
ROPAS

Research On Program Analysis System
National Creative Research Initiative Center 1998-2003

Programming Research Laboratory, School of Computer Science & Engineering

Seoul National University

ROPAS MEMO

2004-21

February 9, 2004

A Differential Fixpoint Iteration Method for Static

Analysis Specifications

Hyunjun Eo

KAIST ∗
Kwangkeun Yi

Seoul National University †

February 9, 2004

Abstract

We present a differential fixpoint iteration method, to be used in static analysis of
programs. Computing a static program analysis is done by the fixpoint iterations (“repeat
until no-change”), and by “differential” we mean that the method tries to compute only
the difference between iterations in order to avoid redundancies. Our method consists
of two steps: first we transform the given program analysis function and then we apply
our differential fixpoint iteration algorithm to the transformed result. Both steps are
fully automatic and does not require that the given analysis function or its input/output
lattices should be distributive. Experiments on C, Fortran, and ML programs with realistic
analyses show that our method is effective in practice.

1 Problem and Motivation

Computing a static program analysis can always be seen as finding a solution of a set of
simultaneous equations, that is, finding a fixpoint x of a function f : A → A (i.e., x = f(x)).
The function (we call “analysis function”) f must be monotonic (∀x v y.f(x) v f(y)) or
extensional (∀x.x v f(x)) over a lattice A. The simultaneous equations (or, the function’s
body) describe the web of information flows of the program to analyze.

A basic algorithm for computing a fixpoint of function f is to compute the sequence
{⊥, f(⊥), f2(⊥), ...} until it stabilizes (⊥ is the least element in the lattice A):

x ← ⊥;
repeat

x ← f(x);
until x does not change.

Note that because f is monotonic or extensional the sequence {⊥, f(⊥), f2(⊥), ...} is an
increasing chain, hence each fn(⊥) is the join (least upper bound) of the previous result
fn−1(⊥) and some increment ∆n: fn(⊥) = fn−1(⊥) t∆n.

Thus we can expect computing fn(⊥) to be accelerated if we reuse the previous result
fn−1(⊥) and compute only the increment ∆n. This efficiency improvement is expected because
computing the join fn−1(⊥)t∆n of the previous result fn−1(⊥) with the difference ∆n usually
costs less than re-applying the whole f to the previous result fn−1(⊥).

Our motivation of looking for such a differential algorithm comes from our project to build
a program-analyzer generator named Zoo [7]. Zoo’s user (analysis designer) defines a program

∗Department of Computer Science,
Korea Advanced Institute of Science & Technology,
Email: poisson@ropas.kaist.ac.kr
†School of Computer Science & Engineering
Seoul National University
Email: kwang@cse.snu.ac.kr

February 9, 2004 ROPAS-2004-21 2

analysis function in a provided specification language. Zoo then compiles the analysis specifi-
cation into an executable analyzer whose core computation procedure is the fixpoint iterations.
The generated analyzer, given an input program to analyze, derives a set of data-flow equations
from the specified analysis function and solves the equations by the fixpoint iterations.

The existing differential fixpoint algorithms [2, 5] are hardly adoptable in our case. They are
not general enough; they assume that the analysis functions should be distributive. Because
non-distributive functions are frequent in program static analysis, we need to devise a new
differential fixpoint algorithm that works for non-distributive functions.

Furthermore, because we have access to the function’s definitions we can be more aggres-
sive than existing differential algorithms that assume only functions in extenso. Our method
includes a source-level transformation of the analysis function f . The transformed analysis
function is then fed into our differential fixpoint iteration algorithm. The transformed function
is a differential analysis function f ′ that satisfies:

1. f ′ computes the output difference from the input difference ∆. In other words, f(at∆) =
f(a) t f ′(a,∆), implying that the join of the previous result f(a) and the difference
f ′(a, ∆) makes the current result f(a t∆).

2. computing f(a)tf ′(a,∆) costs less than computing f(at∆). Note that we don’t compute
f(a) because it is the result from the previous fixpoint iteration.

Section 2 defines an analysis specification language, the language in which the analysis func-
tions are defined. Section 3 presents our transformation method from an analysis specification
into a differential one. Section 4 presents our differential fixpoint iteration algorithm. Section
5 shows our experimental results, and Section 6 concludes.

