
ROPAS

Research On Program Analysis System

National Creative Research Initiative Center

Korea Advanced Institute of Science and Technology

ROPAS MEMO

1999-1

November 17, 1999

Preparing Set-Based Analysis for Run-time Specialization1

Hyunjun Eo and Kwangkeun Yi
{poisson,kwang}@ropas.kaist.ac.kr

Abstract

We present a technique of using static analysis for estimating program’s input-dependent
properties. A static analysis that is originally designed for estimating the input-independent
properties of programs is transformed into one that can safely estimate the input-dependent
properties at the programs’ input occurrence. No profile is collected and no probing codes
inside the running program are needed.

Our idea is to defer the finish of the static analysis to the program’s run-time. By
analyzing the static analysis, we identify the parts of the analysis that are sensitive to the
program’s inputs, hence need to be deferred to the program’s run-time. Then by using
an analysis named static value-slicing, we short-cut some of the dynamic parts so that
they are solved by simple membership tests for the program’s input. This re-formulation
accelerates the analysis; once the program’s input occurs the prepared dynamic parts can
immediately and simultaneously start to resolve.

Every step of our technique is formally defined and proven correct.

1 Introduction

1.1 Motivation

Program’s properties that are invariant to its inputs are necessary but not sufficient for opti-
mizations. Input-dependent program properties are also needed if we want to tailor a program
for its popular inputs.

A conventional approach to achieving the input-dependent properties of a program is pro-
filing. Profile-based optimizations use this statistics to tailor the target code to the popular
inputs.

But the profile-based analysis has some difficulties. The properties from the profile data
are not elaborate enough for some optimizations. Usually the collected statistics are frequency
countings of visiting particular control points (or paths) in the program. This hot-spot infor-
mation is useful for optimizations that are sensitive, for example, to correct branch predictions.
But for other optimizations like parallelizations, we need the read/write behaviors of the pro-
gram variables, whose monitoring needs more than frequency countings. Furthermore, collect-
ing such elaborate run-time properties will have too much overhead on the running programs,
given that the current hot-path profiling has an overhead of 15%-30% [BL94, BMS98]. As the
probing codes embedded inside the program to profile become more complicated, it becomes
harder to strike the balance between the profiling overhead and its precision.

We need more general techniques for estimating, without profiling, input-dependent prop-
erties of programs. The situation becomes more demanding in the global and web computing
environment, where a large number of code consumers (users) are apart from the code producer
(compiler) over the network. The code producer compiles the source program and transmits

1This work is supported by Creative Research Initiatives of the Korean Ministry of Science and Technology.



November 17, 1999 ROPAS-1999-1 2

Code producer
    agent A

Code consumer
   agent B

compiler

source program

target code

input V input = V?

runs

tailored to input V

e

eL

T T Te e

noyes

network

time 1 time 2

optimization plan O O

prepared analysis A A

Te’

Figure 1: The scenario

the compiled code to the consumers at the other ends of the network for execution. The job
of input-dependent optimizations (tailoring the transmitted code to some popular inputs) is
delegated to each consumer. (Without this delegation, the code producer will be swamped
with tailoring codes for each of the large number of consumers.) Because the consumers have
no access to the source program, the optimizations on the transmitted compiled code are lim-
ited. The code producer, on the other hand, is eager to supply aggressive optimizations that
can adjust to each customer’s typical inputs. Such aggressive optimizations need elaborate
program analyses usually at the source-level.

Therefore, the following scenario is anticipated. The code producer prepares an analysis
that can estimate, at the consumer site, the input-dependent properties of the source. The
code producer also has the knowledge on how an optimized target code can be generated from
the estimated run-time properties of the source. The code producer transmits to the consumer
these two things, a “prepared analysis A for the source” and an “optimization plan O for the
target” (see Figure 1), together with the compiled target code. The code consumer executes
the transmitted code. When an input occurs the prepared analysis A estimates the dynamic
properties of the source, independent of the running code. The analysis result will activate
the optimization plan O to generate an aggressively adjusted target code. When the same or
similar input occurs, the consumer dispatches the adjusted code instead of the original one.

1.2 Overview

This article presents a technique for designing such a “prepared analysis A,” an analysis that
estimates the input-dependent properties of the programs. The technique is based on the
static analysis framework. A static analysis that is originally designed for estimating the
input-independent properties of programs is transformed into one that can safely estimate the
input-dependent properties at the programs’ input occurrence. No profile (or trace) is collected
and no probing codes inside the running program are needed.

Our idea of using a static analysis for estimating the dynamic properties of programs is
simply to defer the finish of the static analysis to the program’s run-time. By analyzing the
static analysis, we identify the parts of the analysis that are sensitive to the program’s inputs,
hence need to be deferred to the program’s run-time. Then by using a technique named
static value-slicing, we short-cut some of the dynamic parts so that they are solved by simple
membership tests on the program’s input. This re-formulation prepares the dynamic parts



November 17, 1999 ROPAS-1999-1 3

for their fast resolution; once the program’s input occurs the prepared dynamic parts can
immediately and simultaneously start to resolve.

For example, consider an analysis for estimating the values of the following expression,
which depends on an input variable α:

if e = 0 then 1 else 2.

The expression’s values X as conditional set constraints are:

Xe ⊇ {0} ⇒ X ⊇ {1}
Xe ⊇ {n|n �= 0} ⇒ X ⊇ {2}.

Suppose the condition expression e is input-dependent. Then the compiler has to conclude
that the if expression’s value is {1, 2} because the condition expression’s value is unknown
at compile-time. At run-time, depending on the value of Xe, the conditional analysis can
determine a sharper result. For making it better, we can re-formulate the conditions Xe ⊇ {0}
and Xe ⊇ {n|n �= 0} as the input α’s membership tests for some sets V and W , respectively:

α ∈ V ⇒ X ⊇ {1}
α ∈W ⇒ X ⊇ {2}
else ⇒ X ⊇ {1, 2}.

At run-time when an input ν to the program occurs, the conditions immediately resolve into
true or false without the delay for computing the Xe. Thus the expression’s value set X specific
to input ν can be quickly estimated. Note that because the two exclusive sets V and W are
estimated at compile-time (by yet another static analysis) they are not necessarily exhaustive.
Some inputs can be outside of V ∪W , in which case the estimated dynamic properties becomes
{1, 2}, as inaccurate as static analysis.

1.3 Organization

Section 2 presents the source language L. Section 3 presents our static analysis for L programs
that have input variables. From this analysis, we define a dynamic analysis that estimates the
input-dependent properties of the programs. Section 4 and 5 present techniques of moving the
overhead of the dynamic analysis to the compile-time of the programs. Section 4 presents a
technique of identifying and deferring the input-dependent parts of the analysis, while solving
its input-independent parts as far as possible. Section 5 presents a technique of short-cutting
some of the dynamic parts, in order to further accelerate the remaining dynamic analysis parts.
Section 6 presents an example. Section 7 discusses related works. Section 8 concludes.

2 The Source Language L

We consider a call-by-value, higher-order language, which can be considered a core of ML[MTHM97].
Expressions in the language are either variables, functions, function applications, data construc-
tions, data de-constructions, or conditional branches: see Figure 2. We assign identifying labels
to every sub-expression. Values are either functions or data. A datum value κ(v) is constructed
by “con κ e” from a data constructor κ and an expression e for the constructor’s argument v.
The argument value v is recovered by “decon κ e” where e computes κ(v). Switch expression
“case e1 κ e2 e3” branches to e2 or e3 depending on e1’s data constructor.

We define the semantics (Figure 2) using the evaluation contexts technique [Fea87, FF97].
The evaluation context defines a left-to-right, call-by-value reduction. We write E [e] if the



November 17, 1999 ROPAS-1999-1 4

Syntax:
Expr e ::= el | x | v | e e | con κ e labeled expressions

| decon κ e | case e κ e e
Val v ::= λx.e | κ(v) values
Con κ data constructors
Var x, f variables

Label l expression labels

Semantics:
eval(e) = e �−→ e ′ �−→ · · · .

