Preparing Set-Based Analysis for Run-time Specialization1

\textit{Hyunjun Eo and Kwangkeun Yi}
\{poisson,kwang\}@ropas.kaist.ac.kr

\section*{Abstract}
We present a technique of using static analysis for estimating program’s input-dependent properties. A static analysis that is originally designed for estimating the input-independent properties of programs is transformed into one that can safely estimate the input-dependent properties at the programs’ input occurrence. No profile is collected and no probing codes inside the running program are needed.

Our idea is to defer the finish of the static analysis to the program’s run-time. By analyzing the static analysis, we identify the parts of the analysis that are sensitive to the program’s inputs, hence need to be deferred to the program’s run-time. Then by using an analysis named \textit{static value-slicing}, we short-cut some of the dynamic parts so that they are solved by simple membership tests for the program’s input. This re-formulation accelerates the analysis; once the program’s input occurs the prepared dynamic parts can immediately and simultaneously start to resolve.

Every step of our technique is formally defined and proven correct.

\section{Introduction}
\subsection{Motivation}
Program’s properties that are invariant to its inputs are necessary but not sufficient for optimizations. Input-dependent program properties are also needed if we want to tailor a program for its popular inputs.

A conventional approach to achieving the input-dependent properties of a program is profiling. Profile-based optimizations use this statistics to tailor the target code to the popular inputs.

But the profile-based analysis has some difficulties. The properties from the profile data are not elaborate enough for some optimizations. Usually the collected statistics are frequency countings of visiting particular control points (or paths) in the program. This hot-spot information is useful for optimizations that are sensitive, for example, to correct branch predictions. But for other optimizations like parallelizations, we need the read/write behaviors of the program variables, whose monitoring needs more than frequency countings. Furthermore, collecting such elaborate run-time properties will have too much overhead on the running programs, given that the current hot-path profiling has an overhead of 15\%-30\% [BL94, BMS98]. As the probing codes embedded inside the program to profile become more complicated, it becomes harder to strike the balance between the profiling overhead and its precision.

We need more general techniques for estimating, without profiling, input-dependent properties of programs. The situation becomes more demanding in the global and web computing environment, where a large number of code consumers (users) are apart from the code producer (compiler) over the network. The code producer compiles the source program and transmits

1This work is supported by Creative Research Initiatives of the Korean Ministry of Science and Technology.
the compiled code to the consumers at the other ends of the network for execution. The job of input-dependent optimizations (tailoring the transmitted code to some popular inputs) is delegated to each consumer. (Without this delegation, the code producer will be swamped with tailoring codes for each of the large number of consumers.) Because the consumers have no access to the source program, the optimizations on the transmitted compiled code are limited. The code producer, on the other hand, is eager to supply aggressive optimizations that can adjust to each customer’s typical inputs. Such aggressive optimizations need elaborate program analyses usually at the source-level.

Therefore, the following scenario is anticipated. The code producer prepares an analysis that can estimate, at the consumer site, the input-dependent properties of the source. The code producer also has the knowledge on how an optimized target code can be generated from the estimated run-time properties of the source. The code producer transmits to the consumer these two things, a “prepared analysis A for the source” and an “optimization plan O for the target” (see Figure 1), together with the compiled target code. The code consumer executes the transmitted code. When an input occurs the prepared analysis A estimates the dynamic properties of the source, independent of the running code. The analysis result will activate the optimization plan O to generate an aggressively adjusted target code. When the same or similar input occurs, the consumer dispatches the adjusted code instead of the original one.

1.2 Overview

This article presents a technique for designing such a “prepared analysis A,” an analysis that estimates the input-dependent properties of the programs. The technique is based on the static analysis framework. A static analysis that is originally designed for estimating the input-independent properties of programs is transformed into one that can safely estimate the input-dependent properties at the programs’ input occurrence. No profile (or trace) is collected and no probing codes inside the running program are needed.

Our idea of using a static analysis for estimating the dynamic properties of programs is simply to defer the finish of the static analysis to the program’s run-time. By analyzing the static analysis, we identify the parts of the analysis that are sensitive to the program’s inputs, hence need to be deferred to the program’s run-time. Then by using a technique named static value-slicing, we short-cut some of the dynamic parts so that they are solved by simple membership tests on the program’s input. This re-formulation prepares the dynamic parts
for their fast resolution; once the program’s input occurs the prepared dynamic parts can immediately and simultaneously start to resolve.

For example, consider an analysis for estimating the values of the following expression, which depends on an input variable α:

$$\text{if } e = 0 \text{ then } 1 \text{ else } 2.$$

The expression’s values X as conditional set constraints are:

$$X_e \supseteq \{0\} \Rightarrow X \supseteq \{1\}$$
$$X_e \supseteq \{n \mid n \neq 0\} \Rightarrow X \supseteq \{2\}.$$

Suppose the condition expression e is input-dependent. Then the compiler has to conclude that the if expression’s value is $\{1, 2\}$ because the condition expression’s value is unknown at compile-time. At run-time, depending on the value of X_e, the conditional analysis can determine a sharper result. For making it better, we can re-formulate the conditions $X_e \supseteq \{0\}$ and $X_e \supseteq \{n \mid n \neq 0\}$ as the input α’s membership tests for some sets V and W, respectively:

$$\alpha \in V \Rightarrow X \supseteq \{1\}$$
$$\alpha \in W \Rightarrow X \supseteq \{2\}$$
else $\Rightarrow X \supseteq \{1, 2\}.$

At run-time when an input ν to the program occurs, the conditions immediately resolve into true or false without the delay for computing the X_e. Thus the expression’s value set X specific to input ν can be quickly estimated. Note that because the two exclusive sets V and W are estimated at compile-time (by yet another static analysis) they are not necessarily exhaustive. Some inputs can be outside of $V \cup W$, in which case the estimated dynamic properties becomes $\{1, 2\}$, as inaccurate as static analysis.

1.3 Organization

Section 2 presents the source language L. Section 3 presents our static analysis for L programs that have input variables. From this analysis, we define a dynamic analysis that estimates the input-dependent properties of the programs. Section 4 and 5 present techniques of moving the overhead of the dynamic analysis to the compile-time of the programs. Section 4 presents a technique of identifying and deferring the input-dependent parts of the analysis, while solving its input-independent parts as far as possible. Section 5 presents a technique of short-cutting some of the dynamic parts, in order to further accelerate the remaining dynamic analysis parts. Section 6 presents an example. Section 7 discusses related works. Section 8 concludes.

2 The Source Language L

We consider a call-by-value, higher-order language, which can be considered a core of ML[MTHM97]. Expressions in the language are either variables, functions, function applications, data constructions, data de-constructions, or conditional branches: see Figure 2. We assign identifying labels to every sub-expression. Values are either functions or data. A datum value $\kappa(v)$ is constructed by “$\text{con } \kappa e$” from a data constructor κ and an expression e for the constructor’s argument v. The argument value v is recovered by “$\text{decon } \kappa e$” where e computes $\kappa(v)$. Switch expression “$\text{case } e_1 \kappa e_2 e_3$” branches to e_2 or e_3 depending on e_1’s data constructor.

We define the semantics (Figure 2) using the evaluation context technique [Fea87, FF97]. The evaluation context defines a left-to-right, call-by-value reduction. We write $E[e]$ if the
Syntax:

```plaintext
| Expr   | e ::= e₁ | x | v | e e | con κ e | labeled expressions |
|        |        |   |   |     |         |                  |
|        |        |   |   |     | decon κ e |                |
|        |        |   |   |     | case e κ e e |           |
| Val    | v ::= λx.e | κ(v) | values |
| Con    | κ |                | data constructors |
| Var    | x, f | variables |
| Label  | l | expression labels |
```

Semantics:

```plaintext
eval(e) = e' → e → ... .
```

Reduction Rules:

- \[\mathcal{E}(\lambda x.e) v \rightarrow e[v/x] \]
- \[\mathcal{E}[\text{con } \kappa v] \rightarrow \mathcal{E}[\kappa(v)] \]
- \[\mathcal{E}[\text{decon } \kappa \kappa(v)] \rightarrow \mathcal{E}[v] \]
- \[\mathcal{E}[\text{case } \kappa(v) \kappa e₁ e₂] \rightarrow \mathcal{E}[e₁] \]
- \[\mathcal{E}[\text{case } \kappa'(v) \kappa e₁ e₂] \rightarrow \mathcal{E}[e₂] \]
- \[\mathcal{E}[v_l] \rightarrow \mathcal{E}[v] \text{ unlabeled} \]

Evaluation Contexts:

\[\mathcal{E} ::= [] | \mathcal{E} e | v \mathcal{E} | \text{con } \kappa \mathcal{E} | \text{decon } \kappa \mathcal{E} | \text{case } \kappa e e e | \mathcal{E}_l \]

hole in context \(\mathcal{E} \) is filled with \(e \). Note that the hole can be surrounded by labels: \(\mathcal{E}_l \). The reduction rules are conventional, except that they preserve the labels of expressions during reductions and the unlabeled rule removes the label from an expression when its value is needed.

As usual, the substitution operation \([v/x]e\) replaces every free occurrence of \(x \) in \(e \) by \(v \). Here the substitution also preserves the labels of \(x \) in \(e \): for example, \([v/x]x_l = v_l\).

3 Start Point: A Set-Based Analysis

In this section, we will define a static analysis from which we will derive, in the subsequent sections, an analysis that estimates input-dependent properties of programs. The analysis estimates the values of expressions. We present it in the set-based analysis framework [Hei92, Hei93, HM97, AH95].