2 Analysis Specification Language

A specification of a program analysis is a set of analysis function definitions over lattices [9]:

analysis ::= (fun f x = e)+ analysis function definition
e ::= l constant lattice element

| x non-function variable
| f e analysis function application
| e t e | e u e join and meet operators
| (e, e) | e.i tuple construction and selection
| let x = e in e let binding
| if e v e ? e : e conditional branch

Semantics of analysis specification language is given in Figure 1. The language is a usual
first-order applicative language with the three special operators for lattice elements: join (t),
meet (u), and the partial order operator (v). We assume that every analysis function is closed
without a free non-function variable and every variable is distinct. The notation “E+{x 7→ v}”
is for a newly extended environment equal to E except that it maps x to v.

3 Differential Transformation

Figure 2 shows the transformation T∆ of analysis function f which satisfies:

f(v t∆v) = f(v) t T∆(f)(v, ∆v).

Intuitively, T∆(f)(v, ∆v) is the increment of the result induced by the increment in the input
argument.

We first transform every function definition fun f x = e into the definition of the differential
function f∆. The differential function f∆ of f takes the previous argument x and the increment

February 9, 2004 ROPAS-2004-21 3

E ` l ⇓ l
E(x) = v

E ` x ⇓ v

E ` e ⇓ v E + {x 7→ v} ` e′ ⇓ v′

E ` f e ⇓ v′
(fun f x = e′ ∈ analysis)

E ` e1 ⇓ v1 E ` e2 ⇓ v2

E ` e1 t e2 ⇓ v1 t v2

E ` e1 ⇓ v1 E ` e2 ⇓ v2

E ` e1 u e2 ⇓ v1 u v2

E ` e1 ⇓ v1 E ` e2 ⇓ v2

E ` (e1, e2) ⇓ (v1, v2)

E ` e ⇓ (v1, v2)

E ` e.i ⇓ vi
(i = 1 or 2)

E ` e1 ⇓ v1 E + {x 7→ v1} ` e2 ⇓ v

E ` let x = e1 in e2 ⇓ v

E ` e1 ⇓ v1 E ` e2 ⇓ v2 v1 v v2 E ` e3 ⇓ v3

E ` if e1 v e2 ? e3 : e4 ⇓ v3

E ` e1 ⇓ v1 E ` e2 ⇓ v2 v1 6v v2 E ` e4 ⇓ v4

E ` if e1 v e2 ? e3 : e4 ⇓ v4

Figure 1: Semantics of analysis specification language

T∆(fun f x = e) = fun f∆ (x,∆x) = T∆(e) (T1)
T∆(l) = ⊥ (T2)
T∆(x) = ∆x (T3)
T∆(f e) = f∆ (e, T∆(e)) (T4)
T∆(e1 t e2) = T∆(e1) t T∆(e2) (T5)

T∆(e1 u e2) =

(T∆(e1) u e2) t (e1 u T∆(e2)) t (T∆(e1) u T∆(e2)),
if e1 and e2 are elements of distributive lattice

(e1 t T∆(e1)) u (e2 t T∆(e2)), otherwise
(T6)

T∆((e1, e2)) = (T∆(e1), T∆(e2)) (T7)
T∆(e.i) = T∆(e).i (T8)
T∆(let x = e1 in e2) = let x = e1 in let ∆x = T∆(e1) in T∆(e2) (T9)
T∆(if e1 v e2 ? e3 : e4) = if (e1 t T∆(e1)) v (e2 t T∆(e2))

? (if e1 v e2 ? T∆(e3) : e3 t T∆(e3))
: (if e1 v e2 ? e4 t T∆(e4) : T∆(e4)) (T10)

Figure 2: Differential transformation T∆

of the argument ∆x, and compute the increment of body e (T1). From these differential
function definitions, we transform function application f e into the application of differential
function f∆ to the both of the previous argument e and the difference T∆(e) (T4). We transform
let-bindings in the same way (T9). We transform a constant l to ⊥ because it remains un-
changed throughout the fixpoint iteration (T2).