Reduction Rules: E [(λx.e) v] �−→ E [ [v/x]e ]
E [con κ v] �−→ E [κ(v)]

E [decon κ κ(v)] �−→ E [v]
E [case κ(v) κ e1 e2] �−→ E [e1]
E [case κ′(v) κ e1 e2] �−→ E [e2]

E [vl] �−→ E [v] unlabel

Evaluation Contexts:

E ::= [] | E e | v E | con κ E | decon κ E | case E κ e e | El

Figure 2: The source language L: syntax and semantics

hole in context E is filled with e. Note that the hole can be surrounded by labels: El. The
reduction rules are conventional, except that they preserve the labels of expressions during
reductions and the unlabel rule removes the label from an expression when its value is needed.
As usual, the substitution operation [v/x]e replaces every free occurrence of x in e by v. Here
the substitution also preserves the labels of x in e: for example, [v/x]xl = vl.

3 Start Point: A Set-Based Analysis

In this section, we will define a static analysis from which we will derive, in the subsequent
sections, an analysis that estimates input-dependent properties of programs. The analysis
estimates the values of expressions. We present it in the set-based analysis framework [Hei92,
Hei93, HM97, AH95].

Set-based static analysis consists of two phases: collecting set constraints and solving them.
The first phase derives constraints that describe the data flows between the expressions of the
analyzed program. The second phase finds the sets of values that satisfy the constraints. A
solution is a table from set variables in the constraints to the finite descriptions of such sets of
values.

Each sub-expression el and program variable x has set variables Xl and Xx, respectively
representing expression’s values and variable’s bound values. Each set constraint is of the form
X ⊇ se, where X is a set variable and se is a set expression. The constraint indicates that the
set X must have the set se. The set expression se has seven kinds, each of which corresponds
to each program construct (see Figure 3). Semantics of set expressions naturally follows from
their corresponding language constructs. For example, κ X1 represents a set of κ(v)’s where
v is an element of X1. app(X,X) represents the set of values returned from applications of
functions in X1 to parameters in X2. case(X, κ,X,X) indicates the values of X2 if a value in
X1 is κ(v) or the values of X3 otherwise. The formal semantics of set expressions is defined by



November 17, 1999 ROPAS-1999-1 5

Syntax of set expressions:
se ::= Xi set variables

| λx.e lambdas
| κ Xi data sets
| κ−1 Xi data argument sets
| app(Xi,Xi) sets from function call
| case(Xi, κ,Xi,Xi) sets from switch
| � universe set

i ∈ {l, x | el ∈ Expr , x ∈ Var} indices for the sub-expressions
and variables

Semantics of set expressions:
I(Xi) ⊆ V al
I(�) = V al

I(λx.e) = {λx.e}
I(κ X1) = {κ(v) | v ∈ I(X1)}

I(κ−1 X1) = {v | κ(v) ∈ I(X1)}
I(app(X,X)) = {v | λx.e ∈ I(X1), v ∈ I(Xe), I(Xx) ⊇ I(X2)}

I(case(X, κ,X,X)) = {v | v ∈ I(X2), κ(v′) ∈ I(X1)} ∪
{v | v ∈ I(X3), κ

′(v′) ∈ I(X1), κ
′ �= κ}

Rules ℘ ✄ C for deriving constraints C from program ℘:

xl ✄ { Xl ⊇ Xx}

e1 ✄ C1

(con κ e1)l ✄ {Xl ⊇ κ(X1)} ∪ C1

e1 ✄ C1

(decon κ e1)l ✄ {Xl ⊇ κ−1(X1)} ∪ C1

e1 ✄ C1

(λx.e1)l ✄ {Xl ⊇ λx.e1} ∪ C1

e1 ✄ C1 e2 ✄ C2

(e1 e2)l ✄ {Xl ⊇ app(X1,X2)} ∪ C1 ∪ C2

e1 ✄ C1 e2 ✄ C2 e3 ✄ C3

(case e1 κ e2 e3)l ✄ {Xl ⊇ case(X1, κ,X2,X3)} ∪ C1 ∪ C2 ∪ C3

Figure 3: Set constraints for set-based analysis: syntax, semantics, and specification rules



November 17, 1999 ROPAS-1999-1 6

an interpretation I that maps from set expressions to sets of values (see Figure 3). We call an
interpretation I a model (a solution) of a conjunction C of constraints if, for each constraint
X ⊇ se in C, I(X ) ⊇ I(se).

Our static analysis is defined to be the least model of set constraints. The constraint system
guarantees the existence of the least model because every operator is monotonic (in terms of
set-inclusion) and each constraint’s left-hand-side is a single variable [Hei92].

3.1 Collecting the Initial Constraints

Figure 3 has the syntax-directed, linear rules for collecting the initial constraints C from a
program ℘:

℘✄ C.
Each expression collects constraints from its sub-expressions and adds one or two constraints
for itself that describe the data flows from the sub-expressions. For example, function applica-
tion e1 e2 collects two sets of constraints for its two sub-expressions and adds one constraint
Xl ⊇ app(X,X) to describe that Xl has values returned from the functions in X1 (set variable
for e1) with its arguments in X2 (set variable for e2).

3.2 Solving the Constraints

The solving phase closes the initial constraint set C under the rules S in Figure 4. Intuitively, the
rules propagate values along all the possible data flow paths in the program. Each propagation
rule dissolves compound set constraints into smaller ones, which approximates the steps of the
value flows between expressions. Consider the rule for application result X ⊇ app(X,X):

X ⊇ app(X,X) X ⊇ λx.e

X ⊇ X3 Xx ⊇ X2

It introduces X ⊇ X3 if a function to call has body expression e3, and if so, adds Xx ⊇ X2

to simulate the parameter binding. (We will call such constraint (X1 ⊇ λx.e3) that triggers
the dissolution of a compound set-constraints “firing constraint.”) Other rules are similarly
straightforward from the semantics of corresponding set expressions.

We write A 
R c if c is derivable from A using rules R, and write R∗(A) for the closure of A
under rules R, i.e., the set {c |A 
R c}.2 For a collection C of set constraints, we write Vars(C)
for the set of set variables in C, and C(X ) for the set {X ⊇ se | X ⊇ se ∈ C} of constraints for
X in C.

Among the set of constraints in S∗(C), completely dissolved constraints (atom(S∗(C)))
constitute the least model of C. We call such constraints “atomic.” An atomic constraint is
X ⊇ ae whose right-hand-side ae (atomic expression) explicitly denotes a value set:

ae ::= λx.e | κ X | �.
Note that a set G = {X1 ⊇ ae1 , · · · ,Xn ⊇ aen} of atomic constraints denotes the set of sen-
tences generated by its grammatical interpretation (a regular tree grammar where set variables
are non-terminals) X1 ::= ae1 , · · · ,Xn ::= aen . We write [[G]] for such set of sentences.

Theorem 1 Let ℘ be a closed term and ℘✄ C. The least model of C is
{X �→ [[atom(S∗(C)(X ))]] | X ∈ Vars(C)}.
Proof. [Hei93, Hei92] ✷

2This closure is also defined as the least fixpoint lfp (λX .A ∪ {c | X �R c}).



November 17, 1999 ROPAS-1999-1 7

X ⊇ κ−1Y Y ⊇ κZ
X ⊇ Z

X ⊇ case(X, κ,X,X) X ⊇ κY
X ⊇ X2

X ⊇ case(X, κ,X,X) X ⊇ κ′Y κ′ �= κ

X ⊇ X3

X ⊇ app(X,X) X ⊇ λx.e

X ⊇ X3 Xx ⊇ X2

X ⊇ Y Y ⊇ ae

X ⊇ ae

Figure 4: Rules S for solving set constraints

Definition 1 (sba) Let ℘ be a closed term and let ℘✄ C. sba(℘)(l) def= [[atom(S∗(C)(Xl))]].

The set-based analysis sba(℘) is a safe approximation of the program values:

Theorem 2 (Safety of sba) Let ℘ be a closed term and ℘ ✄ C. If ℘ ∗�−→ E [vl] then v ∈
sba(℘)(l).

Proof. Following the proof strategies in [Hei93, Hei92], we use the set-based operational
semantics [Hei93] as an intermediate step and Theorem 1. ✷

3.3 Analysis of Open Terms

So far we assume that the analyzed program has no input (free) variable. From now on, we
assume that every program ℘ has one input variable α.