Set-based static analysis consists of two phases: collecting set constraints and solving them. The first phase derives constraints that describe the data flows between the expressions of the analyzed program. The second phase finds the sets of values that satisfy the constraints. A solution is a table from set variables in the constraints to the finite descriptions of such sets of values.

Each sub-expression \(e_l \) and program variable \(x \) has set variables \(X_l \) and \(X_x \), respectively representing expression’s values and variable’s bound values. Each set constraint is of the form \(X_l \supseteq s_e \), where \(X \) is a set variable and \(s_e \) is a set expression. The constraint indicates that the set \(X \) must have the set \(s_e \). The set expression \(s_e \) has seven kinds, each of which corresponds to each program construct (see Figure 3). Semantics of set expressions naturally follows from their corresponding language constructs. For example, \(\kappa X_l \) represents a set of \(\kappa(v) \)'s where \(v \) is an element of \(X_l \). \(\text{app}(X_1, X_2) \) represents the set of values returned from applications of functions in \(X_1 \) to parameters in \(X_2 \). \(\text{case}(X_1, \kappa, X_2, X_3) \) indicates the values of \(X_2 \) if a value in \(X_1 \) is \(\kappa(v) \) or the values of \(X_3 \) otherwise. The formal semantics of set expressions is defined by
Syntax of set expressions:

\[
se ::= X_i \text{ set variables} \\
| \lambda x.e \text{ lambdas} \\
| \kappa X_i \text{ data sets} \\
| \kappa^{-1} X_i \text{ data argument sets} \\
| app(X_i, X_i) \text{ sets from function call} \\
| case(X_i, \kappa, X_i, X_i) \text{ sets from switch} \\
| \top \text{ universe set}
\]

\[
i \in \{l, x \mid e_l \in Expr, x \in Var\} \text{ indices for the sub-expressions and variables}
\]

Semantics of set expressions:

\[
\mathcal{I}(X_i) \subseteq \text{Val} \\
\mathcal{I}(\top) = \text{Val} \\
\mathcal{I}(\lambda x.e) = \{\lambda x.e\} \\
\mathcal{I}(\kappa X_i) = \{\kappa(v) \mid v \in \mathcal{I}(X_i)\} \\
\mathcal{I}(\kappa^{-1} X_i) = \{v \mid \kappa(v) \in \mathcal{I}(X_i)\} \\
\mathcal{I}(\text{app}(X_i, X_i)) = \{v \mid \lambda x.e \in \mathcal{I}(X_i), v \in \mathcal{I}(X_i), \mathcal{I}(X_i) \supseteq \mathcal{I}(X_i)\} \\
\mathcal{I}(\text{case}(X_i, \kappa, X_i, X_i)) = \{v \mid v \in \mathcal{I}(X_i), \kappa(v') \in \mathcal{I}(X_i)\} \cup \{v \mid v \in \mathcal{I}(X_i), \kappa(v') \notin \mathcal{I}(X_i), \kappa' \neq \kappa\}
\]

Rules \(\varphi \triangleright \mathcal{C} \) for deriving constraints \(\mathcal{C} \) from program \(\varphi \):

\[
x_l \triangleright \{X_i \supseteq X_e\}
\]

\[
\frac{e_1 \triangleright \mathcal{C}_1}{(\text{con } \kappa e_1) \triangleright \{X_i \supseteq \kappa(X_i)\} \cup \mathcal{C}_1} \quad \frac{e_1 \triangleright \mathcal{C}_1}{(\text{decon } \kappa e_1) \triangleright \{X_i \supseteq \kappa^{-1}(X_i)\} \cup \mathcal{C}_1}
\]

\[
\frac{e_1 \triangleright \mathcal{C}_1}{(\lambda x.e_1) \triangleright \{X_i \supseteq \lambda x.e_1\} \cup \mathcal{C}_1} \quad \frac{e_1 \triangleright \mathcal{C}_1 \quad e_2 \triangleright \mathcal{C}_2}{(e_1 e_2) \triangleright \{X_i \supseteq \text{app}(X_1, X_2)\} \cup \mathcal{C}_1 \cup \mathcal{C}_2}
\]

\[
\frac{e_1 \triangleright \mathcal{C}_1 \quad e_2 \triangleright \mathcal{C}_2 \quad e_3 \triangleright \mathcal{C}_3}{(\text{case } e_1 \kappa e_2 e_3) \triangleright \{X_i \supseteq \text{case}(X_1, \kappa, X_2, X_3)\} \cup \mathcal{C}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3}
\]

Figure 3: Set constraints for set-based analysis: syntax, semantics, and specification rules
an interpretation \(\mathcal{I} \) that maps from set expressions to sets of values (see Figure 3). We call an interpretation \(\mathcal{I} \) a model (a solution) of a conjunction \(C \) of constraints if, for each constraint \(X \supseteq \text{se} \) in \(C \), \(\mathcal{I}(X) \supseteq \mathcal{I}(\text{se}) \).

Our static analysis is defined to be the least model of set constraints. The constraint system guarantees the existence of the least model because every operator is monotonic (in terms of set-inclusion) and each constraint’s left-hand-side is a single variable [Hei92].

3.1 Collecting the Initial Constraints

Figure 3 has the syntax-directed, linear rules for collecting the initial constraints \(C \) from a program \(\wp \):

\[\wp \vdash C. \]

Each expression collects constraints from its sub-expressions and adds one or two constraints for itself that describe the data flows from the sub-expressions. For example, function application \(e_1 e_2 \) collects two sets of constraints for its two sub-expressions and adds one constraint \(X_1 \supseteq \text{app}(X_1, X_2) \) to describe that \(X_1 \) has values returned from the functions in \(X_1 \) (set variable for \(e_1 \)) with its arguments in \(X_2 \) (set variable for \(e_2 \)).

3.2 Solving the Constraints

The solving phase closes the initial constraint set \(C \) under the rules \(S \) in Figure 4. Intuitively, the rules propagate values along all the possible data flow paths in the program. Each propagation rule dissolves compound set constraints into smaller ones, which approximates the steps of the value flows between expressions. Consider the rule for application result

\[
\begin{align*}
X &\supseteq \text{app}(X_1, X_2) \quad X_1 \supseteq \lambda x.e_3 \\
X &= \text{app}(X_1, X_2) \\
X_1 &\supseteq \lambda x.e_3 \\
X_2 &\supseteq X_2
\end{align*}
\]

It introduces \(X \supseteq X_3 \) if a function to call has body expression \(e_3 \), and if so, adds \(X_3 \supseteq X_2 \) to simulate the parameter binding. (We will call such constraint \((X_1 \supseteq \lambda x.e_3) \) that triggers the dissolution of a compound set-constraints “firing constraint.”) Other rules are similarly straightforward from the semantics of corresponding set expressions.

We write \(A \vdash_r c \) if \(c \) is derivable from \(A \) using rules \(R \), and write \(R^*(A) \) for the closure of \(A \) under rules \(R \), i.e., the set \(\{ c \mid A \vdash_r c \} \).

For a collection \(C \) of set constraints, we write \(\text{Vars}(C) \) for the set of set variables in \(C \), and \(\mathcal{C}(X) \) for the set \(\{ X \supseteq \text{se} \mid X \supseteq \text{se} \in \mathcal{C} \} \) of constraints for \(X \) in \(C \).

Among the set of constraints in \(S^*(C) \), completely dissolved constraints \(\text{atom}(S^*(C)) \) constitute the least model of \(C \). We call such constraints “atomic.” An atomic constraint is \(X \supseteq \text{ae} \) whose right-hand-side \(\text{ae} \) (atomic expression) explicitly denotes a value set:

\[\text{ae} ::= \lambda x.e \mid \kappa X \mid \top. \]

Note that a set \(G = \{ X_1 \supseteq \text{ae}_1, \ldots, X_n \supseteq \text{ae}_n \} \) of atomic constraints denotes the set of sentences generated by its grammatical interpretation (a regular tree grammar where set variables are non-terminals) \(X_1 ::= \text{ae}_1, \ldots, X_n ::= \text{ae}_n \). We write \([G] \) for such set of sentences.

Theorem 1 Let \(\varphi \) be a closed term and \(\varphi \vdash C \). The least model of \(C \) is \(\{ X \mapsto [[\text{atom}(S^*(C)(X))] \mid X \in \text{Vars}(C) \} \).

Proof. [Hei93, Hei92] □

\(^2\)This closure is also defined as the least fixpoint \(\mu_p (\lambda X.A \cup \{ c \mid X \vdash_r c \}) \).
\[
\begin{array}{c}
X \supseteq \kappa^{-1} Y \quad Y \supseteq \kappa Z \\
X \supseteq Z \\
X \supseteq \text{case}(X_1, \kappa, X_2, X_3) \quad X_1 \supseteq \kappa Y \\
X \supseteq X_2 \\
X \supseteq \text{case}(X_1, \kappa, X_2, X_3) \quad X_1 \supseteq \kappa' Y \quad \kappa' \neq \kappa \\
X \supseteq X_3 \\
X \supseteq \lambda x.e_1 \quad X_1 \supseteq X_2 \\
X \supseteq Y \quad Y \supseteq ae \\
X \supseteq \text{app}(X_1, X_2) \\
X \supseteq X_3 \\
X_x \supseteq X_2 \\
X \supseteq Y \quad Y \supseteq ae \\
\end{array}
\]

Figure 4: Rules S for solving set constraints

Definition 1 \(\text{sba}\) Let \(\varphi\) be a closed term and let \(\varphi \triangleright \mathcal{C}\). \(\text{sba}(\varphi)(l) \equiv [\text{atom}(S^*(\mathcal{C})(X_1))].\)

The set-based analysis \(\text{sba}(\varphi)\) is a safe approximation of the program values:

Theorem 2 (Safety of \(\text{sba}\)) Let \(\varphi\) be a closed term and \(\varphi \triangleright \mathcal{C}\). If \(\varphi \overset{\ast}{\rightarrow} \mathcal{E}[v_1]\) then \(v \in \text{sba}(\varphi)(l)\).