Transformation of e1te2, (e1, e2), and e.i is simple. Because the t-operation is distributive
over the operations, i.e., (e1 t∆1) t (e2 t∆2) = (e1 t e2) t (∆1 t∆2), (e1 t∆1, e2 t∆2) =
(e1, e2)t(∆1,∆2), and (et∆).i = e.it∆.i,, we just replace each subexpression into a differential
one: (T5), (T7), and (T8).

Transformation (T6) of e1 u e2 has two choices, depending on whether or not the meet
operator is over distributive lattices. Over distributive lattices, we can transform e1 u e2 by
the distributive law: T∆(e1 u e2) = (T∆(e1) u e2) t (e1 u T∆(e2)) t (T∆(e1) u T∆(e2)). Over
non-distributive lattices, we should be conservative: T∆(e1ue2) = (e1tT∆(e1))u(e2tT∆(e2)).

For if-branch (T10), when the conditional e1 v e2’s values remain the same, the result
of if-branch is only the difference of either the true or the false branch: T∆(e3) or T∆(e4).
However, if the results of the conditional expression changes, we have to join the previous result
with the current difference.

Theorem 1 shows that our transformation is correct: it satisfies f(atb) = f(a)tT∆(f)(a, b).

February 9, 2004 ROPAS-2004-21 4

We naturally extend the transformation T∆ for environment E such as:

T∆({x 7→ v}) = {∆x 7→ v}
T∆(E + E′) = T∆(E) + T∆(E′), where E + E′ = {x 7→ v|x 6∈ dom(E′), x 7→ v ∈ E} ∪ E′.

To prove the theorem, we need the following lemma.

Lemma 1 For all environments E and E′, and expression e, if E ` e ⇓ v and E tE′ ` e ⇓ v′

then E + T∆(E′) ` T∆(e) ⇓ ∆v and v′ = v t∆v.

Proof. We proceed by structural induction on e. We only show the case of function application;
other cases are similarly proven.

• For function application f e, we have to show that E ` f e ⇓ v and E t E′ ` f e ⇓ v′

implies E + T∆(E′) ` T∆(f e) ⇓ ∆v and v′ = v t ∆v. By the semantics of function
application, E t E′ ` f e ⇓ v′ implies

E t E′ ` e ⇓ v′e (1)
(E t E′) + {x 7→ v′e} ` e′ ⇓ v′, (2)

where “fun f x = e′” is in the analysis specification. Similarly, E ` f e ⇓ v implies

E ` e ⇓ ve (3)
E + {x 7→ ve} ` e′ ⇓ v. (4)

Because T∆(fun f x = e′) = fun f∆ (x, ∆x) = T∆(e′), we have to show that

E + T∆(E′) ` f∆(e, T∆(e)) ⇓ ∆v.

By induction hypothesis, (1) and (3) implies

E + T∆(E′) ` T∆(e) ⇓ ∆ve and v′e = ve t∆ve. (5)

Because (EtE′)+{x 7→ v′e} = (EtE′)+{x 7→ vet∆ve} = (E+{x 7→ ve})t(E′+{x 7→
∆ve}), (2) implies

(E + {x 7→ ve}) t (E′ + {x 7→ ∆ve}) ` e′ ⇓ v′. (6)

Then, by induction hypothesis, (6) and (4) implies

E + {x 7→ ve}+ T∆(E′ + {x 7→ ∆ve}) ` T∆(e′) ⇓ ∆v (7)

and v′ = v t∆v. By definition of T∆, (7) is

E + {x 7→ ve}+ T∆(E′) + {∆x 7→ ∆ve} ` T∆(e′) ⇓ ∆v

and in turn, because domT∆(E′) 63 x,

E + T∆(E′) + {x 7→ ve}+ {∆x 7→ ∆ve} ` T∆(e′) ⇓ ∆v. (8)

Because ∆x does not occur free in analysis expression e, (3) implies

E + T∆(E′) ` e ⇓ ve. (9)