3.3.1 Static Analysis: Estimating Invariants

For program ℘ with an input variable α, the set C of the initial constraints (℘✄ C) has no set
constraint for Xα. Thus, set constraints that uses Xα cannot be solved.
It is, however, straightforward to use C to achieve a static analysis of estimating the input-

invariant properties. We start the solving process S∗(•) with the extra constraint Xα ⊇ � for
the input variable α. Note that � indicates the universe set Val of values. The analysis process
is:

let ℘✄ C set-up constraints at compile-time
in S∗(C ∪ {Xα ⊇ �}) solve constraints at compile-time

Because no information (universe) is assumed about the inputs, above analysis approximates
properties that are invariant to the inputs.

Definition 2 (sba�) Let ℘ be a term with a free variable α and let ℘ ✄ C. sba�(℘)(l)
def=

[[atom(S∗(C ∪ {Xα ⊇ �})(Xl))]].

Theorem 3 (Safety of sba�) For all ν ∈ Val, if [ν/α]℘ ∗�−→ E [vl] then v ∈ sba�(℘)(l).

Proof. Because ∀ν ∈ Val : sba([ν/α]℘)(l) ⊆ sba�(℘)(l) and by Theorem 2. The set-inclusion is
obvious because sba and sba� use the same monotonic rules to close the constraints and both
of the two initial constraint sets are identical except that sba([ν/α]℘) has Xα ⊇ ν whereas
sba�(℘) has a larger one: Xα ⊇ �. ✷



November 17, 1999 ROPAS-1999-1 8

3.3.2 Dynamic Analysis: Estimating Variants

In order for the analysis to approximate input-dependent values of expressions, we have to
defer the solving phase to run-time. At run-time, we can replace the � (universe) in the input
constraint Xα ⊇ � by the actual input ν:

let ℘✄ C set-up constraints at compile-time
in S∗(C ∪ {Xα ⊇ ν}) solve constraints at run-time

Above process estimates the expression values specific to input ν.

Definition 3 (sbaν) Let ℘ be a term with a free variable α and let ℘ ✄ C. sbaν(℘)(l)
def=

[[atom(S∗(C ∪ {Xα ⊇ ν})(Xl))]].

Theorem 4 (Safety of sbaν) If [ν/α]℘ ∗�−→ E [vl] then v ∈ sbaν(℘)(l).

Proof. Because sbaν(℘) = sba([ν/α]℘) and by Theorem 2. ✷

This dynamic analysis is the starting point for the following sections. We will present how
to transform this dynamic analysis so that the transformed analysis should safely and quickly
finish at the analyzed program’s input occurrence.

4 Derivative I: Deferring Dynamic Constraints

Much of computing the dynamic analysis S∗(C ∪ {Xα ⊇ ν}) at the analyzed program’s run-
time can be done at its compile-time. Even though the constraint Xα ⊇ ν is available only at
the program’s run-time, we can solve at its compile-time input-independent constraints among
C, while we defer input-dependent ones to run-time.

Program’s input-dependent constraints X ⊇ se✷ have the same syntax as the normal con-
straints except that the set expressions se✷ are marked input-dependent (subscript ✷). Input-
dependent set expressions se✷ are those that cannot be dissolved into atomic ones at compile-
time because they depend on the input. Set-variable Xα for the input is input-dependent.
Non-atomic compound expressions are input-dependent if one of their sub-parts is. Hence
there are four kinds of input-dependent set expressions:

se✷ ::= Xα | κ−1
✷ X | app✷(X,X) | case✷(X, κ,X,X).

Identifying input-dependent constraints is simple. When we apply the solving rules S
to constraints, we also propagate the input-dependencies, starting from the set constraints
X ⊇ Xα that have the input set-variable on their right-hand-sides. Note that the solving rules
in S dissolve a compound set-constraints into smaller ones if given a firing constraint. Thus
when the firing constraint is input-dependent so is the compound set-constraint. For example,
consider

X ⊇ app(X,X) X ⊇ λx.e
X ⊇ Xe Xx ⊇ X2

.

The firing constraint X1 ⊇ λx.e allows X ⊇ app(X,X) to dissolve. If this firing constraint is
input-dependent, we mark the compound set expression app(X,X) as input-dependent:

X ⊇ app(X,X) X ⊇ se✷

X ⊇ app✷(X,X)
.

Other cases for propagating input-dependencies are similarly defined.



November 17, 1999 ROPAS-1999-1 9

Figure 5 has the rulesD for identifying input-dependent constraints. Each rule is juxtaposed
with its corresponding rule of S. The last rule propagates the input-dependencies across the
single-variable set expression, which is neither compound nor yet completely dissolved.

The whole process is defined as:

let ℘✄ C set-up constraints at compile-time
C′ = (S ∪D)∗(C) partially solve (S) and defer (D) at compile-time

in S∗
✷(|C′| ∪ {Xα ⊇ ν}) solve deferred constraints at run-time

We collect (℘ ✄ C) the initial constraint set C from program ℘ (rules in Figure 3). We apply
the rules S to the C for solving input-independent constraints and at the same time the rules
D for identifying and deferring input-dependent constraints. These two phases can be done
at compile-time. The result constraint set C′, which is partially solved, is finally solved at
run-time with input ν. At run-time we apply rules S✷, which are the same as the rules S
except that they handle the compound set expressions marked with ✷. Constraint set |C′| is
the set of solved or deferred constraints in C′:

|C′| = {X ⊇ ae|X ⊇ ae ∈ C′} ∪ {X ⊇ se✷|X ⊇ se✷ ∈ C′}.
Definition 4 (Deferred analysis dsba) Let ℘ be a term with a free variable α, ℘✄C, and ν
be an input value. dsbaν(℘)(l)

def= [[atom(C′′(Xl))]], where C′ = (S ∪D)∗(C) and C′′ = S∗
✷(|C′| ∪

{Xα ⊇ ν}).
Theorem 5 (Safety of dsba) If [ν/α]℘ ∗�−→ E [vl] then v ∈ dsbaν(℘)(l).

Proof. This is because dsbaν(℘) = sbaν(℘). The only difference between the two processes
is that dsbaν(℘) defers input-dependent constraints and solves them with run-time input ν.
Here, the run-time solving rules are identical to the rules in sbaν(℘) and the semantics of the
deferred constraints are the same as before. Hence the final result from the deferred set-based
analysis should be the same as the one from sbaν(℘). ✷

Note that the run-time process S∗
✷(|C′| ∪ {Xα ⊇ ν}) of solving the deferred constraints |C′|

has some delays. Because each deferred constraint’s (X ⊇ se✷ in |C′|) firing constraint is a
solved atomic one about its sub-part, it has to wait until its sub-part is solved.

Constraint transformation to avoid this delay is our next step.

5 Derivative II: Preparing Dynamic Constraints via Static
Value Slicing

Solving each deferred constraint X ⊇ se✷ can be short-cut if its firing constraint is not about
a sub-part of se✷ but about the program’s input. For example, consider a resolution rule for
X ⊇ case✷(X, κ,X,X):

X ⊇ case✷(X, κ,X,X) X ⊇ κ Y
X ⊇ X2

Because the firing constraint X1 ⊇ κ Y is about the pivoting expression (X1) we have to wait
until the constraint on X1 is dissolved to have κ Y. This delay is removed if our transformed
rule is: if the program’s input is included in V the case expression has the values X ⊇ X2. The
condition for V must be that every input in V to the program makes e1 (expression for X1)
evaluate into values with constructor κ.

A static analysis named “static value-slicing” estimates such set V . Static value-slicing is a
compile-time analysis to answer the question: in order for an expression’s value to be included
in a set V , what will be a necessary condition for the expression’s environment?



November 17, 1999 ROPAS-1999-1 10

X ⊇ app(X,X) X ⊇ λx.e

X ⊇ X3 Xx ⊇ X2

X ⊇ app(X,X) X ⊇ se✷

X ⊇ app✷(X,X)

X ⊇ case(X, κ,X,X) X ⊇ κ Y
X ⊇ X2

X ⊇ case(X, κ,X,X) X ⊇ κ′ Y κ′ �= κ

X ⊇ X3

X ⊇ case(X, κ,X,X) X ⊇ se✷

X ⊇ case✷(X, κ,X,X)

X ⊇ κ−1 Y Y ⊇ κ Z
X ⊇ Z

X ⊇ κ−1 Y Y ⊇ se✷

X ⊇ κ−1
✷ Y

X ⊇ Y Y ⊇ ae

X ⊇ ae

X ⊇ Y Y ⊇ se✷

X ⊇ se✷

Solving rules S (Figure 4) Deferring rules D
at compile-time at compile-time

Figure 5: Rules D for identifying and deferring input-dependent constraints

5.1 Static Value Slicing

Conventionally, static slicing[Tip94] is a compile-time technique to select program parts (syn-
tactic objects like expressions or variables) that are related to a selected expression.