Proof. Following the proof strategies in [Hei93, Hei92], we use the set-based operational semantics [Hei93] as an intermediate step and Theorem 1. \(\Box\)

3.3 Analysis of Open Terms

So far we assume that the analyzed program has no input (free) variable. From now on, we assume that every program \(\varphi\) has one input variable \(\alpha\).

3.3.1 Static Analysis: Estimating Invariants

For program \(\varphi\) with an input variable \(\alpha\), the set \(\mathcal{C}\) of the initial constraints \((\varphi \triangleright \mathcal{C})\) has no set constraint for \(X_\alpha\). Thus, set constraints that uses \(X_\alpha\) cannot be solved.

It is, however, straightforward to use \(\mathcal{C}\) to achieve a static analysis of estimating the input-invariant properties. We start the solving process \(S^*(\bullet)\) with the extra constraint \(X_\alpha \supseteq \top\) for the input variable \(\alpha\). Note that \(\top\) indicates the universe set \(\text{Val}\) of values. The analysis process is:

\[
\begin{align*}
\text{let } & \varphi \triangleright \mathcal{C} \\
\text{in } & S^*(\mathcal{C} \cup \{X_\alpha \supseteq \top\})
\end{align*}
\]

Because no information (universe) is assumed about the inputs, above analysis approximates properties that are invariant to the inputs.

Definition 2 \(\text{sba}_\top\) Let \(\varphi\) be a term with a free variable \(\alpha\) and let \(\varphi \triangleright \mathcal{C}\). \(\text{sba}_\top(\varphi)(l) \equiv [\text{atom}(S^*(\mathcal{C} \cup \{X_\alpha \supseteq \top\}))(X_1)].\)

Theorem 3 (Safety of \(\text{sba}_\top\)) For all \(v \in \text{Val}\), if \([v/\alpha]\varphi \overset{\ast}{\rightarrow} \mathcal{E}[v_1]\) then \(v \in \text{sba}_\top(\varphi)(l)\).

Proof. Because \(\forall v \in \text{Val} : \text{sba}([v/\alpha]\varphi)(l) \subseteq \text{sba}_\top(\varphi)(l)\) and by Theorem 2. The set-inclusion is obvious because \(\text{sba}\) and \(\text{sba}_\top\) use the same monotonic rules to close the constraints and both of the two initial constraint sets are identical except that \(\text{sba}([v/\alpha]\varphi)\) has \(X_\alpha \supseteq v\) whereas \(\text{sba}_\top(\varphi)\) has a larger one: \(X_\alpha \supseteq \top\). \(\Box\)
3.3.2 Dynamic Analysis: Estimating Variants

In order for the analysis to approximate input-dependent values of expressions, we have to defer the solving phase to run-time. At run-time, we can replace the \top (universe) in the input constraint $X_\alpha \supseteq \top$ by the actual input ν:

\[
\text{let } \varphi \triangleright C \quad \text{set-up constraints at compile-time} \\
\text{in } \ S^* (C \cup \{X_\alpha \supseteq \nu\}) \quad \text{solve constraints at run-time}
\]

Above process estimates the expression values specific to input ν.

Definition 3 (sba_ν) Let φ be a term with a free variable α and let $\varphi \triangleright C$. $sba_\nu(\varphi)(l) \overset{\text{def}}{=} \llbracket \text{atom}(S^*(C \cup \{X_\alpha \supseteq \nu\})(X_l)) \rrbracket$.

Theorem 4 (Safety of sba_ν) If $[\nu/\alpha] \varphi \xrightarrow{s} E[v]$, then $v \in sba_\nu(\varphi)(l)$.

Proof. Because $sba_\nu(\varphi) = sba([\nu/\alpha] \varphi)$ and by Theorem 2. \square

This dynamic analysis is the starting point for the following sections. We will present how to transform this dynamic analysis so that the transformed analysis should safely and quickly finish at the analyzed program’s input occurrence.

4 Derivative I: Deferring Dynamic Constraints

Much of computing the dynamic analysis $S^*(C \cup \{X_\alpha \supseteq \nu\})$ at the analyzed program’s run-time can be done at its compile-time. Even though the constraint $X_\alpha \supseteq \nu$ is available only at the program’s run-time, we can solve at its compile-time input-independent constraints among C, while we defer input-dependent ones to run-time.

Program’s input-dependent constraints $X \supseteq se_\square$ have the same syntax as the normal constraints except that the set expressions se_\square are marked input-dependent (subscript \square). Input-dependent set expressions se_\square are those that cannot be dissolved into atomic ones at compile-time because they depend on the input. Set-variable X_α for the input is input-dependent. Non-atomic compound expressions are input-dependent if one of their sub-parts is. Hence there are four kinds of input-dependent set expressions:

\[
se_\square ::= X_\alpha \mid \kappa^{-1}_\square \ X \mid app_\square(X_1, X_2) \mid case_\square(X_1, \kappa, X_2, X_3).
\]

Identifying input-dependent constraints is simple. When we apply the solving rules S to constraints, we also propagate the input-dependencies, starting from the set constraints $X \supseteq X_\alpha$ that have the input set-variable on their right-hand-sides. Note that the solving rules in S dissolve a compound set-constraints into smaller ones if given a firing constraint. Thus when the firing constraint is input-dependent so is the compound set-constraint. For example, consider

\[
\frac{X \supseteq app(X_1, X_2) \quad X_1 \supseteq \lambda x.e}{X \supseteq X_1 \quad X_2 \supseteq X_2}
\]

The firing constraint $X_1 \supseteq \lambda x.e$ allows $X \supseteq app(X_1, X_2)$ to dissolve. If this firing constraint is input-dependent, we mark the compound set expression $app(X_1, X_2)$ as input-dependent:

\[
\frac{X \supseteq app(X_1, X_2) \quad X_1 \supseteq se_\square}{X \supseteq app_\square(X_1, X_2)}
\]

Other cases for propagating input-dependencies are similarly defined.
Figure 5 has the rules D for identifying input-dependent constraints. Each rule is juxtaposed with its corresponding rule of S. The last rule propagates the input-dependencies across the single-variable set expression, which is neither compound nor yet completely dissolved.

The whole process is defined as:

\[
\begin{align*}
\text{let } \varphi &\triangleright \mathcal{C} & \text{set-up constraints at compile-time} \\
\mathcal{C}' &= (S \cup D)^*\mathcal{C} & \text{partially solve (S) and defer (D) at compile-time} \\
in\ S_\mathcal{C}'(\mathcal{C}' \cup \{X_0 \supseteq \nu\}) &\ \text{solve deferred constraints at run-time}
\end{align*}
\]

We collect ($\varphi \triangleright \mathcal{C}$) the initial constraint set \mathcal{C} from program φ (rules in Figure 3). We apply the rules S to the \mathcal{C} for solving input-independent constraints and at the same time the rules D for identifying and deferring input-dependent constraints. These two phases can be done at compile-time. The result constraint set \mathcal{C}', which is partially solved, is finally solved at run-time with input ν. At run-time we apply rules $S_\mathcal{C}$, which are the same as the rules S except that they handle the compound set expressions marked with \square. Constraint set $|\mathcal{C}'|$ is the set of solved or deferred constraints in \mathcal{C}:

\[
|\mathcal{C}'| = \{X \supseteq ae \mid X \supseteq ae \in \mathcal{C}'\} \cup \{X \supseteq se_0 \mid X \supseteq se_0 \in \mathcal{C}'\}.
\]

Definition 4 (Deferred analysis $dsba$) Let φ be a term with a free variable α, $\varphi \triangleright \mathcal{C}$, and ν be an input value. $dsba_{\nu}(\varphi)(I) \overset{\text{def}}{=} \{\text{atom}(\mathcal{C}'(\mathcal{X}))\}$, where $\mathcal{C}' = (S \cup D)^*\mathcal{C}$ and $\mathcal{C}' = S\mathcal{C}_\nu((\mathcal{C}' \cup \{X_0 \supseteq \nu\})$.

Theorem 5 (Safety of $dsba$) If $[\nu/\alpha]\varphi \xrightarrow{\ast} \mathcal{E}[v]$ then $v \in dsba_{\nu}(\varphi)(I)$.

Proof. This is because $dsba_{\nu}(\varphi) = sba_{\nu}(\varphi)$. The only difference between the two processes is that $dsba_{\nu}(\varphi)$ defers input-dependent constraints and solves them with run-time input ν. Here, the run-time solving rules are identical to the rules in $sba_{\nu}(\varphi)$ and the semantics of the deferred constraints are the same as before. Hence the final result from the deferred set-based analysis should be the same as the one from $sba_{\nu}(\varphi)$.

Note that the run-time process $s\mathcal{C}_\nu((\mathcal{C}' \cup \{X_0 \supseteq \nu\})$ of solving the deferred constraints $|\mathcal{C}'|$ has some delays. Because each deferred constraint’s $X \supseteq se_0$ in $|\mathcal{C}'|$ firing constraint is a solved atomic one about its sub-part, it has to wait until its sub-part is solved.