By the semantics of function application, (9), (5), and (8) implies

E + T∆(E′) ` f∆(e, T∆(e)) ⇓ ∆v. 2

February 9, 2004 ROPAS-2004-21 5

analysis expr. e cost Ce of computing e cost Ce′ of computing the differential version e′ = T∆(e)
l O(1) O(1)
x O(1) O(1)

f e1 Ce1 + Cf Ce1 + Ce′1
+ Cf′

e1 t e2 Ce1 + Ce2 + Ct Ce′1
+ Ce′2

+ Ct
e1 u e2

∗ Ce1 + Ce2 + Cu Ce1 + Ce′1
+ Ce2 + Ce′2

+ Cu + Ct
e1 u e2

∗∗ Ce1 + Ce2 + Cu Ce1 + Ce′1
+ Ce2 + Ce′2

+ Cu + Ct
(e1, e2) Ce1 + Ce2 Ce′1

+ Ce′2
e1.i Ce1 Ce′1

let x = e1 in e2 Ce1 + Ce2 Ce1 + Ce′1
+ Ce′2

if e1 v e2 ? e3 : e4 Ce1 + Ce2 + Cv + max(Ce3 , Ce4) Ce1 + Ce′1
+ Ce2 + Ce′2

+ Cv + Ct + max(Ce′3
, Ce′4

)

∗ u-operation over distributive lattices
∗∗ u-operation over non-distributive lattices

Figure 3: Dominant time-complexity terms form computing an analysis expression e versus its
differential version e′

Theorem 1 For all analysis function f defined by “fun f x = e” in the analysis specification
and for all lattice elements a and b, f(a t b) = f(a) t T∆(f)(a, b).

Proof. Let v′, v, and ∆v be ` f(a t b) ⇓ v′, ` f(a) ⇓ v, and ` T∆(f)(a, b) ⇓ ∆v, respectively.
Then we have to show that v′ = v t ∆v. Because f is defined in the analysis specification
as “fun f x = e,” we can get following judgments by the semantics of function definition and
function application:

{x 7→ a t b} ` e ⇓ v′, {x 7→ a} ` e ⇓ v, and {x 7→ a,∆x 7→ b} ` T∆(e) ⇓ ∆v.

Let E = {x 7→ a} and E′ = {x 7→ b}. Then v′ = v t ∆v by Lemma 1. Thus f(a t b) =
f(a) t T∆(f)(a, b). 2

The time complexity, in the big O notation, for computing the differential expression re-
mains the same as that for computing the original expression:

Theorem 2 For all analysis expression e and its transformed expression e′ = T∆(e), let Ce

and Ce′ respectively be the time complexities in the big O notation of computing e and e′. Then
Ce′ = Ce.

Proof. It is straightforward by structural induction on e. ei. Figure 3 enumerates, in the
big O notation, dominant time-complexity terms for computing differential version e′ versus
those for computing original expression e. The theorem holds because 1) complexity terms for
differential e′ is always a linear combination of those for original e, 2) Ct = Cu = Cv, and 3)
by the induction hypothesis being Cei = Ce′i for every sub-expression ei. 2

Note that though computing the differential expression e′ has to apply more join or meet
operations than computing the original e (Figure 3), the computation cost can actually be
reduced because the arguments to the operators are reduced differential ones. Our experiments
in Section 5 back up this claim.

4 Differential Fixpoint Iteration Algorithm

Algorithm D in Figure 4 is a basic algorithm for the differential fixpoint iteration. We first
initialize x and ∆x respectively by ⊥ and f(⊥) (D1). ∆x should be initialized to f(⊥) because
it is the initial difference:

fn(⊥) = fn−1(⊥) t∆n−1 = · · · = f(⊥) t∆1 t∆2 t ... t∆n−1.