Static value-slicing is a static slicing where we slice expressions’ values, not expressions.
The slice criterion e ⊆ V is a condition that expression e’s values must be included in V . The
slice result

SVS℘(e ⊆ V )

is a map from the expressions of ℘ to their value sets that are necessary for the program to
compute e’s values in V . To be precise, for every input value in the slice result SVS℘(e ⊆ V )(α),
if it makes the program compute e’s values then the values are in V .

Example 1 Consider the following program ℘:

datatype t = A | B | C
case x of

A => B
| => x

If the input x is A or B, the program returns B. If x is C, it returns C. Static value-slicing
SVS℘(℘ ⊆ {B})(x) for slice criterion ℘ ⊆ {B} must be a subset of {A, B}. Similarly, for criterion
℘ ⊆ {C}, SVS℘(℘ ⊆ {C})(x) ⊆ {C}. ✷

We present one such static value-slicing analysis as a set constraint system. Set constraints
are of the form

sel ⊆ ser

indicating that set sel has to be included in set ser . Figure 7 has the definitions of the con-
straints, three alternative rules for deriving initial slicing constraints, and slicing propagation



November 17, 1999 ROPAS-1999-1 11

rules B.3 The rules B are straightforward from the semantics of constraints. Driving rules
(✄i) for initial slicing constraints are also intuitive:

• If (con κ e1)l is sliced to Xl, we have to slice the sub-expression e1: κX1 ⊆ Xl. Similarly
for the decon case.

• If application expression (e1 e2)l is sliced to Xl, there are three value sets we have to
slice: e1’s, e2’s, and the called function’s body expression’s. The function expression e1
has to be sliced to the set Lam℘(e1 ) of functions that can be called. For each function
λx.e3 ∈ Lam℘(e1 ), the argument expression e2 has to be sliced to the values of x, and
the called function’s body has to be sliced to Xl.

The Lam℘ table maps expression e to a safe approximation of functions that the expres-
sion may have during program ℘’s executions for all inputs. The rules L in Figure 6
determines the table:

Lam℘(e) = {λx .e ′ | e → λx .e ′ ∈ L∗
℘(exprs of ℘)}.

Relation e→ λx.e′ indicates that e may evaluate into function λx.e′. Safety of the Lam℘

table is obvious.

• If case expression (case e1 κ e2 e3)l is sliced to Xl, there are three alternative slicings,
depending on the three possible execution flows: only the first branch is taken, only the
second branch is taken, or both branches are taken. Each situation requires different
slicing rules. For the first situation, we slice e1 to κ� (� for universe) and e2 to Xl (case
rule in ✄1). For the second situation, we slice e1 to κ� (values not constructed with κ)
and e3 to Xl (case rule in ✄2). For the third situation, we should not slice e1 but slice
both expressions e2 and e3 to Xl (case rule in ✄3).

The process of static value-slicing SVS℘(e ⊆ V ) is defined as: 4

let ℘✄i Ci, for i = 1, 2, 3 set-up three initial slicing-constraint sets
in

∨3
i=1B

∗(Ci ∪ {Xe ⊆ V }) disjuction of three slicing results from the criterion

The set of atomic slicing-constraints closed by the rules B is the greatest model (gm) of
Ci∪{Xe ⊆ V }. The greatest model always exists because our constraints are co-definite [CP98].
Theorem 6 Let ℘ be a term with one free variable α, e be a sub-expression of ℘, V be a set of
values, and ℘✄i Ci. Then [[atom(B∗(Ci ∪ {Xe ⊆ V }))]] is the greatest model of Ci ∪ {Xe ⊆ V }.
Proof. Let C′ = Ci∪{Xe ⊆ V }. We first prove gm(C′) = gm(B∗(C′)) by showing that B always
adds constraints that preserve the gm(C′). Then we prove gm(B∗(C′)) = gm(atom(B∗(C′))).
Details are in Appendix A.1. ✷

The atomic slicing-constraints are slicing constraints X ⊆ ae whose set-expression ae is
atomic.

Static value-slicing is the set of the greatest models for three slicing constraints:

Definition 5 (Static Value-Slicing SVS℘(e ⊆ V )) Let ℘ be a term with one free variable
α, e be a sub-expression of ℘, and ℘✄i Ci for i = 1,2,3.

SVS℘(e ⊆ V ) def= {[[atom(B∗(Ci ∪ {Xe ⊆ V }))]] | i = 1 , 2 , 3}.
3“B” because the slicing propagations are roughly “backward.”
4Note that for n case expressions in the program, we can start from 3n sets of initial slicing constraints (3

slicings for each case expression), which we avoid for the slicing’s cost-accuracy balance.



November 17, 1999 ROPAS-1999-1 12

λx.e ∈ ℘

λx.e → λx.e

e1 → λx.e′1 e2 → λy.e′2 e1 e2 ∈ ℘

x → λy.e′2

e1 → λx.e′1 e′1 → λy.e′2
e1 e2 → λy.e′2

λx.e ∈ ℘

decon κ e1 → λx.e

e2 → λx.e

case e1 κ e2 e3 → λx.e

e3 → λx.e

case e1 κ e2 e3 → λx.e

Figure 6: Safe call-graph estimation rules L℘

In the following sections, we will abuse the notation SVS℘(e ⊆ V )(α) to mean {v |v ∈ Σ(α),Σ ∈
SVS℘(e ⊆ V )}.
The value-slicing satisfies the condition that we anticipate:

Theorem 7 (Correctness of SVS℘(e ⊆ V )) Let ℘ be a term with one free variable α, and
e be a sub-expression of ℘. If Σ ∈ SVS℘(e ⊆ V ) then ∀ν ∈ Σ(α) : ([ν/α]℘ ∗�−→ E [ve]⇒ v ∈ V ).
Proof. We use the set-based operational semantics[Hei92, Hei93] Σ 
 e ❀ v as an intermediate
step. First, we prove that Σ 
 e ❀ v ⇒ v ∈ Σ(e). Furthermore Σ is a safe set environment
with respect to [ν/α]℘ and Σ(e) ⊆ V . Therefore, [ν/α]℘ ∗�−→ E [ve] implies Σ 
 e ❀ v, hence
implies v ∈ Σ(e), and hence implies v ∈ V . Details are in Appendix A.1. ✷

5.2 Short-cutting Dynamic Constraints

By using the static value-slicing techniques, an input-dependent constraint dissolves by a simple
membership test on the program’s input. By this preparation, when the program’s input occurs
at run-time each deferred yet prepared dynamic constraint can immediately and simultaneously
start to resolve.

Consider the dynamic constraint for the case expression: X ⊇ case✷(X, κ,X,X). Its
firing constraint is either X1 ⊇ κ Y or X1 ⊇ κ′ Y (κ′ �= κ). Suppose that the inputs in set V1

(resp., V2) make the pivoting expression X1 have data made with κ (resp., κ′). Such sets are
the results of the static value-slicings:

V1 = SVS℘(X1 ⊆ κ�)(α)
V2 = SVS℘(X1 ⊆ κ�)(α).

Using these two sets, the dynamic constraint X ⊇ case✷(X, κ,X,X) is re-formulated into
three constraints

X ⊇ if✷(V,X),X ⊇ if✷(V,X), and X ⊇ if✷(V ∪ V,X ∪ X)

where the set expression if✷(V,X ) indicates the set X only when the program input is an
element of V . The last if✷ constraint is for when the two exclusive sets V1 and V2 can be
non-exhaustive because they are “necessary” sets for the slice criterion. It covers the case
when the input is included neither of the two sets.