Constraint transformation to avoid this delay is our next step.

5 Derivative II: Preparing Dynamic Constraints via Static Value Slicing

Solving each deferred constraint $X \supseteq se_0$ can be short-cut if its firing constraint is not about a sub-part of se_0 but about the program’s input. For example, consider a resolution rule for $X \supseteq case_0(X_1, \kappa, X_2, X_3)$:

\[
\frac{X \supseteq case_0(X_1, \kappa, X_2, X_3) \quad X_i \supseteq \kappa \mathcal{Y}}{X \supseteq X_2}
\]

Because the firing constraint $X_i \supseteq \kappa \mathcal{Y}$ is about the pivoting expression (X_1) we have to wait until the constraint on X_1 is dissolved to have $\kappa \mathcal{Y}$. This delay is removed if our transformed rule is: if the program’s input is included in V the case expression has the values $X_i \supseteq X_2$. The condition for V must be that every input in V to the program makes e_1 (expression for X_1) evaluate into values with constructor κ.

A static analysis named “static value-slicing” estimates such set V. Static value-slicing is a compile-time analysis to answer the question: in order for an expression’s value to be included in a set V, what will be a necessary condition for the expression’s environment?
5.1 Static Value Slicing

Conventionally, static slicing\cite{Tip94} is a compile-time technique to select program parts (syntactic objects like expressions or variables) that are related to a selected expression.

Static value-slicing is a static slicing where we slice expressions' values, not expressions. The slice criterion \(e \subseteq V \) is a condition that expression \(e \)'s values must be included in \(V \). The slice result

\[
\text{SVS}_V(e \subseteq V)
\]

is a map from the expressions of \(\varphi \) to their value sets that are necessary for the program to compute \(e \)'s values in \(V \). To be precise, for every input value in the slice result \(\text{SVS}_V(e \subseteq V)(\alpha) \), if it makes the program compute \(e \)'s values then the values are in \(V \).

Example 1 Consider the following program \(\varphi \):

```
datatype t = A | B | C
case x of
  A => B
  _ => x
```

If the input \(x \) is \(A \) or \(B \), the program returns \(B \). If \(x \) is \(C \), it returns \(C \). Static value-slicing \(\text{SVS}_V(\varphi \subseteq \{B\})(x) \) for slice criterion \(\varphi \subseteq \{B\} \) must be a subset of \(\{A,B\} \). Similarly, for criterion \(\varphi \subseteq \{C\} \), \(\text{SVS}_V(\varphi \subseteq \{C\})(x) \subseteq \{C\} \).

We present one such static value-slicing analysis as a set constraint system. Set constraints are of the form

\[
se_l \subseteq se_r
\]

indicating that set \(se_l \) has to be included in set \(se_r \). Figure 7 has the definitions of the constraints, three alternative rules for deriving initial slicing constraints, and slicing propagation.
The rules B are straightforward from the semantics of constraints. Driving rules (\triangleright) for initial slicing constraints are also intuitive:

- If $(\text{con } \kappa e_1)_i$ is sliced to X_i, we have to slice the sub-expression e_1: $\kappa X_i \subseteq X_i$. Similarly for the decon case.

- If application expression $(e_1 e_2)_i$ is sliced to X_i, there are three value sets we have to slice: e_1’s, e_2’s, and the called function’s body expression’s. The function expression e_1 has to be sliced to the set $Lam_{\phi}(e_1)$ of functions that can be called. For each function $\lambda x.e_3 \in Lam_{\phi}(e_1)$, the argument expression e_2 has to be sliced to the values of x, and the called function’s body has to be sliced to X_i.

The Lam_{ϕ} table maps expression e to a safe approximation of functions that the expression may have during program ϕ’s executions for all inputs. The rules L in Figure 6 determines the table:

$$Lam_{\phi}(e) = \{\lambda x.e' \mid e \rightarrow \lambda x.e' \in L^{\phi}_\text{exprs of } \phi\}.$$

Relation $e \rightarrow \lambda x.e'$ indicates that e may evaluate into function $\lambda x.e'$. Safety of the Lam_{ϕ} table is obvious.

- If case expression $(\text{case } e_1 \kappa e_2 e_3)_i$ is sliced to X_i, there are three alternative slicings, depending on the three possible execution flows: only the first branch is taken, only the second branch is taken, or both branches are taken. Each situation requires different slicing rules. For the first situation, we slice e_1 to $\kappa \top$ (\top for universe) and e_2 to X_i (case rule in \triangleright_1). For the second situation, we slice e_1 to $\kappa \top$ (values not constructed with κ) and e_3 to X_i (case rule in \triangleright_2). For the third situation, we should not slice e_1 but slice both expressions e_2 and e_3 to X_i (case rule in \triangleright_3).

The process of static value-slicing $SVS_{\phi}(e \subseteq V)$ is defined as:

1. Let $\phi \triangleright_i C_i$, for $i = 1, 2, 3$. Set-up three initial slicing-constraint sets.
2. Let $\bigvee_{i=1}^3 B^*(C_i \cup \{X_c \subseteq V\})$. Disjunction of three slicing results from the criterion.

The set of atomic slicing-constraints closed by the rules B is the greatest model (gm) of $C_i \cup \{X_c \subseteq V\}$. The greatest model always exists because our constraints are co-definite [CP98].

Theorem 6 Let ϕ be a term with one free variable α, e be a sub-expression of ϕ, V be a set of values, and $\phi \triangleright_i C_i$. Then $\{\text{atom}(B^*(C_i \cup \{X_c \subseteq V\}))\}$ is the greatest model of $C_i \cup \{X_c \subseteq V\}$.

Proof. Let $C' = C_i \cup \{X_c \subseteq V\}$. We first prove $gm(C') = gm(B^*(C'))$ by showing that B always adds constraints that preserve the $gm(C')$. Then we prove $gm(B^*(C')) = gm(\text{atom}(B^*(C')))$. Details are in Appendix A.1. \(\square\)

The atomic slicing-constraints are slicing constraints $X \subseteq ae$ whose set-expression ae is atomic.

Static value-slicing is the set of the greatest models for three slicing constraints:

Definition 5 (Static Value-Slicing $SVS_{\phi}(e \subseteq V)$). Let ϕ be a term with one free variable α, e be a sub-expression of ϕ, and $\phi \triangleright_i C_i$ for $i = 1, 2, 3$.

$$SVS_{\phi}(e \subseteq V) \equiv \{\text{atom}(B^*(C_i \cup \{X_c \subseteq V\})) \mid i = 1, 2, 3\}. \quad \text{Note that for n case expressions in the program, we can start from 3^n sets of initial slicing constraints (3 slicings for each case expression), which we avoid for the slicing’s cost-accuracy balance.}$$
\[
\begin{align*}
\lambda x. e & \in \wp \\
\lambda x. e & \rightarrow \lambda x. e \\
e_1 & \rightarrow \lambda x. e_1' \\
e_2 & \rightarrow \lambda y. e_2' \\
e_1 & \rightarrow \lambda x. e \\
e_2 & \rightarrow \lambda x. e \\
\text{decon } & \kappa e_1 \rightarrow \lambda x. e \\
e_3 & \rightarrow \lambda x. e \\
\text{case } e_1 & \rightarrow \lambda x. e \\
\text{case } e_2 & \rightarrow \lambda x. e \\
\end{align*}
\]

Figure 6: Safe call-graph estimation rules \(L_\wp \)

In the following sections, we will abuse the notation \(\text{SVS}_\wp(e \subseteq V)(\alpha) \) to mean \(\{ v | v \in \Sigma(\alpha), \Sigma \in \text{SVS}_\wp(e \subseteq V) \} \).

The value-slicing satisfies the condition that we anticipate:

Theorem 7 (Correctness of \(\text{SVS}_\wp(e \subseteq V) \)) Let \(\wp \) be a term with one free variable \(\alpha \), and \(e \) be a sub-expression of \(\wp \). If \(\Sigma \in \text{SVS}_\wp(e \subseteq V) \) then \(\forall v \in \Sigma(\alpha) : ([\nu/\alpha] \mapsto E[v_e] \Rightarrow v \in V) \).

Proof. We use the set-based operational semantics [Hei92, Hei93] \(\Sigma \vdash e \leadsto v \) as an intermediate step. First, we prove that \(\Sigma \vdash e \leadsto v \Rightarrow v \in \Sigma(e) \). Furthermore \(\Sigma \) is a safe set environment with respect to \([\nu/\alpha] \mapsto E[v_e] \) implies \(\Sigma \vdash e \leadsto v \), hence implies \(v \in \Sigma(e) \), and hence implies \(v \in V \). Details are in Appendix A.1. \(\square \)

5.2 Short-cutting Dynamic Constraints

By using the static value-slicing techniques, an input-dependent constraint dissolves by a simple membership test on the program’s input. By this preparation, when the program’s input occurs at run-time each deferred yet prepared dynamic constraint can immediately and simultaneously start to resolve.