February 9, 2004 ROPAS-2004-21 6

(D1) x←⊥; ∆x← f(⊥);
repeat

(D2) xp← x; ∆xp←∆x;
(D3) x← xp t∆xp;
(D4) ∆x←T∆(f)(xp, ∆xp) \ x;

until x = xp;

Figure 4: Differential fixpoint iteration algorithm D

Then we repeat computing x and ∆x until the current result x and the previous result xp are
the same, that is, it reaches a fixpoint. Line (D2) records the previous x and ∆x in xp and
∆xp, respectively. Line (D3) computes the current result x and line (D4) computes the current
difference ∆x. In order to get the exact difference, we subtract x from the T∆(f)(xp, ∆xp).
The difference a \ b of two lattice elements a and b is required to satisfy:

(a \ b) t b = a t b and (a \ b) v a. (10)

In worst case, a \ b = a, and in best case (a \ b) u b = ⊥. For example, when domain L is a
powerset lattice, we use set-minus operation which satisfies (a \ b) u b = ⊥. For a flat lattice,
a \ b = ⊥ if a v b, and a \ b = a otherwise. This subtraction is necessary for reducing the
difference as much as possible. The cost of \-operation is the same as the cost of t-operation
and it is usually less than the cost of T∆(f)(xp, ∆xp).

Theorem 3 For all analysis function f , if f is monotonic or extensional, algorithm D com-
putes a fixpoint of f .

Proof. Let x0 = f(⊥) and ∆x0 = ⊥ from (D1). Let xi and ∆xi be respectively the values of
x and ∆x of ith iteration such that

xi = xi−1 t∆xi−1 from (D2) and (D3) (11)
∆xi = T∆(f)(xi−1, ∆xi−1) \ xi from (D2) and (D4). (12)

Then we can show by induction on i that xi = f i(⊥) for all i ≥ 1.

• (Base case) i = 1: x1 = x0 t∆x0 = ⊥ t f(⊥) = f(⊥).

• (Induction step) We assume the theorem holds for i ≤ n. Then for the case of i = n + 1:

xn+1 = xn t∆xn by (11)
= xn t (T∆(f)(xn−1, ∆xn−1) \ xn) by (12)
= xn t T∆(f)(xn−1, ∆xn−1) by (10)
= fn(⊥) t T∆(f)(fn−1(⊥),∆xn−1) by induction hypothesis
= f(fn−1(⊥)) t T∆(f)(fn−1(⊥),∆xn−1) by definition
= f(fn−1(⊥) t∆xn−1) by Theorem 1
= f(xn−1 t∆xn−1) by induction hypothesis
= f(xn) by (11)
= f(fn(⊥)) by induction hypothesis
= fn+1(⊥).

Because function f is monotonic or extensional, algorithm D computes a fixpoint of function
f . In case that f is monotonic, algorithm D computes the least fixpoint of function f . 2

Corollary 1 The result of differential algorithm D is exactly the same as the result of non-
differential algorithm.

Proof. For each iteration i, both algorithms compute the same result f i(⊥). 2

February 9, 2004 ROPAS-2004-21 7

5 Experiments

We implemented a prototype of our transformation and differential algorithm inside System
Z1 [9] (a predecessor of our planned Zoo). We implemented a work-list version [2, 5] of the
differential fixpoint iterations and used the well-known optimization techniques in realistic
implementations such as hash-consing and memoization.

Our experiments aim to make sure that first, our method works for higher-order analysis1

and second, it scales up. For higher-order analysis, we experimented the exception analysis [8]
of ML programs. For scale-up testing, we used the constant propagation [6] and alias (cp-
alias) analysis of C and Fortran programs. We chose cp-alias analysis for the scale-up testing
because the analysis domain (powerset lattice) allows a large range of lattice height, hence
we can examine the analysis cost for each lattice height. Both the exception analysis and the
cp-alias analysis are not distributive.

Figure 5 shows the effectiveness of our differential method for the higher-order analysis
(exception analysis). It shows that our method is effective for an analysis that requires control
flow analysis of higher-order language. For each benchmark program, differential method saves
about 28–53% of execution time.

Figure 6 shows our method’s scalability for cp-alias analysis. It shows that our method
keeps reducing the analysis time such that the analysis cost is kept almost linear to the height
of the powerset lattice. Because the time complexity of fixpoint iteration is O(h×n)×Cf , where
h is the height of the analysis lattice, n the program size, and Cf the cost for applying analysis
function f to the previous result, Figure 6 shows that the cost of applying the differential
analysis function f∆ takes almost constant time.