November 17, 1999 ROPAS-1999-1 13

Slicing constraint is sel ⊆ ser .
Syntax of slicing set-expressions:

sel ::= Xi set variables
| λx.e lambdas
| κ Xi data sets

ser ::= Xi set variables
| κ Xi data sets
| κ � data sets
| κ � data sets
| Lam℘(e) lambda sets
| � universe set

i ∈ {l, x | el ∈ Expr , x ∈ Var} indices for the sub-expressions and variables
ae ::= κ Xi | κ � | κ � | � | Lam℘(e) atomic set expression

Semantics of slicing set-expressions:

I(Xi) ⊆ Val
I(�) = Val I(λx.e) = {λx.e}

I(Lam℘(e)) = Lam℘(e) I(κ X ) = {κ(v) | v ∈ I(X )}
I(κ �) = {κ(v) | v ∈ Val} I(κ �) = {κ′(v) | κ′ �= κ, v ∈ Val}

Rules ✄1, ✄2, and ✄3 for deriving three alternative sets of initial slicing constraints:

xl ✄i { Xx ⊆ Xl} e1 ✄i C1

(λx.e1)l ✄i {λx.e1 ⊆ Xl} ∪ C1

e1 ✄i C1

(con κ e1)l ✄i {κ X1 ⊆ Xl} ∪ C1

e1 ✄i C1

(decon κ e1)l ✄i {X1 ⊆ κ Xl} ∪ C1

e1 ✄i C1 e2 ✄i C2 Lam℘(e1 ) � λx .e3

(e1 e2)l ✄i {X1 ⊆ Lam℘(e1 ),X2 ⊆ Xx ,X3 ⊆ Xl} ∪ C1 ∪ C2

e1 ✄1 C1 e2 ✄1 C2 e3 ✄1 C3

(case e1 κ e2 e3)l ✄1 {X1 ⊆ κ �,X2 ⊆ Xl} ∪ C1 ∪ C2 ∪ C3

e1 ✄2 C1 e2 ✄2 C2 e3 ✄2 C3

(case e1 κ e2 e3)l ✄2 {X1 ⊆ κ �,X3 ⊆ Xl} ∪ C1 ∪ C2 ∪ C3

e1 ✄3 C1 e2 ✄3 C2 e3 ✄3 C3

(case e1 κ e2 e3)l ✄3 {X2 ⊆ Xl,X3 ⊆ Xl} ∪ C1 ∪ C2 ∪ C3

Rules B for slicing propagation:

X ⊆ Y Y ⊆ ae

X ⊆ ae

κ X ⊆ Y Y ⊆ κ Z
X ⊆ Z

κ X ⊆ Y Y ⊆ κ �
X ⊆ �

κ X ⊆ Y Y ⊆ κ′ � κ′ �= κ

X ⊆ �
κ X ⊆ Y Y ⊆ �

X ⊆ �

Figure 7: Set constraints for static value-slicing: syntax, semantics and slicing rules



November 17, 1999 ROPAS-1999-1 14

X ⊇ app(X,X) X ⊇ λx.e

X ⊇ X3 Xx ⊇ X2

X ⊇ app(X,X) X ⊇ se✷

X ⊇ app✷(X,X)

X ⊇ case(X, κ,X,X) X ⊇ κ Y
X ⊇ X2

X ⊇ case(X, κ,X,X) X ⊇ κ′ Y κ′ �= κ

X ⊇ X3

X ⊇ case(X, κ,X,X) X ⊇ se✷

V1 = SVS℘(X1 ⊆ κ �)(α)
V2 = SVS℘(X1 ⊆ κ �)(α)

X ⊇ if✷(V,X) X ⊇ if✷(V,X)

X ⊇ if✷(V ∪ V,X ∪ X)

X ⊇ κ−1 Y Y ⊇ κ Z
X ⊇ Z

X ⊇ κ−1 Y Y ⊇ se✷

X ⊇ κ−1
✷ Y

X ⊇ Y Y ⊇ ae

X ⊇ ae

X ⊇ Y Y ⊇ se✷

X ⊇ se✷

Solving rules S (Figure 4) Preparing and deferring rules P
at compile-time at compile-time

X ⊇ if✷(S,X) input ν ∈ S

X ⊇ X1

X ⊇ app✷(X,X) X ⊇ λx.e

X ⊇ Xe Xx ⊇ X2

X ⊇ κ−1
✷ Y Y ⊇ κ Z
X ⊇ Z

X ⊇ Y Y ⊇ ae

X ⊇ ae

Solving rules SP at run-time

Figure 8: Preparing rules P at compile-time and solving rules SP at run-time

The firing constraint for X ⊇ if✷(V,X ) is a simple test ν ∈ V for the program’s input ν:

X ⊇ if✷(V,X1) ν ∈ V
X ⊇ X1

The membership test ν ∈ V for regular tree grammar V takes polynomial time [CDG+99]: the
size of ν × the number of non-terminals in V × the sum of the function symbols’ arities (in
our case, data constructors’ arties).

The rule for defining an input-dependent constraint for the case expression is changed as:

X ⊇ case(X, κ,X,X) X ⊇ se✷

X ⊇ case✷(X, κ,X,X)
becomes

X ⊇ case(X, κ,X,X) X ⊇ se✷

V1 = SVS℘(X1 ⊆ κ�)(α)
V2 = SVS℘(X1 ⊆ κ�)(α)

X ⊇ if✷(V,X) X ⊇ if✷(V,X)
X ⊇ if✷(V ∪ V,X ∪ X)

The rules P for identifying, preparing, and deferring input-dependent constraints are in Fig-
ure 8, together with the rules Sp for solving the prepared constraints at run-time.



November 17, 1999 ROPAS-1999-1 15

℘ =
(λpacket.

(λethertype. λip. λarp.
case ethertype of

IP => (λipsrc. λipdst. casea ipsrc of FOO => TRUE · · · · · · (∗)
| _ => e

) #1(ip) #2(ip)

| _ => · · ·
) #1(packet) #1(#2(packet)) #2(#2(packet))

) α

Figure 9: Example packet filter program

The whole process of preparing the analysis is defined as:

let ℘✄ C set-up constraints at compile-time
C′ = (S ∪ P )∗(C) partially solve, prepare at compile-time

in S∗
P (|C′| ∪ {Xα ⊇ ν}) solve prepared constraints at run-time

We collect program’s initial constraints C using the ✄ rules of Figure 3. Apply the rules S to the
C for solving input-independent constraints and at the same time the rules P for identifying and
preparing input-dependent constraints. The result constraint set C′, which is partially solved
and prepared for quick convergence, is finally solved at run-time with the program input ν. As
before, |C′| is the set of solved or deferred constraints in C′.

Definition 6 (Prepared analysis psba) Let ℘ be a term with a free variable α, ℘✄ C, and
ν be an input value. psbaν(℘)(l)

def= [[atom(C′′(Xl))]], where C′ = (S∪P )∗(C) and C′′ = S∗
P (|C′|∪

{Xα ⊇ ν}).

The prepared analysis safely estimates the input-dependent properties:

Theorem 8 (Safety of psba) If [ν/α]℘ ∗�−→ E [vl] then v ∈ psbaν(℘)(l).

Proof. We prove the safety of psba by showing that psba is a safe approximation of sbaν . We
define two continuous functions Fν and Pν that correspond [CC95] to the closure operations
sbaν(℘) and psbaν(℘), respectively. Then, we prove by the fixpoint induction that the least
fixpoint of Pν is larger than or equal to the least fixpoint of Fν . Details of this proof is in
Appendix A.2. ✷

6 Example

Let’s consider the packet filter program (Figure 9), which is used in [MJ93]. This program gets
a packet whose data structure is

packet ::= 〈ethertype, 〈ip, arp〉〉
ip ::= 〈ipsrc, ipdst〉

arp ::= 〈arpsrc, arpdst〉



November 17, 1999 ROPAS-1999-1 16

and returns TRUE if the input packet’s ip source is FOO. 5

Consider the analysis for the casea expression (line marked with (∗)). The initial set
constraint (from ℘✄ C) for the casea expression is

Xcasea
⊇ case(Xipsrc, FOO,XTRUE,Xe).

Note that Xipsrc is input-dependent because the variable ipsrc is bound to a sub-structure
of the input α.

We short-cut its firing constraints (Xipsrc ⊇ FOO Y and Xipsrc ⊇ κ Y for κ �= FOO) so
that they become membership tests on the program’s input. Such sets for the inclusion tests
are the results from the static value-slicings:

SVS℘(Xipsrc ⊆ FOO�) and SVS℘(Xipsrc ⊆ FOO�).

Figure 10 shows some snapshots during SVS℘(ipsrc ⊆ FOO�)(α). Its result for the input Xα

is
Xα ⊆ 〈IP, 〈〈FOO, FOO〉,�〉〉 or Xα ⊆ 〈�, 〈〈FOO,�〉,�〉〉.