Consider the dynamic constraint for the case expression: \(\lambda x. e \in \wp \rightarrow \lambda x. e \). Its firing constraint is either \(\lambda x. e \rightarrow \lambda y. e' \) or \(\lambda x. e \rightarrow \lambda y. e'' \). Suppose that the inputs in set \(V_1 \) (resp., \(V_2 \)) make the pivoting expression \(\lambda x. e \) have data made with \(\kappa \) (resp., \(\kappa' \)). Such sets are the results of the static value-slicings:

\[
\begin{align*}
V_1 &= \text{SVS}_\wp(\lambda x. e \subseteq \kappa \top)(\alpha) \\
V_2 &= \text{SVS}_\wp(\lambda x. e \subseteq \kappa' \top)(\alpha).
\end{align*}
\]

Using these two sets, the dynamic constraint \(\lambda x. e \in \wp \rightarrow \lambda x. e \) is re-formulated into three constraints

\[
\lambda x. e \in \wp \rightarrow \lambda x. e
\]

where the set expression \(\text{if}_\wp(V_1, X_2), \lambda x. e \in \wp \rightarrow \lambda x. e \), and \(\lambda x. e \in \wp \rightarrow \lambda x. e \) are non-exhaustive because they are “necessary” sets for the slice criterion. It covers the case when the input is included neither of the two sets.
Slicing constraint is $s_e_l \subseteq s_e_r$.

Syntax of slicing set-expressions:

$$s_e_l ::= X_i \text{ set variables}$$

$$| \lambda x.e \text{ lambdas}$$

$$| \kappa X_i \text{ data sets}$$

$$s_e_r ::= X_i \text{ set variables}$$

$$| \kappa X \text{ data sets}$$

$$| \kappa \top \text{ data sets}$$

$$| \Pi \top \text{ data sets}$$

$$| Lam_\nu(e) \text{ lambda sets}$$

$$| \top \text{ universe set}$$

$$i \in \{l, x \mid e \in Expr, x \in Var\} \text{ indices for the sub-expressions and variables}$$

$$ae ::= \kappa X | \kappa \top | \kappa \top' | \top | Lam_\nu(e) \text{ atomic set expression}$$

Semantics of slicing set-expressions:

$$\mathcal{I}(X_i) \subseteq \text{Val}$$

$$\mathcal{I}(\top) = \text{Val}$$

$$\mathcal{I}(\lambda x.e) = \{\lambda x.e\}$$

$$\mathcal{I}(\kappa X) = \{\kappa(v) \mid v \in \mathcal{I}(X)\}$$

$$\mathcal{I}(\Pi \top) = \{\kappa'(v) \mid \kappa' \neq \kappa, v \in \text{Val}\}$$

Rules \triangleright_1, \triangleright_2, and \triangleright_3 for deriving three alternative sets of initial slicing constraints:

$$\begin{align*}
X \subseteq Y & \quad \triangleright_1 \quad (\lambda x.e)_i \triangleright \{\lambda x.e_1 \subseteq X_i\} \cup C_1
\end{align*}$$

$$e_1 \triangleright_1 \quad (\text{con } \kappa e_1)_i \triangleright \{\kappa X_1 \subseteq X_2\} \cup C_1$$

$$\begin{align*}
X \subseteq Y & \quad \triangleright_1 \quad (\text{decon } \kappa e_1)_i \triangleright \{X_1 \subseteq \kappa \top\} \cup C_1
\end{align*}$$

$$e_1 \triangleright_1 \quad (\text{case } e_1 \kappa e_2 e_3)_i \triangleright \{X_1 \subseteq \Pi \top, X_2 \subseteq X_3 \} \cup C_1 \cup C_2 \cup C_3$$

$$\begin{align*}
X \subseteq Y & \quad \triangleright_2 \quad (\text{case } e_1 \kappa e_2 e_3)_i \triangleright \{X_2 \subseteq \Pi \top, X_3 \subseteq X_1 \} \cup C_1 \cup C_2 \cup C_3
\end{align*}$$

$$\begin{align*}
X \subseteq Y & \quad \triangleright_3 \quad (\text{case } e_1 \kappa e_2 e_3)_i \triangleright \{X_3 \subseteq X_1, X_3 \subseteq X_2 \} \cup C_1 \cup C_2 \cup C_3
\end{align*}$$

Rules B for slicing propagation:

$$\begin{align*}
\kappa X \subseteq Y \quad Y \subseteq \kappa Z & \quad \kappa X \subseteq Y \quad Y \subseteq \kappa \top \\
X \subseteq Y & \quad (\lambda x.e)_i \triangleright \{X \subseteq \kappa \top\} \cup C_1
\end{align*}$$

$$\begin{align*}
\kappa X \subseteq Y \quad Y \subseteq \kappa \top & \quad \kappa X \subseteq Y \quad \kappa' \neq \kappa
\end{align*}$$

Figure 7: Set constraints for static value-slicing: syntax, semantics and slicing rules.
The firing constraint for $X \supseteq \text{if}_\beta(V, X)$ is a simple test $\nu \in V$ for the program's input ν:

$$
X \supseteq \text{if}_\beta(V, X_1) \quad \nu \in V
$$

The membership test $\nu \in V$ for regular tree grammar V takes polynomial time [CDG+99]: the size of $\nu \times$ the number of non-terminals in $V \times$ the sum of the function symbols' arities (in our case, data constructors' arities).

The rule for defining an input-dependent constraint for the case expression is changed as:

$$
X \supseteq \text{case}(X_1, \kappa, X_2, X_3) \quad X_1 \supseteq \text{se}_\beta \quad V_1 = \text{SVS}_p(X_1 \subseteq \kappa \top)(\alpha) \\
X \supseteq \text{case}(X_1, \kappa, X_2, X_3) \quad X_1 \supseteq \text{se}_\beta \quad V_2 = \text{SVS}_p(X_1 \subseteq \pi \top)(\alpha)
$$

The rules P for identifying, preparing, and deferring input-dependent constraints are in Figure 8, together with the rules S_p for solving the prepared constraints at run-time.
The whole process of preparing the analysis is defined as:

\[\varphi \vartriangleright \mathcal{C} \]
\[\mathcal{C}' = (S \cup P)^*(\mathcal{C}) \]
\[\text{in } S_P^*(\mathcal{C}' \cup \{ X_\alpha \supseteq \nu \}) \]

We collect program’s initial constraints \(\mathcal{C} \) using the \(\vartriangleright \) rules of Figure 3. Apply the rules \(S \) to the \(\mathcal{C} \) for solving input-independent constraints and at the same time the rules \(P \) for identifying and preparing input-dependent constraints. The result constraint set \(\mathcal{C}' \), which is partially solved and prepared for quick convergence, is finally solved at run-time with the program input \(\nu \). As before, \(|\mathcal{C}'| \) is the set of solved or deferred constraints in \(\mathcal{C}' \).

Definition 6 (Prepared analysis \(\text{psba} \)) Let \(\varphi \) be a term with a free variable \(\alpha \), \(\varphi \vartriangleright \mathcal{C} \), and \(\nu \) be an input value. \(\text{psba}_\nu(\varphi)(l) \overset{\text{def}}{=} \left[\text{atomi}(\mathcal{C}'') \right] \), where \(\mathcal{C}' = (S \cup P)^*(\mathcal{C}) \) and \(\mathcal{C}'' = S_P^*(\mathcal{C}' \cup \{ X_\alpha \supseteq \nu \}) \).

The prepared analysis safely estimates the input-dependent properties:

Theorem 8 (Safety of \(\text{psba} \)) If \([\nu/\alpha]\varphi \overset{*}{\rightarrow} \mathcal{E}[\nu] \) then \(v \in \text{psba}_\nu(\varphi)(l) \).

Proof We prove the safety of \(\text{psba} \) by showing that \(\text{sba}_\nu \) is a safe approximation of \(\text{sba}_\nu \). We define two continuous functions \(F_\nu \) and \(P_\nu \) that correspond [CC95] to the closure operations \(\text{sba}_\nu(\varphi) \) and \(\text{psba}_\nu(\varphi) \), respectively. Then, we prove by the fixpoint induction that the least fixpoint of \(P_\nu \) is larger than or equal to the least fixpoint of \(F_\nu \). Details of this proof is in Appendix A.2. \(\square \)

6 Example

Let’s consider the packet filter program (Figure 9), which is used in [MJ93]. This program gets a packet whose data structure is

\[
\begin{align*}
\text{packet} & \ := \ \langle \text{ethertype}, \langle \text{ip}, \text{arp} \rangle \rangle \\
\text{ip} & \ := \ \langle \text{ipsrc}, \text{ipdst} \rangle \\
\text{arp} & \ := \ \langle \text{arpsrc}, \text{arpdst} \rangle
\end{align*}
\]
and returns TRUE if the input packet’s ip source is FOO.

Consider the analysis for the case_a expression (line marked with (∗)). The initial set constraint (from φ ⊃ C) for the case_a expression is

\[X_{case_a} \supseteq \text{case}(X_{ipsrc}, \text{FOO}, X_{TRUE}, X_e) . \]

Note that \(X_{ipsrc} \) is input-dependent because the variable ipsrc is bound to a sub-structure of the input α.