6 Discussion

Combining our differential transformation of the input analysis function and our differential
fixpoint iterations is proven correct and its experiments in realistic settings show it’s a promising
approach. Though the combination method is intended for use inside our automatic program
analyzer generator, the ideas can also be used by program analysis implementers in manually
tuning their fixpoint procedures. Note also that the widely-used widening and narrowing
operations [3] that accelerate the fixpoint iterations do not interfere with our method.

Ahn and Kwon’s work [1] differs from ours in two points. Their method is less differential
than ours; we compute and reuse the difference between current and previous results, whereas
they just reuse the previous result. By computing the difference, we can further reduce the
increment ∆. Second, they do not transform the analysis functions; their algorithm inter-
prets the analysis functions in a differential way, while we “compile” the functions hence can
apply several a priori optimizations (e.g. dead-code elimination and common subexpression
elimination) as reported in [4].

References

[1] J. Ahn, Y. J. Kwon, A differential fixpoint evaluation framework for non-distributive
systems, in: Proceedings of the First Asian Symposium on Programming Languages and
Systems, in: Lecture Notes in Computer Science, vol. 2895, Springer-Verlag, Beijing, 2003,
pp. 159–175.

[2] J. Cai, R. Paige, Program derivation by fixed point computation, Science of Computer
Programming 11(3) (1989) 197–261.

1A static analysis is called “higher-order” if it can analyze higher-order programs that compute functions as
first-class objects like in ML or Scheme.

February 9, 2004 ROPAS-2004-21 8

program exprsa non-diff. (secsb) diff. (secsc) speed upd

lexgen.sml 14527 281.60 135.54 52%
mlyacc.sml 74198 1733.21 815.86 53%
libkin.sml 15837 115.70 76.50 51%
libkin2.sml 15837 89.57 64.18 28%

athe number of expressions in a program
bCPU execution time (seconds) for non-differential method. We experimented on a Sun Enterprise

450 server with dual Ultra Sparc 400MHz CPUs and 2GBs memory.
cCPU execution time (seconds) for differential method
dspeed up = (c− d)/c

Figure 5: Our differential algorithm is effective

amoeba.f gauss.f TIS.f wator.c

heighta non-diff diff non-diff diff non-diff diff non-diff diff

10 18.3 19.1 8.4 8.8 16.3 16.3 17.5 23.7
50 86.3 58.1 18.0 16.1 141.9 70.0 97.7 104.4
100 254.9 118.0 35.1 25.5 619.4 140.8 291.8 202.4
150 547.6 185.2 59.7 37.0 7131.6 212.2 1118.7 308.1
200 1652.0 258.2 91.8 46.0 31926.0 306.2 3476.3 422.3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140 160 180 200

’diff’
’non-diff’

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180 200

’diff’
’non-diff’

amoeba.f (6062b) TIS.f (6028)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120 140 160 180 200

’diff’
’non-diff’

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140 160 180 200

’diff’
’non-diff’

gauss.f (4710) wator.c (3467)

athe height of analysis domain (lattice)
bthe number of expressions in a program

Figure 6: Our differential algorithm scales up

[3] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints, in: Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1977, pp. 238-
252.

[4] H. Eo, K. Yi, An improved differential fixpoint iteration method for program analysis,
in: Proceedings of the Third Asian Workshop on Programming Languages and Systems,

February 9, 2004 ROPAS-2004-21 9

Shanghai, 2002.

[5] C. Fecht, H. Seidl, Propagating differences: an efficient new fixpoint algorithm for dis-
tributive constraint systems, in: Proceedings of European Symposium on Programming,
in: Lecture Notes in Computer Science, vol. 1381, Springer-Verlag, Lisbon, 1998, pp.
90-104.

[6] M. N. Wegman, F. K. Zadeck, Constant propagation with conditional branches, ACM
Transactions on Programming Languages and Systems 13(2) (1991) 181–210.

[7] K. Yi, Program Analysis System Zoo, Research On Programming Languages and Systems,
Seoul National University, http://ropas.snu.ac.kr/zoo

[8] K. Yi, An abstract interpretation for estimating uncaught exception in Standard ML
programs, Science of Computer Programming 31(1) (1998) 147–173.

[9] K. Yi, W. L. Harrison III, Automatic generation and management of interprocedural pro-
gram analyses, in: Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Charleston, 1993, pp. 246–259.