Therefore, we replace the firing constraint Xipsrc ⊇ FOO Y by the membership test α ∈ 〈�, 〈〈FOO,�〉,�〉〉
for the program input α. That is, at run-time, if the input passes the above inclusion test, the
prepared constraint

Xcasea
⊇ if✷(〈�, 〈〈FOO,�〉,�〉〉,XTRUE)

is resolved into
Xcasea

⊇ XTRUE.

7 Related Works

Other works on specializing data-flow analyses at run-time have three limitations in comparison
with our technique: the program’s control flow has to be known beforehand, a static preparation
for dynamic acceleration (via static value-slicing) is missing, the correctness of the specialization
is not formally defined and proved. Sharma et al.’s technique [SAS98] identifies program points
whose analyses have to conservatively subsume multiple data flows. They defer such program
points’ analyses to run-time. At run-time, the multiple data flow edges into each deferred
program point is resolved into a single one. Their technique assumes that a program’s control
flow graph is known, hence cannot be applied to programs with first-class functions. The
run-time specialization has to wait for the running program’s control to reach at the deferred
program point. No particular preparation is done to reduce this delay. Moon et al.’s dynamic
dependence analysis [MHM98] for Fortran programs has the same limitations.

Ammons and Larus use profile data to improve the data-flow analysis precision [AL98]. The
analysis accuracy is improved by isolating and focusing the data-flow analysis on the hot paths
of the program’s control flow graph. Their technique has the overhead of collecting profile
data, identifying hot-paths, isolating the data-flow analysis for hot-paths, and reconstructing
a safe analysis for the whole program flow. Our technique has no such an overhead other than
the cost for the flow-analysis itself.

5Note that the example program has pairs and selections, whose analyses rules are omitted for brevity in
this paper. We must be careful that additional constraints are all co-definite. We have to add the slicing
propagation rule:

X ⊆ #i Y Y ⊆ 〈Z1,Z2〉
X ⊆ Zi



November 17, 1999 ROPAS-1999-1 17

The three sets of constraints of SVS℘(Xis ⊆ FOO)(α)
from C1 from C2 from C3

Xet ⊆ IP Xet ⊆ IP initial constraints
Xis ⊆ FOO Xis ⊆ FOO from the ✄i rules
#1 Xi ⊆ FOO #1 Xi ⊆ FOO

#2 Xi ⊆ FOO

X#1i ⊆ 〈FOO,
〉 X#1i ⊆ 〈FOO,
〉
X#2i ⊆ 〈
, FOO〉

#1 #2 Xp ⊆ 〈FOO, FOO〉 #1 #2 Xp ⊆ 〈FOO,
〉 propagated
#2 Xp ⊆ 〈〈FOO, FOO〉,
〉 #2 Xp ⊆ 〈〈FOO,
〉,
〉 slicing constraints
Xp ⊆ 〈
, 〈〈FOO, FOO〉,
〉〉 Xp ⊆ 〈
, 〈〈FOO,
〉,
〉〉

#1 Xp ⊆ IP

Xp ⊆ 〈IP,
〉
Xp ⊆ 〈IP, 〈〈FOO, FOO〉,
〉〉
Xα ⊆ 〈IP, 〈〈FOO, FOO〉,
〉〉 no solution Xα ⊆ 〈
, 〈〈FOO,
〉,
〉〉 final result for α

where subscript p for packet in ℘
et for ethertype in ℘
i for ip in ℘
is for ipsrc in ℘

Figure 10: Snapshots of SVS℘(Xis ⊆ FOO)(α)

Run-time code-generation techniques [CN96, LL95, AmPC+96, GMP+] are focused on dy-
namic code optimizations, not on deriving dynamic properties incurred from an input. They do
not analyze at run-time the program’s dynamic properties for particular inputs. Their analy-
ses are at compile-time: basically binding-time analyses[CD93, Con90] from the programmer’s
annotations about for which parts of the input the code has to be specialized. At run-time,
when an input for the parts is known, the code specialization process (adapted from the partial
evaluation[CD93] technique) generates an optimized code tailored to the partial input.

Flanagan and Felleisen’s componential set-based analysis [FF97] can be used orthogonally
with our technique. Their techniques can be adapted to make our method work for separate,
componential preparations for modular run-time specializations. Their constraint simplifica-
tion is a technique of taming the indefinitely-generated constraints during the solving process.
This simplification is not needed in our case because the number of generated constraints are
bounded by the program size. We have to adapt their technique if our set-based static analysis
is in such a class.

Our static value-slicing can be viewed as a subtype or refinement type inference [FM90,
FP91, CDG96] with user’s type annotation (slice criterion). The difference is that in the
subtype or refinement type system, the type hierarchy (subtype or refinement relation) is much
smaller than our domain of regular tree grammars for subsets of values. Reps and Turnidge’s
context analysis [RT96] and Liu’s dependence analysis [Liu98] do not support higher-order
functions and use only a small, fixed lattice for regular tree grammars. Bourdoncle’s Syntox
system[Bou93] is a kind of value-slicing tool. He demonstrated its use in debugging Pascal
programs. Their value space is limited to the set of the integer ranges, while we support the
set of arbitrary algebraic data. Biswas’ demand-driven set-based analysis [Bis97] identifies the
sub-expressions that contribute to the final result of the outermost expression. His work slices
expressions (dead codes), not expression’s values.



November 17, 1999 ROPAS-1999-1 18

8 Conclusion

We presented a technique of using static analysis for estimating program’s input-dependent
properties. A static analysis that is originally designed for estimating the input-independent
properties of programs is transformed into one that can safely estimate the input-dependent
properties at the programs’ input occurrence. No profile is collected and no probing codes
inside the running program are needed.

Our idea is to defer the finish of the static analysis to the program’s run-time. By analyzing
the static analysis, we identify the parts of the analysis that are sensitive to the program’s
inputs, hence need to be deferred to the program’s run-time. Then by using the static value-
slicing, we re-formulate some of the dynamic parts so that they are solved by simple membership
tests for the program’s input. This re-formulation accelerates the analysis; once the program’s
input occurs the prepared dynamic parts can immediately and simultaneously start to resolve.

Our technique’s strengths are: 1) any input-specific property of the programs can be an-
alyzed if there exists a corresponding set-based analysis, hence more general than the con-
ventional profiling that usually estimates only execution frequencies, 2) it has no overhead on
running programs (as in profiling) because it is an independent, off-line analysis, 3) it can
handle higher-order languages, 4) it is formally defined and proved correct.

References

[AH95] Alex Aiken and Nevin Heintze. Constraint-based program analysis. Tutorial Notes
of the ACM Symposium on Principles of Programming Languages, January 1995.

[AL98] Glenn Ammons and James R. Larus. Improving data-flow analysis with path
profiles. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation, June 1998.

[AmPC+96] Jeol Auslander, matthai Philipose, Craig Chambers, Susan J. Eggers, and
Brian N. Bershad. Fast, effective dynamic compilation. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation,
June 1996.

[Bis97] Sandip K. Biswas. A demand-driven set-based analysis. In Proceedings of The
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 372–385, 1997.

[BL94] Thomas Ball and James R. Larus. Optimally profiling and tracing programs.
ACM Transactions on Programming Languages and Systems, 16(4):1319–1360,
July 1994.

[BMS98] Thomas Ball, Peter Mataga, and Mooly Sagiv. Edge profiling versus path profil-
ing: the showdown. In Proceedings of The ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, January 1998.

[Bou93] François Bourdoncle. Abstract debugging of higher-order imperative languages.
In Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation, 1993.

[CC95] Patrick Cousot and Radhia Cousot. Compositional and inductive semantic defini-
tions in fixpoint, equational, constraint, closure-condition, rule-based and game-
theoretic form. In Lecture Notes in Computer Science, volume 939, pages 293–308.



November 17, 1999 ROPAS-1999-1 19

Springer-Verlag, proceedings of the 7th international conference on computer-
aided verification edition, 1995.

[CD93] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In the
Twentieth ACM Symposium on Principles of Programming Languages, January
1993.

[CDG96] Mario Coppo, Ferruccio Damiani, and Paola Giannini. Refinement types for
program analysis. In Lecture Notes in Computer Science, volume 1145. Springer-
Verlag, 1996.

[CDG+99] Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez,
Sophie Tison, and Marc Tommasi. Tree automata techniques and applications,
April 1999.