We short-cut its firing constraints (\(X_{ipsrc} \supseteq \text{FOO} Y \) and \(X_{ipsrc} \supseteq \kappa Y \) for \(\kappa \neq \text{FOO} \)) so that they become membership tests on the program’s input. Such sets for the inclusion tests are the results from the static value-slicings:

\[
\text{SVS}_\nu(X_{ipsrc} \subseteq \text{FOO} \top) \quad \text{and} \quad \text{SVS}_\nu(X_{ipsrc} \subseteq \text{FOO} \top).
\]

Figure 10 shows some snapshots during SVS_\nu(ipsrc \subseteq \text{FOO} \top)(\alpha). Its result for the input \(X_\alpha \) is

\[
X_\alpha \subseteq \langle \text{IP}, \langle \langle \text{FOO}, \text{FOO} \rangle, \top \rangle \rangle \quad \text{or} \quad X_\alpha \subseteq \langle \top, \langle \langle \text{FOO}, \top \rangle, \top \rangle \rangle.
\]

Therefore, we replace the firing constraint \(X_{ipsrc} \supseteq \text{FOO} Y \) by the membership test \(\alpha \in \langle \top, \langle \langle \text{FOO}, \top \rangle, \top \rangle \rangle \) for the program input \(\alpha \). That is, at run-time, if the input passes the above inclusion test, the prepared constraint

\[
X_{case_a} \supseteq \text{if}(\langle \top, \langle \langle \text{FOO}, \top \rangle, \top \rangle \rangle, X_{TRUE})
\]

is resolved into

\[
X_{case_a} \supseteq X_{TRUE}.
\]

7 Related Works

Other works on specializing data-flow analyses at run-time have three limitations in comparison with our technique: the program’s control flow has to be known beforehand, a static preparation for dynamic acceleration (via static value-slicing) is missing, the correctness of the specialization is not formally defined and proved. Sharma et al.’s technique [SAS98] identifies program points whose analyses have to conservatively subsume multiple data flows. They defer such program points’ analyses to run-time. At run-time, the multiple data flow edges into each deferred program point is resolved into a single one. Their technique assumes that a program’s control flow graph is known, hence cannot be applied to programs with first-class functions. The run-time specialization has to wait for the running program’s control to reach at the deferred program point. No particular preparation is done to reduce this delay. Moon et al.’s dynamic dependence analysis [MHM98] for Fortran programs has the same limitations.

Ammons and Larus use profile data to improve the data-flow analysis precision [AL98]. The analysis accuracy is improved by isolating and focusing the data-flow analysis on the hot paths of the program’s control flow graph. Their technique has the overhead of collecting profile data, identifying hot-paths, isolating the data-flow analysis for hot-paths, and reconstructing a safe analysis for the whole program flow. Our technique has no such an overhead other than the cost for the flow-analysis itself.

5 Note that the example program has pairs and selections, whose analyses rules are omitted for brevity in this paper. We must be careful that additional constraints are all co-definite. We have to add the slicing propagation rule:

\[
X \subseteq \#_1 Y \subseteq \langle Z_1, Z_2 \rangle \quad \Rightarrow \quad X \subseteq Z_1.
\]
The three sets of constraints of SVS$_\alpha(X_{1s} \subseteq \text{FOO})(\alpha)$

<table>
<thead>
<tr>
<th>from C_1</th>
<th>from C_2</th>
<th>from C_3</th>
<th>initial constraints from the \triangleright rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_{et} \subseteq \text{IP}$</td>
<td>$\lambda_{et} \subseteq \text{IP}$</td>
<td>$\lambda_{et} \subseteq \text{FOO}$</td>
<td>$\lambda_{111} \subseteq (\text{FOO}, \top)$</td>
</tr>
<tr>
<td>$X_{1s} \subseteq \text{FOO}$</td>
<td>$X_{1s} \subseteq \text{FOO}$</td>
<td>$X_{1s} \subseteq \text{FOO}$</td>
<td>$X_{p} \subseteq \langle \text{IP}, (\text{FOO}, \top) \rangle$</td>
</tr>
<tr>
<td>$\lambda_{1} \subseteq \langle \text{FOO}, \top \rangle$</td>
<td>$\lambda_{1} \subseteq \langle \text{FOO}, \top \rangle$</td>
<td>$\lambda_{1} \subseteq \langle \text{FOO}, \top \rangle$</td>
<td>$\lambda_{p} \subseteq \langle \langle \text{FOO}, \top \rangle, \top \rangle$</td>
</tr>
<tr>
<td>$\lambda_{2} \subseteq \langle (\text{FOO}, \text{FOO}), \top \rangle$</td>
<td>$\lambda_{2} \subseteq \langle (\text{FOO}, \text{FOO}), \top \rangle$</td>
<td>$\lambda_{2} \subseteq \langle (\text{FOO}, \text{FOO}), \top \rangle$</td>
<td>$\lambda_{p} \subseteq \langle \langle \text{FOO}, \top \rangle, \top \rangle$</td>
</tr>
<tr>
<td>$\lambda_{1} \subseteq \langle (\text{IP}, \top), \top \rangle$</td>
<td>$\lambda_{1} \subseteq \langle (\text{IP}, \top), \top \rangle$</td>
<td>$\lambda_{1} \subseteq \langle (\text{IP}, \top), \top \rangle$</td>
<td>$\lambda_{p} \subseteq \langle \langle \text{IP}, (\text{FOO}, \top) \rangle, \top \rangle$</td>
</tr>
</tbody>
</table>

| $X_{p} \subseteq \langle (\text{IP}, \text{FOO}, \top) \rangle$ | $X_{p} \subseteq \langle (\text{IP}, \text{FOO}, \top) \rangle$ | $X_{p} \subseteq \langle (\text{IP}, \text{FOO}, \top) \rangle$ | no solution |

| $X_{p} \subseteq \langle (\text{IP}, \text{FOO}, \top) \rangle$ | $X_{p} \subseteq \langle (\text{IP}, \text{FOO}, \top) \rangle$ | $X_{p} \subseteq \langle (\text{IP}, \text{FOO}, \top) \rangle$ | Final result for α |

| $X_{\alpha} \subseteq \langle (\text{IP}, (\text{FOO}, \text{FOO}), \top) \rangle$ | $X_{\alpha} \subseteq \langle (\text{IP}, (\text{FOO}, \text{FOO}), \top) \rangle$ | $X_{\alpha} \subseteq \langle (\text{IP}, (\text{FOO}, \text{FOO}), \top) \rangle$ | |

where subscript p for packet in p

et for ethertype in p

i for ip in p

is for $ipsrc$ in p

Figure 10: Snapshots of SVS$_\alpha(X_{1s} \subseteq \text{FOO})(\alpha)$

Run-time code-generation techniques [CN96, LL95, AmPC+96, GMP+] are focused on dynamic code optimizations, not on deriving dynamic properties incurred from an input. They do not analyze at run-time the program’s dynamic properties for particular inputs. Their analyses are at compile-time: basically binding-time analyses [CD93, Con90] from the programmer’s annotations about for which parts of the input the code has to be specialized. At run-time, when an input for the parts is known, the code specialization process (adapted from the partial evaluation [CD93] technique) generates an optimized code tailored to the partial input.

Flanagan and Felleisen’s componential set-based analysis [FF97] can be used orthogonally with our technique. Their techniques can be adapted to make our method work for separate, componential preparations for modular run-time specializations. Their constraint simplification is a technique of taming the indefinitely-generated constraints during the solving process. This simplification is not needed in our case because the number of generated constraints are bounded by the program size. We have to adapt their technique if our set-based static analysis is in such a class.

Our static value-slicing can be viewed as a subtype or refinement type inference [FM90, FP91, CDG96] with user’s type annotation (slice criterion). The difference is that in the subtype or refinement type system, the type hierarchy (subtype or refinement relation) is much smaller than our domain of regular tree grammars for subsets of values. Reps and Turndige’s context analysis [RT96] and Liu’s dependence analysis [Liu98] do not support higher-order functions and use only a small, fixed lattice for regular tree grammars. Bourdoucle’s Syntax system [Bou93] is a kind of value-slicing tool. He demonstrated its use in debugging Pascal programs. Their value space is limited to the set of the integer ranges, while we support the set of arbitrary algebraic data. Biswas’ demand-driven set-based analysis [Bis97] identifies the sub-expressions that contribute to the final result of the outermost expression. His work slices expressions (dead codes), not expression’s values.
8 Conclusion

We presented a technique of using static analysis for estimating program’s input-dependent properties. A static analysis that is originally designed for estimating the input-independent properties of programs is transformed into one that can safely estimate the input-dependent properties at the programs’ input occurrence. No profile is collected and no probing codes inside the running program are needed.

Our idea is to defer the finish of the static analysis to the program’s run-time. By analyzing the static analysis, we identify the parts of the analysis that are sensitive to the program’s inputs, hence need to be deferred to the program’s run-time. Then by using the static value-slicing, we re-formulate some of the dynamic parts so that they are solved by simple membership tests for the program’s input. This re-formulation accelerates the analysis; once the program’s input occurs the prepared dynamic parts can immediately and simultaneously start to resolve.

Our technique’s strengths are: 1) any input-specific property of the programs can be analyzed if there exists a corresponding set-based analysis, hence more general than the conventional profiling that usually estimates only execution frequencies, 2) it has no overhead on running programs (as in profiling) because it is an independent, off-line analysis, 3) it can handle higher-order languages, 4) it is formally defined and proved correct.

References

November 17, 1999

A Proofs of Selected Theorems

A.1 Correctness of SVS

Following two Lemmas are needed to prove Theorem 6, which is in turn needed to prove Theorem 7.

