [20].

19

We are actively working on extending our system to handle more sophisticated time algebra.

For example, we plan to introduce max to model the cost of the consequent or the alternative in

an if, and we plan to do time reconstruction in the vein of [10].

Acknowledgments

We thank Jean-Pierre Talpin for his help on tricky details of the proof. We also thank Corinne

Ancourt and Susan Flynn Hummel for their comments.

References

[1] Backus, J. W. Can programming be liberated from Von Neumann style? a functional style

and its algebra of programs. CACM 21, 8 (August 1978), 613-641.

[2] Consel, C. Binding time analysis for higher-order untyped functional languages. Lips and

Functional Programming, ACM LFP'90 proceedings, Nice, (June 1990), 264-273.

[3] Dornic, V. Analyse de complexit�e des algorithmes : v�eri�cation et inf�erence. PhD thesis

(in preparation), (expected 1992).

[4] Flajolet, P. and Vitter, J. S. Average-case analysis of algorithms and data structures.

Research report INRIA 718, (August 1987).

[5] Gi�ord, D. K., Jouvelot, P., Lucassen, J. M., and Sheldon, M. A. The FX-87 reference

manual. Research Report MIT/LCS/TR-407, (1987).

20

[6] Goldberg, F. B. Multiprocessor execution of functional programs. Research Report

YALEU/DCS/RR-618, (April 1988).

[7] Gray, S. L. Using futures to exploit parallelism in Lisp. MIT SB Master Thesis, (1983).

[8] Hickey, T. and Cohen, J. Automating program analysis. JACM 35, 1 (January 1988), 185-

220.

[9] Jouvelot, P. and Gi�ord, D. K. The FX-87 Interpreter. International Conference on Com-

puter Languages, IEEE ICCL'91 proceedings, Miami Beach, (October 1988).

[10] Jouvelot, P. and Gi�ord, D. K. Algebraic reconstruction of types and e�ects. Principles on

Programming Languages, ACM PoPL'91 proceedings, Orlando, (January 1991).

[11] Kozen, D. Semantics of probabilistic programs. J. Comput. Syst. Sci. 22 (1981), 328-350.

[12] Le M�etayer, D. ACE: An automatic complexity evaluator. ACM TOPLAS 10, 2 (April

1988), 248-266.

[13] Lucassen, J. M. Types and e�ects. towards the integration of functional and imperative

programming. PhD dissertation, MIT-LCS, (September 1987).

[14] Lucassen, J. M. and Gi�ord, D. K. Polymorphic e�ect systems. Principles on Programming

Languages, ACM PoPL'88 proceedings, San Diego, (January 1988).

21

[15] McCracken, N. J. An investigation of a programming language with a polymorphic type

structure. PhD Dissertation, Syracuse University, (1979).

[16] Ramshaw, L. H. Formalizing the analysis of algorithms. Report SL-79-5, Xerox Palo Alto

Research Center, Palo Alto, Calif, (1979).

[17] Rosendahl, M. Automatic complexity analysis. Functional Programming Languages and

Computer Architecture, ACM FPCA'89 Proceedings, (1989).

[18] Sands, D. Complexity analysis for higher order language. Reseach Report DOC 88/14,

Imperial College, London, (October 1988).

[19] Sands, D. Complexity analysis for a lazy high-order languages. European Symposium On

Programming, LNCS ESOP'90 proceedings, (1990).

[20] Tofte, M. Operational semantics and polymorphic type inference. Univ. of Edinburgh,

THESIS CST-52-88, (1988).

[21] Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem,

Proceedings of the London Mathematical Society, ser 2., vol. 42, 230-265; vol. 43, 544-546,

(1936).

[22] Wadler, P. Strictness analysis aids time analysis. Principles on Programming Languages,

ACM PoPL'88 proceedings, San Diego, (January 1988).

22

[23] Wegbreit, B. Mechanical program analysis. CACM 18, 9 (September 1975), 528-539.

23