[CN96] Charles Consel and François Noël. A general approach for run-time specializa-
tionand its application to c. In Proceedings of The ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, January 1996.

[Con90] Charles Consel. Binding time analysis for higher order untyped functional lan-
guages. In Proceedings of the SIGPLAN Conference on Lisp and Functional Pro-
gramming, 1990.

[CP98] Witold Charatonik and Andreas Podelski. Co-definite set constraints. In Lec-
ture Notes in Computer Science, volume 1379, pages 211–225. Springer-Verlag,
Proceedings of the 9th International Conference on Rewriting Techniques and
Applications - RTA’98 edition, 1998.

[Fea87] Martin S. Feather. A survey and classification of some program transformation
approaches and techniques. In L.G.L.T. Meertens, editor, Program Specification
and Tranformation, pages 165–195. Elsevier Science Publishers, 1987.

[FF97] Cormac Flangan and Matthias Felleisen. Componential set-based analysis. In
Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation, 1997.

[FM90] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. Theoretical
Computer Science, 73:155–175, 1990.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of
the SIGPLAN Conference on Programming Language Design and Implementation,
pages 268–277, 1991.

[GMP+] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J.
Eggers. Annotation-directed run-time specialization in c. In Proceedings of The
ACM Symposium on Partial Evaluation and Program Manipulations.

[Hei92] Nevin Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon Uni-
versity, October 1992.

[Hei93] Nevin Heintze. Set based analysis of ML programs. Technical Report CMU-CS-
93-193, Carnegie Mellon University, July 1993.



November 17, 1999 ROPAS-1999-1 20

[HM97] Nevin Heintze and David McAllester. Linear-time subtransitive control flow analy-
sis. In Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation, pages 261–272, June 1997.

[Liu98] Yanhong A. Liu. Dependence analysis for recursive data. In Proceedings of the
IEEE International Conference on Computer Language, pages 206–215, May 1998.

[LL95] Mark Leone and Peter Lee. Optimizing ml with run-time code generation. Tech-
nical Report CMU-CS-95-205, Carnegie Mellon University, December 1995.

[MHM98] Sungdo Moon, Mary W. Hall, and Brian R. Murphy. Predicated array data-flow
analysis for run-time parallelization. In Proceedings of the ACM International
Conference on Supercomputing, July 1998.

[MJ93] Steven McCanne and Van Jacobson. The bsd packet filter: A new architecture for
user-level packet capture. In Proceedings of the Winter 1993 USENIX Conference,
pages 259–269. USENIX Association, January 1993.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997.

[RT96] Thomas Reps and Todd Turnidge. Program specialization via program slicing. In
Lecture Notes in Computer Science, volume 1110, pages 409–429. Springer-Verlag,
1996.

[SAS98] Shamik Sharma, Anurag Acharya, and Joel Saltz. Deferred data-flow analysis.
Technical Report TRCS98-38, University of California, Santa Barbara, December
1998.

[Tip94] Frank Tip. A survey of program slicing techniques. Technical Report CS-R9438,
Centrum voor Wiskunde en Informatica, 1994.

A Proofs of Selected Theorems

A.1 Correctness of SVS

Following two Lemmas are needed to prove Theorem 6, which is in turn needed to prove
Theorem 7.

Lemma 1 Let C = B∗(C0), D = atom(C), IC = gm(C), and ID = gm(D).

v �∈ ID(X )⇔ v �∈ ID(a) for some X ⊆ a in C

Proof. If v �∈ gm(C)(X ) then C contains an upper bound on X of the form X ⊆ se such that
v �∈ gm(C)(se). Thus, v �∈ ID(X ) ⇔ v �∈ ID(a),X ⊆ a in D. This implies that v �∈ ID(X ) ⇔
v �∈ ID(a) for some X ⊆ a in C. ✷

Lemma 2 Let C = B∗(C0), D = atom(C), IC = gm(C), and ID = gm(D).

ID ⊆ IC
Proof. We prove that ID is a model of C, i.e., v �∈ ID(se)⇒ v �∈ ID(X ).



November 17, 1999 ROPAS-1999-1 21

• X ⊆ ae in C
⇒ trivially true because X ⊆ ae in D

• X ⊆ Y in C and v �∈ ID(Y)
⇒ v �∈ ID(ae) for some Y ⊆ ae in C (by Lemma 1)
⇒ X ⊆ ae in C because X ⊆ Y and Y ⊆ a in C
⇒ X ⊆ ae in D
⇒ v �∈ ID(X )

✷

Theorem 6 Let ℘ be a term with one free variable α, e be a sub-expression of ℘, V be a set of
values, and ℘✄i Ci. Then [[atom(B∗(Ci ∪ {Xe ⊆ V }))]] is the greatest model of Ci ∪ {Xe ⊆ V }.

Proof. Let C′ = Ci ∪ {Xe ⊆ V }. We prove gm(C′) = gm(B∗(C′)) by showing that B always
adds constraints that preserve the gm(C′).
[TRANS]

X ⊆ Y Y ⊆ ae
X ⊆ ae

X ⊆ Y and Y ⊆ ae mean I(X ) ⊆ I(ae), and so does X ⊆ ae

[TRANS-CON1]
κ X ⊆ Y Y ⊆ κ Z

X ⊆ Z
κ X ⊆ Y means I(X ) ⊆ {v | κ v ∈ I(Y)}, and Y ⊆ κ Z means I(Y) ⊆ {κ v | v ∈ I(Z)}.
Thus, κ X ⊆ Y and Y ⊆ κ Z mean I(X ) ⊆ I(Z), and so does X ⊆ Z.

[TRANS-CON2]
κ X ⊆ Y Y ⊆ κ�

X ⊆ �
κ X ⊆ Y means I(X ) ⊆ {v | κ v ∈ I(Y)}, and Y ⊆ κ� means I(Y) ⊆ {κ v | v ∈ Val}.
Thus, κ X ⊆ Y and Y ⊆ κ� mean I(X ) ⊆ Val , and so does X ⊆ �.

[TRANS-CON3]
κ X ⊆ Y Y ⊆ κ′ �

X ⊆ �
κ X ⊆ Y means I(X ) ⊆ {v | κ v ∈ I(Y)}, and Y ⊆ κ′ �means I(Y) ⊆ {κ′′ v | κ′′ �= κ′, v ∈ Val}.
Since κ �= κ′, κ X ⊆ Y and Y ⊆ κ′ � mean I(X ) ⊆ Val , and so does X ⊆ �.

[TRANS-CON4]
κ X ⊆ Y Y ⊆ �

X ⊆ �
κ X ⊆ Y means I(X ) ⊆ {v | κ v ∈ I(Y)}, and Y ⊆ � means I(Y) ⊆ {v | v ∈ Val}.
Since {v | κ v ∈ Val} = Val , κ X ⊆ Y and Y ⊆ � mean I(X ) ⊆ Val , and so does X ⊆ �.

Now, we must prove gm(B∗(Ci)) = gm(atom(B∗(Ci))). gm(B∗(Ci)) ⊆ gm(atom(B∗(Ci)))
because atom(B∗(Ci)) ⊆ B∗(Ci), and gm(atom(B∗(Ci))) ⊆ gm(B∗(Ci)) by Lemma 2. ✷

Following Lemma is needed in proving Theorem 7.

Lemma 3 Let ℘✄i Ci and I be a greatest model of Ci ∪ {X0 ⊆ V0}. For all e ∈ ℘, I 
 e ❀ v
implies v ∈ I(Xe) and furthermore, I is a safe set environment with respect to [ν/α]℘, where
ν ∈ I(α).