Lemma 1 Let $\mathcal{C} = B^*(C_0)$, $\mathcal{D} = \text{atom}(\mathcal{C})$, $\mathcal{I}_\mathcal{C} = g\nu(\mathcal{C})$, and $\mathcal{I}_\mathcal{D} = g\nu(\mathcal{D})$.

\[v \notin \mathcal{I}_\mathcal{D}(\mathcal{X}) \iff v \notin \mathcal{I}_\mathcal{D}(a) \text{ for some } \mathcal{X} \subseteq a \text{ in } \mathcal{C} \]

Proof. If $v \notin g\nu(\mathcal{C})(\mathcal{X})$ then \mathcal{C} contains an upper bound on \mathcal{X} of the form $\mathcal{X} \subseteq se$ such that $v \notin g\nu(\mathcal{C})(se)$. Thus, $v \notin \mathcal{I}_\mathcal{D}(\mathcal{X}) \iff v \notin \mathcal{I}_\mathcal{D}(a)$, $\mathcal{X} \subseteq a$ in \mathcal{D}. This implies that $v \notin \mathcal{I}_\mathcal{D}(\mathcal{X}) \iff v \notin \mathcal{I}_\mathcal{D}(a)$ for some $\mathcal{X} \subseteq a$ in \mathcal{C}. \qed

Lemma 2 Let $\mathcal{C} = B^*(C_0)$, $\mathcal{D} = \text{atom}(\mathcal{C})$, $\mathcal{I}_\mathcal{C} = g\nu(\mathcal{C})$, and $\mathcal{I}_\mathcal{D} = g\nu(\mathcal{D})$.

\[\mathcal{I}_\mathcal{D} \subseteq \mathcal{I}_\mathcal{C} \]

Proof. We prove that $\mathcal{I}_\mathcal{D}$ is a model of \mathcal{C}, i.e., $v \notin \mathcal{I}_\mathcal{D}(se) \Rightarrow v \notin \mathcal{I}_\mathcal{D}(\mathcal{X})$.

References

• $\mathcal{X} \subseteq \alpha e$ in C
 \quad \Rightarrow \text{trivially true because } \mathcal{X} \subseteq \alpha e \text{ in } D$

• $\mathcal{X} \subseteq \mathcal{Y}$ in C and $\nu \notin I_D(\mathcal{Y})$
 \quad \Rightarrow \nu \notin I_D(\mathcal{Y})$ for some $\mathcal{Y} \subseteq \alpha e$ in C (by Lemma 1)
 \quad \Rightarrow \mathcal{X} \subseteq \alpha e$ in C because $\mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{Y} \subseteq a$ in C
 \quad \Rightarrow \mathcal{X} \subseteq \alpha e$ in D
 \quad \Rightarrow \nu \notin I_D(\mathcal{X})$

\square

Theorem 6 Let φ be a term with one free variable α, e be a sub-expression of φ, V be a set of values, and $\varphi \vdash_i C_i$. Then $\{\text{atom}(B^*(C_i \cup \{\mathcal{X}_e \subseteq V\}))\}$ is the greatest model of $C_i \cup \{\mathcal{X}_e \subseteq V\}$.

Proof. Let $C' = C_i \cup \{\mathcal{X}_e \subseteq V\}$. We prove $gm(C') = gm(B^*(C'))$ by showing that B always adds constraints that preserve the $gm(C')$.

[TRANS] \[
\frac{\mathcal{X} \subseteq \mathcal{Y} \quad \mathcal{Y} \subseteq \alpha e}{\mathcal{X} \subseteq \alpha e}
\]

$\mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{Y} \subseteq \alpha e$ mean $I(\mathcal{X}) \subseteq I(\alpha e)$, and so does $\mathcal{X} \subseteq \alpha e$

[TRANS-CON1] \[
\frac{\kappa \mathcal{X} \subseteq \mathcal{Y} \quad \mathcal{Y} \subseteq \kappa \mathcal{Z}}{\mathcal{X} \subseteq \kappa \mathcal{Z}}
\]

$\kappa \mathcal{X} \subseteq \mathcal{Y}$ means $I(\mathcal{X}) \subseteq \{\nu | \kappa \nu \in I(\mathcal{Y})\}$, and $\mathcal{Y} \subseteq \kappa \mathcal{Z}$ means $I(\mathcal{Y}) \subseteq \{\nu \mid \kappa \nu \in I(\mathcal{Z})\}$. Thus, $\kappa \mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{Y} \subseteq \kappa \mathcal{Z}$ mean $I(\mathcal{X}) \subseteq I(\mathcal{Z})$, and so does $\mathcal{X} \subseteq \mathcal{Z}$.

[TRANS-CON2] \[
\frac{\kappa \mathcal{X} \subseteq \mathcal{Y} \quad \mathcal{Y} \subseteq \kappa \top}{\mathcal{X} \subseteq \top}
\]

$\kappa \mathcal{X} \subseteq \mathcal{Y}$ means $I(\mathcal{X}) \subseteq \{\nu | \kappa \nu \in I(\mathcal{Y})\}$, and $\mathcal{Y} \subseteq \kappa \top$ means $I(\mathcal{Y}) \subseteq \{\nu \mid \kappa \nu \in \text{Val}\}$. Thus, $\kappa \mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{Y} \subseteq \kappa \top$ mean $I(\mathcal{X}) \subseteq \text{Val}$, and so does $\mathcal{X} \subseteq \top$.

[TRANS-CON3] \[
\frac{\kappa \mathcal{X} \subseteq \mathcal{Y} \quad \mathcal{Y} \subseteq \overline{\kappa'} \top}{\mathcal{X} \subseteq \overline{\kappa'} \top}
\]

$\kappa \mathcal{X} \subseteq \mathcal{Y}$ means $I(\mathcal{X}) \subseteq \{\nu | \kappa \nu \in I(\mathcal{Y})\}$, and $\mathcal{Y} \subseteq \overline{\kappa'} \top$ means $I(\mathcal{Y}) \subseteq \{\kappa'' \mid \kappa'' \neq \kappa' \land \kappa'' \in \text{Val}\}$. Since $\kappa \neq \kappa'$, $\kappa \mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{Y} \subseteq \overline{\kappa'} \top$ mean $I(\mathcal{X}) \subseteq \text{Val}$, and so does $\mathcal{X} \subseteq \top$.

[TRANS-CON4] \[
\frac{\kappa \mathcal{X} \subseteq \mathcal{Y} \quad \mathcal{Y} \subseteq \top}{\mathcal{X} \subseteq \top}
\]

$\kappa \mathcal{X} \subseteq \mathcal{Y}$ means $I(\mathcal{X}) \subseteq \{\nu | \kappa \nu \in I(\mathcal{Y})\}$, and $\mathcal{Y} \subseteq \top$ means $I(\mathcal{Y}) \subseteq \{\nu \mid \kappa \nu \in \text{Val}\}$. Since $\{\nu | \kappa \nu \in \text{Val}\} = \text{Val}$, $\kappa \mathcal{X} \subseteq \mathcal{Y}$ and $\mathcal{Y} \subseteq \top$ mean $I(\mathcal{X}) \subseteq \text{Val}$, and so does $\mathcal{X} \subseteq \top$.

Now, we must prove $gm(B^*(C_i)) = gm(\text{atom}(B^*(C_i)))$. $gm(B^*(C_i)) \subseteq gm(\text{atom}(B^*(C_i)))$ because $\text{atom}(B^*(C_i)) \subseteq B^*(C_i)$, and $gm(\text{atom}(B^*(C_i))) \subseteq gm(B^*(C_i))$ by Lemma 2. \square

Following Lemma is needed in proving Theorem 7.

Lemma 3 Let $\varphi \vdash_i C_i$ and I be a greatest model of $C_i \cup \{X_0 \subseteq V_0\}$. For all $e \in \varphi$, $I \vdash e \sim v$ implies $v \in I(\lambda \alpha)X_0$ and furthermore, I is a safe set environment with respect to $[\nu/\alpha]\varphi$, where $\nu \in I(\alpha)$.

Proof. By induction on proof tree size of set-based semantics of $I \vdash e \sim v$.
November 17, 1999

1. Base cases

- **[VAR]** \(e = x \)
 \[I(x) \vdash x \rightarrow v \Rightarrow v \in I(X_v) \] (by semantics)
- **[LAM]** \(e = \lambda x.e' \)
 \[I \vdash \lambda x.e' \rightarrow \lambda x.e' \Rightarrow \lambda x.e' \in I(X_v) \] (by Def of \(I \) and \(\triangleright_i \))

2. Induction Steps

- **[CON]** \(e = \text{con } \kappa \ e \)
 \[I(X_v) = V \]
 \[\Rightarrow I(X_v) = \{ v \mid \kappa v \in V \} \] (by Def. of \(I \) and \(\triangleright_i \))
 \[\Rightarrow (I \vdash e_1 \rightarrow v' \Rightarrow v' \in \{ \kappa v \mid v \in V \}) \] (by I.H.)
 \[\Rightarrow (I \vdash \text{con } \kappa e_1 \rightarrow v \Rightarrow v \in V) \] (by semantics)

- **[DECON]** \(e = \text{decon } \kappa \ e_1 \)
 \[I(X_v) = V \]
 \[\Rightarrow I(X_v) = \{ \kappa v \mid v \in V \} \] (by Def. of \(I \) and \(\triangleright_i \))
 \[\Rightarrow (I \vdash e_1 \rightarrow v' \Rightarrow v' \in \{ \kappa v \mid v \in V \}) \] (by I.H.)
 \[\Rightarrow (I \vdash \text{decon } \kappa e_1 \rightarrow v \Rightarrow v \in V) \] (by semantics)

- **[APP]** \(e = e_1 \ e_2 \)
 \[I(X_v) = V \]
 \[\Rightarrow I(X_v) \subseteq V \]
 \[I(X_1) \subseteq \text{Lam}_\nu(e_1) \] (by Def. of \(I \) and \(\triangleright_i \))
 \[I(X_2) \subseteq I(X_v) \] (by I.H.)
 \[I \vdash e_1 \rightarrow \lambda x.e' \Rightarrow \lambda x.e' \in \text{Lam}_\nu(e_1) \]
 \[(I \vdash e' \rightarrow v \Rightarrow v \in V) \]
 \[I \vdash v', if I \vdash e_2 \rightarrow v' \] (by I.H.) \(\cdots (\ast) \)
 \[\Rightarrow (I \vdash e_1 e_2 \rightarrow v \Rightarrow v \in V) \] (by semantics)