Proof. By induction on proof tree size of set-based semantics of I 
 e ❀ v



November 17, 1999 ROPAS-1999-1 22

1. Base cases

[VAR] e = x

I(x) � x ❀ v ⇒ v ∈ I(Xx) (by semantics)

[LAM] e = λx.e′

I � λx.e′ ❀ λx.e′ ⇒ λx.e′ ∈ I(Xe) (by Def of I and ✄i)

2. Induction Steps

[CON] e = con κ e

I(Xe) = V
⇒ I(X1) = {v | κ v ∈ V } (by Def. of I and ✄i)
⇒ (I � e1 ❀ v′ ⇒ v′ ∈ {v | κ v ∈ V }) (by I.H.)
⇒ (I � con κ e1 ❀ v ⇒ v ∈ V ) (by semantics)

[DECON] e = decon κ e1

I(Xe) = V
⇒ I(X1) = {κ v | v ∈ V } (by Def. of I and ✄i)
⇒ (I � e1 ❀ v′ ⇒ v′ ∈ {κ v | v ∈ V }) (by I.H.)
⇒ (I � decon κ e1 ❀ v ⇒ v ∈ V ) (by semantics)

[APP] e = e1 e2

I(Xe) = V
⇒ I(Xe′) ⊆ V

I(X1) ⊆ Lam℘(e1 )
I(X2) ⊆ I(Xx) (by Def. of I and ✄i)

⇒ (I � e1 ❀ λx.e′ ⇒ λx.e′ ∈ Lam℘(e1 )
(I � e′ ❀ v ⇒ v ∈ V )
I(x) � v′, if I � e2 ❀ v′ (by I.H.) · · · (∗)

⇒ (I � e1 e2 ❀ v ⇒ v ∈ V ) (by semantics)

[CASE] e = case e1 κ e2 e3

I(Xe) = V
1) ⇒ I(X1) ⊆ κ �

I(X2) ⊆ V (by Def. of I and ✄i)
⇒ I � e1 ❀ v1 ⇒ v1 ∈ κ �

I � e2 ❀ v2 ⇒ v2 ∈ V (by I.H.)
⇒ I � case e1 κ e2 e3 ❀ v ⇒ v ∈ V (by semantics)

2) ⇒ I(X1) ⊆ κ �
I(X3) ⊆ V (by Def. of I and ✄i)

⇒ I � e1 ❀ v1 ⇒ v1 ∈ κ �
I � e3 ❀ v3 ⇒ v3 ∈ V (by I.H.)

⇒ I � case e1 κ e2 e3 ❀ v ⇒ v ∈ V (by semantics)
3) ⇒ I(X2) ⊆ V

I(X3) ⊆ V (by Def. of I and ✄i)
⇒ I � e2 ❀ v2 ⇒ v2 ∈ V

I � e3 ❀ v3 ⇒ v3 ∈ V (by I.H.)
⇒ I � case e1 κ e2 e3 ❀ v ⇒ v ∈ V (by semantics)

A set environment is safe with respect to a closed expression e0, if it contains every binding
which may occur in execution of e0 [Hei93]. (∗) shows that I is safe with repsect to [ν/α]℘
because for every application e1 e2, I(Xx) ⊇ I(X2) where Lam℘(e1 )  λx .e ′ and I(α)  ν. ✷



November 17, 1999 ROPAS-1999-1 23

Theorem 7 (Correctness of SVS) Let ℘ be a term with one free variable α, and e be a
sub-expression of ℘. If Σ ∈ SVS℘(e ⊆ V ) then ∀ν ∈ Σ(α) : ([ν/α]℘ ∗�−→ E [ve]⇒ v ∈ V ).
Proof. Σ is a greatest model of Ci ∪ {Xe ⊆ V } by Theorem 6. Thus by Lemma 3, Σ 
 e ❀

v ⇒ v ∈ Σ(e) and Σ is a safe set environment with respect to [ν/α]℘. Σ(e) ⊆ V because Σ is
a greatest model of Ci ∪ {Xe ⊆ V }.
Therefore, [ν/α]℘ ∗�−→ E [ve]

⇒ Σ 
 e ❀ v (because Σ is safe w.r.t. [ν/α]℘)
⇒ v ∈ Σ(e) (by Lemma 3)
⇒ v ∈ V (because Σ is a greatest model)

✷

A.2 Safety of psba

Theorem 8 (Safety of psba) If [ν/α]℘ ∗�−→ E [vl] then v ∈ psba(℘)(l).

Proof. We prove the safety of psba by showing that psba is a safe approximation of sbaν . We
define two continous functions Fν and Pν that correspond [CC95] to the closure operations
sbaν(℘) and psbaν(℘), respectively. Then, we prove by the fixpoint induction that the least
fixpoint of Pν is larger than or equal to the least fixpoint of Fν .
The program ℘’s constraints C is constructed as ✄℘ : C. Then sbaν(℘) is equal to the least

fixpoint lfp Fν of continuous function Fν : (Vars(C)→ 2V al)→ (Vars(C)→ 2V al) [CC95]

Fν(ρ)(Xl) = case e of
λx.e′ : {λx.e′}
x : {v | e1 e2 ∈ ℘, λx.e′ ∈ ρ(X1), v ∈ ρ(X2)}
α : {ν}
e1 e2 : {v | λx.e3 ∈ ρ(X1), v ∈ ρ(X3)}
con κ e1 : {κ(v) | v ∈ ρ(X1)}
decon κ e1 : {v | κ(v) ∈ ρ(X1)}
case e1 κ e2 e3 : {v | v ∈ ρ(X2), κ(v′) ∈ ρ(X1)}

∪{v | v ∈ ρ(X3), κ′(v′) ∈ ρ(X1), κ′ �= κ}
We define another continous function Pν : (Vars(C) → 2V al) → (Vars(C) → 2V al) such

that psbaν(℘) is the least fixpoint lfp Pν of Pν . Expression e indicates that its set-constraint
is input-independent, and e indicates that its set-constraint is input-dependent: Xe ⊇ se✷.
Expressions without the marks are those that we don’t have to differentiate. Note that, except
for the e1 in case e1 κ e2 e3, Pν(ϕ)(e) is exactly same as Pν(ϕ)(e).

Pν(ϕ)(Xe) = case e of
1 : {1}
λx.e′ : {λx.e′}
α : {ν}
e1 e2 : {v | λx.e′ ∈ ϕ(X1), v ∈ ϕ(X ′

e)}
con κ e1 : {κ(v) | v ∈ ϕ(X1)}
decon κ e1 : {v | κ(v) ∈ ϕ(X1)}
case e1 κ e2 e3 : {v | v ∈ ϕ(X2), κ(v′) ∈ ϕ(X1)}

∪{v | v ∈ ϕ(X3), κ
′(v′) ∈ ϕ(X1)}

case e1 κ e2 e3 : {v | v ∈ ϕ(X2), ν �∈ SVS℘(X1 ⊆ κ �)(α)}
∪{v | v ∈ ϕ(X3), ν �∈ SVS℘(X1 ⊆ κ �)(α)} ,

where
e, if Xe ⊇ se✷ after compile time preparation
e, otherwise



November 17, 1999 ROPAS-1999-1 24

We prove Q(lfp Pν , lfp Fν) by the fixpoint induction, where the assertion Q(ϕ, ρ) is:

(∀e ∈ ℘.ϕ(Xe) ⊇ ρ(Xe)) ∧ (ϕ ⊆ lfp Pν) ∧ (ρ ⊆ lfp Fν).

Base case Q(∅, ∅) is trivially true.
We prove that Q(Pν(ϕ),Fν(ρ)) holds given the induction hypothesis Q(ϕ, ρ). That is, we

need to show Pν(ϕ)(Xe) ⊇ Fν(ρ)(Xe).

[CON] e = con κ e1.

Pν(ϕ)(Xe) = {κ v | v ∈ ϕ(X1)} (by definition)
⊇ {κ v | v ∈ ρ(X1)} (by I.H.)
= Fν(ρ)(Xe) (by definition)

Other cases are similarly proved except for the [CASE].

[CASE] e = case e1 κ e2 e3.

Pν(ϕ)(Xe)
= {v | v ∈ ϕ(X2), ν �∈ SVS℘(X1 ⊆ κ �)(α)}

∪{v | v ∈ ϕ(X3), ν �∈ SVS℘(X1 ⊆ κ �)(α)} (by definition)
⊇ {v | v ∈ ϕ(X2), κ v′ ∈ (lfp Fν)(X1 )}

∪{v | v ∈ ϕ(X3), κ
′ v′ ∈ (lfp Fν)(X1 ), κ′ �= κ} (∗)

⊇ {v | v ∈ ρ(X2), κ v′ ∈ ρ(X1)}
∪{v | v ∈ ρ(X3), κ

′ v′ ∈ ρ(X1), κ
′ �= κ} (by I.H.)

= Fν(ρ)(Xe). (by definition)

(∗) is true because, by Theorem 4 and Theorem 7, v ∈ sbaν(X ) ∧ v �∈ V ⇒ ν �∈ SVS℘(X ⊆
V )(α). ✷