- **[CASE]** \(e = \text{case } e_1 \ \kappa \ e_2 \ e_3 \)
 \[I(X_v) = V \]
 \[\text{1) } \Rightarrow I(X_1) \subseteq \kappa \top \]
 \[I(X_2) \subseteq V \] (by Def. of \(I \) and \(\triangleright_i \))
 \[\Rightarrow I \vdash e_1 \rightarrow v_1 \Rightarrow v_1 \in \kappa \top \]
 \[I \vdash e_2 \rightarrow v_2 \Rightarrow v_2 \in V \] (by I.H.)
 \[\Rightarrow I \vdash \text{case } e_1 \ \kappa \ e_2 \ e_3 \rightarrow v \Rightarrow v \in V \] (by semantics)
 \[\text{2) } \Rightarrow I(X_1) \subseteq \pi \top \]
 \[I(X_3) \subseteq V \] (by Def. of \(I \) and \(\triangleright_i \))
 \[\Rightarrow I \vdash e_1 \rightarrow v_1 \Rightarrow v_1 \in \pi \top \]
 \[I \vdash e_3 \rightarrow v_3 \Rightarrow v_3 \in V \] (by I.H.)
 \[\Rightarrow I \vdash \text{case } e_1 \ \kappa \ e_2 \ e_3 \rightarrow v \Rightarrow v \in V \] (by semantics)
 \[\text{3) } \Rightarrow I(X_2) \subseteq V \]
 \[I(X_3) \subseteq V \] (by Def. of \(I \) and \(\triangleright_i \))
 \[\Rightarrow I \vdash e_2 \rightarrow v_2 \Rightarrow v_2 \in V \]
 \[I \vdash e_3 \rightarrow v_3 \Rightarrow v_3 \in V \] (by I.H.)
 \[\Rightarrow I \vdash \text{case } e_1 \ \kappa \ e_2 \ e_3 \rightarrow v \Rightarrow v \in V \] (by semantics)

A set environment is safe with respect to a closed expression \(e_0 \), if it contains every binding which may occur in execution of \(e_0 \) [H693]. \((\ast) \) shows that \(I \) is safe with respect to \([\nu/\alpha]p \) because for every application \(e_1 e_2 \), \(I(X_2) \supseteq I(X_3) \) where \(\text{Lam}_\nu(e_1) \supseteq \lambda x.e' \) and \(I(\alpha) \supseteq \nu \). \(\Box \)
Theorem 7 (Correctness of SVS) Let \(\varphi \) be a term with one free variable \(\alpha \), and \(e \) be a sub-expression of \(\varphi \). If \(\Sigma \) is a greatest model of \(\mathcal{C} \cup \{ X_\alpha \subseteq V \} \) then \(\forall v \in \Sigma(\alpha) : ([\nu/\alpha]_\varphi \mapsto \Sigma) \Rightarrow v \in V \).

Proof. \(\Sigma \) is a greatest model of \(\mathcal{C} \cup \{ X_\alpha \subseteq V \} \) by Theorem 6. Thus by Lemma 3, \(\Sigma \vdash e \rightarrow v \Rightarrow v \in \Sigma(e) \) and \(\Sigma \) is a safe set environment with respect to \([\nu/\alpha]_\varphi \). \(\Sigma(e) \subseteq V \) because \(\Sigma \) is a greatest model of \(\mathcal{C} \cup \{ X_\alpha \subseteq V \} \).

Therefore, \([\nu/\alpha]_\varphi \mapsto \Sigma \)
\[\Rightarrow \Sigma \vdash e \rightarrow v \quad (\text{because } \Sigma \text{ is safe w.r.t. } [\nu/\alpha]_\varphi) \]
\[\Rightarrow v \in \Sigma(e) \quad (\text{by Lemma 3}) \]
\[\Rightarrow v \in V \quad (\text{because } \Sigma \text{ is a greatest model}) \]

\(\square \)

A.2 Safety of psba

Theorem 8 (Safety of psba) If \([\nu/\alpha]_\varphi \mapsto \Sigma \) then \(v \in \text{psba}(\varphi)(l) \).

Proof. We prove the safety of psba by showing that psba is a safe approximation of sba. We define two continuous functions \(F_\nu \) and \(P_\nu \) that correspond [CC95] to the closure operations \(sba_\nu(\varphi) \) and \(psba_\nu(\varphi) \), respectively. Then, we prove by the fixpoint induction that the least fixpoint of \(P_\nu \) is larger than or equal to the least fixpoint of \(F_\nu \).

The program \(\varphi \)'s constraints \(\mathcal{C} \) is constructed as \(\triangleright \varphi : \mathcal{C} \). Then \(sba_\nu(\varphi) \) is equal to the least fixpoint \(\{ l \} F_\nu \) of continuous function \(F_\nu : (\text{Vars}(\mathcal{C}) \rightarrow 2^{\text{Val}}) \rightarrow (\text{Vars}(\mathcal{C}) \rightarrow 2^{\text{Val}}) \) [CC95].

We define another continous function \(P_\nu : (\text{Vars}(\mathcal{C}) \rightarrow 2^{\text{Val}}) \rightarrow (\text{Vars}(\mathcal{C}) \rightarrow 2^{\text{Val}}) \) such that \(psba_\nu(\varphi) \) is the least fixpoint \(\{ l \} P_\nu \) of \(P_\nu \). Expression \(\overline{\tau} \) indicates that its set-constraint is input-independent, and \(\overline{e} \) indicates that its set-constraint is input-dependent: \(X_\alpha \supseteq se_\alpha \). Expressions without the marks are those that we don’t have to differentiate. Note that, except for the \(e_1 \) in case \(e_1 \in e_2 e_3 \), \(P_\nu(\varphi)(\overline{\tau}) \) is exactly same as \(P_\nu(\varphi)(\overline{e}) \).

\[
\begin{align*}
P_\nu(\varphi)(\overline{\tau}) & = \text{case } e \text{ of} \\
1 & : \{1\} \\
\lambda x.e' & : \{\lambda x.e'\} \\
\alpha & : \{\alpha\} \\
e_1 e_2 & : \{v \mid e_1 e_2 \in \varphi, \lambda x.e' \in \rho(X_1), v \in \rho(X_2)\} \\
\text{con } \kappa e_1 & : \{\kappa(v) \mid v \in \rho(X_1)\} \\
decon \kappa e_1 & : \{v \mid \kappa(v) \in \rho(X_1)\} \\
\text{case } e_1 \kappa e_2 e_3 & : \{v \mid e_1 \in \varphi(X_2), \kappa(v') \in \varphi(X_1)\} \\
& \quad \cup \{v \mid v \in \rho(X_3), \kappa'(v') \in \rho(X_1), \kappa' \neq \kappa\} \\
\end{align*}
\]

where
\[
\begin{align*}
\overline{e} & , \quad \text{if } X_\alpha \supseteq se_\alpha \text{ after compile time preparation} \\
\overline{\tau} & , \quad \text{otherwise}
\end{align*}
\]
We prove $Q(lfp \ P _ { \nu }, lfp \ F _ { \nu })$ by the fixpoint induction, where the assertion $Q(\varphi, \rho)$ is:

$$(\forall e \in \wp. \varphi(X_e) \supseteq \rho(X_e)) \land (\varphi \subseteq lfp \ P _ { \nu }) \land (\rho \subseteq lfp \ F _ { \nu }).$$

Base case $Q(\emptyset, \emptyset)$ is trivially true.

We prove that $Q(P _ { \nu } (\varphi), F _ { \nu } (\rho))$ holds given the induction hypothesis $Q(\varphi, \rho)$. That is, we need to show $P _ { \nu } (\varphi)(X_e) \supseteq F _ { \nu } (\rho)(X_e)$.

[CON] $e = \text{con} \ \kappa e_1$.

$P _ { \nu } (\varphi)(X_e) = \{ \kappa v \mid v \in \varphi(X_1) \}$ (by definition)

$\supseteq \{ \kappa v \mid v \in \rho(X_1) \}$ (by I.H.)

$= F _ { \nu } (\rho)(X_e)$ (by definition)

Other cases are similarly proved except for the [CASE].

[CASE] $e = \text{case } e_1 \ \kappa e_2 \ e_3$.

$P _ { \nu } (\varphi)(X_e)$

$= \{ v \mid v \in \varphi(X_2), v \notin \text{SVS}_\nu(X_1 \subseteq \pi \top)(\alpha) \}$

$\supseteq \{ v \mid v \in \varphi(X_2), v \notin \text{SVS}_\nu(X_1 \subseteq \kappa \top)(\alpha) \}$ (by definition)

$\supseteq \{ v \mid v \in \varphi(X_3), \kappa' v' \in (lfp \ F _ { \nu })(X_1) \}$

$\supseteq \{ v \mid v \in \varphi(X_3), \kappa' v' \in (lfp \ F _ { \nu })(X_1), \kappa' \neq \kappa \}$ (by I.H.)

$= F _ { \nu } (\rho)(X_e)$. (by definition)

$(*)$ is true because, by Theorem 4 and Theorem 7, $v \in sba _{ \nu } (X) \land v \notin V \Rightarrow v \notin \text{SVS}_\nu(X \subseteq V)(\alpha)$.

\blacksquare