
Cache Behavior Prediction by Abstract

Interpretation

Martin Alt� Christian Ferdinand� Florian Martin� and Reinhard Wilhelm

Universit�at des Saarlandes � Fachbereich Informatik
Postfach �� �� �� � D������ Saarbr�ucken � Germany
Phone� 	�
 ��� �� ���� Fax� 	�
 ��� �� ����
falt�ferdi�florian�wilhelmg�cs�uni�sb�de

http���www�cs�uni�sb�de�users�falt�ferdi�martin�wilhelmg

Abstract� Abstract Interpretation is a technique for the static anal�
ysis of dynamic properties of programs� It is semantics based� that is�
it computes approximative properties of the semantics of programs� On
this basis� it allows for correctness proofs of analyzes� It thus replaces
commonly used ad hoc techniques by systematic� provable ones� and it
allows the automatic generation of analyzers from speci�cations as in the
Program Analyzer Generator� PAG�

In this paper� abstract interpretation is applied to the problem of pre�
dicting the cache behavior of programs� Abstract semantics of machine
programs for di�erent types of caches are de�ned which determine the
contents of caches� The calculated information allows to sharpen worst
case execution times of programs by replacing the worst case assumption
�cache miss� by �cache hit� at some places in the programs� It is possi�
ble to analyse instruction� data� and combined instruction�data caches
for common �re�placement and write strategies� The analysis is designed
generic with the cache logic as parameter�

Keywords� abstract interpretation� program analysis� cache memories� real time
applications� worst case execution time prediction�

� Cache Memories and Real�Time Applications

Caches are used to improve the access times of fast microprocessors to relatively
slow mainmemories� They can reduce the number of cycles a processor is waiting
for data by providing faster access to recently referenced regions of memory��

Programs with hard real time constraints have to be subjected to a schedula�
bility analysis by the compiler ���� ��� it has to be determined whether all timing
constraints can be satis	ed� WCETs
Worst Case Execution Times� for pro�
cesses have to be used for this� For hardware with caches� the appropriate worst

� Hennessy and Patterson ���� describe typical values for caches in �

� workstations
and minicomputers� Hit time ��� clock cycles �normally ��� Miss penalty ��� clock
cycles�

case assumption is that all accesses miss the cache� This is an overly pessimistic
assumption which leads to a waste of hardware resources�

Correct information about the contents of the cache at program points could
help to sharpen the worst case execution times� Such information can be com�
puted by an abstract interpretation statically collecting information about cache
contents� The way this information is computed� an abstraction of the concrete
semantics of the programs� depends on the type of cache regarded and the cache
replacement strategy� Several abstract semantics are described� for di�erent types
of caches�

� Overview

In the following section we briey sketch the underlying theory of abstract in�
terpretation and present the analysis tool PAG� Section � describes related ap�
proaches for the prediction of cache behavior�

Cache memories are briey described in section �� In section � we give a
semantics for programs that reects only memory accesses
to 	xed addresses�
and its e�ects on cache memories for common cache architectures� In section �
we present must analyses that computes a subset of the memory blocks that
must be in the cache and may analyses that computes a superset of the memory
blocks that may be in the cache and describe how the results of the analyses can
be interpreted�

The functional and the callstring approach developed for the abstract inter�
pretation of programs with recursive procedures is used in section � to compute
the behavior of memory references within loops by combining the results of the
must and may analyses� An example is given in section ��

In section �� we describe how the analyses can be transferred to the analy�
sis of data caches or combined instruction�data caches for a restricted class of
programs� and how a combination of the must and may analyses can be used for
the analysis of writes to the cache for common cache organizations�

� Program Analysis by Abstract Interpretation

Program analysis is a widely used technique to determine runtime properties of
a given program without actually executing it� There is a common theory for all
program analyses called abstract interpretation ��� �� ��� With this theory� ter�
mination and correctness of a program analysis can be easily proven� According
to this theory a program analysis is determined by an abstract semantics�

The program analyzer generator PAG ��� �� o�ers the possibility to gener�
ate a program analyzer from a description of the abstract domain and of the
abstract semantic functions� These descriptions are given in two high level lan�
guages� which support the description even of complex domains and semantic
functions� The domain can be constructed from some simple sets like integers by
operators like building power sets or by constructing of functions� The semantic

functions are described in a functional language which combines high expressive�
ness with e�cient implementation� Additionally one has to write a join function
combining two incoming values of the domain into a single one� This function is
applied whenever a point in the program has two
or more� possible execution
predecessors�

For the analysis of programs with
recursive� procedures PAG supports the
functional approach and the call string approach �����

� Related Work

The computation of WCETs for real�time programs is an ongoing research activ�
ity� Park and Shaw ���� describe a method to derive WCETs from the structure
of programs� In ���� Puschner and Koza propose methods to guide the computa�
tion of WCETs by user annotations� Both approaches do not take cache behavior
into account�

The possibilities to use optimizing compilers to improve cache performance
of programs has extensively been studied ���� ��� ��� ���� But all the proposed
program transformations and code reorganizations do not necessarily help in
computing the worst case execution time of a program� An overview of �Cache
Issues in Real�Time Systems� is given in ���� We restrict our examination here to
the intrinsic cache behavior� In ���� ��� Arnold� Mueller� Whalley� and Harmon
describe a data ow analysis for the prediction of instruction cache behavior of
programs for direct mapped caches�

A method for the data cache analysis by graph coloring is described in ���� ����
Similar to the Chow�Hennessy register allocator� variables are allocated to cache
lines� The objective of the analysis is to show that throughout the live range of
a cache line� no other memory access interferes with this particular cache line�

In ���� a general framework is described for the computation of WCETs of
programs in the presence of pipelines and cache memories� Two kinds of pipeline
and cache state information are associated with every program construct for
which timing equations can be formulated� One describes the pipeline and cache
state when the program construct is 	nished� The other one can be combined
with the state information from the previous construct to re	ne the WCET
computation for that program construct� An approximation to the solution for
the set of timing equations has been proposed�

� Cache Memories

A cache can usually be characterized by three major parameters�

� capacity is the number of bytes it may contain�
� line size
also called block size� is the number of contiguous bytes that
are transferred from memory on a cache miss� The cache can hold at most
capacity
line size

blocks�

� associativity is the number of cache locations where a particular block may
reside�

capacity
line size � associativity is the number of sets� of a cache�

If a block can reside in any cache location� then the cache is called fully associa�
tive� If a block can reside in exactly one location� then it is called direct mapped�
If a block can reside in exactly A locations� then the cache is called A�way set
associative ����� The fully associative and the direct mapped cache are special
cases of the A�way set associative cache where A � n and A � � rsp�

� Concrete Semantics

In the following� we consider a cache as a set of cache lines L � fl�� � � � � ln��g�

where n � capacity
line size � The store S � fs�� � � � � sm��g is divided into blocks of size

line size� so that one memory block can be transferred into one cache line� The
locations where a memory block may reside in the cache depend on the level
of associativity of the cache memory� This is formalized by a relation between
cache lines and memory blocks�

De�nition� mapping relation� A mapping relationM � L� S is a subset
of the cartesian product of caches and stores� It de	nes the cache lines that
may hold a particular memory block� The meaning of an element
l� s� �M of
a mapping relation is� the memory block s may be stored in cache line l�

Example � special mappings� The followingmappings describe commoncache or�
ganizations�

� fully associative mapping�Massoc � L�S� A memory block may be held by
any cache line

� direct mapping� Mdirect � f
li� sx� j i �
x�n�� x � f�� � � � �m� �gg� � de�
notes the modulo division� A memory block may reside in exactly one cache
line�

� A�way set associative mapping�
MA�way �

SA��
a�� f
li� sx� j i �
x�
n�A�� �A� a� x � f�� � � � �mgg�

A memory block may reside in exactly A cache lines

For the absence of any memory block in a cache line� we introduce a new element
I� S� � S � fIg�

De�nition� concrete cache state� A �concrete� cache state is a mapping c �
L� S�� Cc denotes the set of all concrete cache states�

� A set can be considered as a fully associative subcache�
� The �address� within the cache �and thereby the cache line� is usually determined by
the lowest N bits of the address of a memory block� where capacity� N �

In the case of an A�way set associative or fully associative cache� a cache
line has to be selected for replacement when the cache is full and the processor
requests further data� This is done according to a replacement strategy� Com�
mon strategies are LRU
Least Recently Used�� FIFO
First In First Out�� and
random�

The replacement strategy is integrated into the update function that models
the e�ects of referencing the cache�

De�nition� cache update� A cache update function UM � Cc � S � Cc is
a function from a concrete cache state and a memory block to a concrete cache
state�

Accesses to caches can be modeled in the following ways�

� direct mapped cache� UMdirect

c� sx� � c�li �� sx� where i �
x�n��

where c
l� � s means cache line l holds memory block s� and c
l� � I means
cache line l holds no valid memory block�

� fully associative cache with LRU replacement strategy�

UMassoc

c� s� �

������
�����

� l� �� s�
li �� c
li��� j i � � � � �h�
li �� c
li� j i � h� � � � �n� � �� if �lh � c
lh� � s

� l� �� s�
li �� c
li��� for i � � � � �n � � �� otherwise

The order of the cache lines l�� l�� � � � is used to express the relative age of
a memory block� The least recently referenced memory block is put in the
	rst position� If the memory block has not been in the cache already� the
�oldest� memory block is removed from the cache�

� A�way set associative cache with LRU replacement strategy�

UMA�way

c� s� � c�

c� �

��������������
�������������

c� lj �� s�
li �� c
li��� j i � j � � � � �h�
li �� c
li� j i � h� � � � �
j �A � �� ��
where f
lj� s�� � � � �
lj�A��� s�g

	 MA�way if �lh � c
lh� � s
c� lj �� s�
li �� c
li��� j i � j � � � � �
j �A � �� ��
where f
lj� s�� � � � �
lj�A��� s�g

	 MA�way otherwise

An A�way set associative cache is partitioned into n�A fully associative sets�
The fully associative set flj� � � � � lj�A��g is treated as the fully associative
cache above� For all cache lines that are not in in the set� the cache state
remains unchanged�

We represent programs by control ow graphs consisting of nodes and typed
edges� The nodes represent basic blocks�� For each basic block it is known which
memory blocks it references� � i�e� there exists a mapping from control ow nodes
to a list of memory blocks� L � V � S�� The execution of a basic block succes�
sively loads all memory its blocks into the cache�

We can describe the working of a cache by the aid of the update functions
UM � It is applied for all memory references of a control ow node by walking in
the control ow graph according to the execution of a program� The e�ect of a
control ow node n� on a cache state c is�� ��n��Mc � UM
� � �
UM
c� s��� � � ��sx
where L
n� � �s�� � � � � sx��

The cache state at a computation point tm is the composition of func�
tions related to the elements of the trace
t�� � � � � tm� applied to the initial
cache state
M that maps all cache lines to I� ��
t�� � � � � tm���

�
M
M where

��
t�� � � � � tm���
�
M �
��
t�� � � � � tm�����

�
M � ��tm��M� and ������M � id�

� Abstract Semantics

In order to generate a program analyzer� the program analyzer generator PAG

requires the speci	cation of an abstract domain� abstract semantic functions�
and a join function� The domain for our abstract interpretation is given by the
abstract cache states�

De�nition� abstract cache state� An abstract cache state �c � L � �S
�

is a
mapping from the cache lines into the powerset of the memory blocks� �C denotes
the set of all abstract cache states�

The abstract semantic function describes the e�ects of a control ow node on
an element of the abstract domain� The abstract cache update function �UM
for abstract cache states is a canonical extension of the cache update function
UM on concrete cache states�

� direct mapped cache� �UMdirect

�c� sx� � �c�li �� fsxg� where i �
x�n�

� fully associative cache with LRU replacement strategy� �UMassoc

�c� s� � �c�

�c� �

����
���

� l� �� fsg�
li �� �c
li���� fsg j i � � � � �h�
li �� �c
li� � fsg j i � h� � � � �n� ��� if �lh � �c
lh� � fsg

� l� �� fsg� li �� �c
li���� fsg for i � � � � �n� ��� otherwise

� A basic block is a sequence �of fragments� of instructions in which control �ow enters
at the beginning and leaves at the end without halt or possibility of branching except
at the end� For our cache analysis� it is most convenient to have one memory reference
per control �ow node� Therefore� our nodes may represent the di�erent fragments of
machine instructions that access memory�

� This is very restricted� See Section ���� for weaker restrictions�
� In the literature on abstract interpretation �e�g� ����� our concrete semantics is usu�
ally referred to as auxiliary semantics� which is sometimes constructed for the purpose
of de�ning an appropriate abstract semantics�

� A�way set associative cache with LRU replacement strategy�

�UMA�way

�c� s� � �c�

�c� �

��������������
�������������

�c� lj �� fsg�
li �� �c
li���� fsg j i � j � � � � �h�
li �� �c
li� � fsg j i � h � � � � �
j �A � �� ��
where f
lj � s�� � � � �
lj�A��� s�g

	MA�way if �lh � �c
lh� � fsg
�c� lj �� fsg�
li �� �c
li���� fsg j i � j � � � � �
j �A � �� ��
where f
lj � s�� � � � �
lj�A��� s�g

	MA�way otherwise

On control ow nodes with at least two	 predecessors� join�functions are used
to combine the abstract cache states�

De�nition� join function� A join function �JM � �C � �C �� �C is a binary
function on abstract cache states�

	�� Join Functions for Direct Mapped Caches

For the direct mapped cache� Mueller at al� ���� �� ��� use the following join
functions� �JMdirect

�c�� �c�� � �c where �c
l� � �c�
l� � �c�
l��
�c computes for each cache line l a set of possible contents� If a cache line l

on two di�erent paths with cache states �c� and �c� holds di�erent memory blocks
�c�
l� � fsxg� �c�
l� � fsyg� and x � y� the set �c
l� � fsx� syg means that the
cache line l holds either memory block sx or sy �

The goal is to determine for every control ow node n whether the references
to the memory L
n� will result in cache hits or cache misses�

This can be computed from the abstract semantics by�

� if a memory block s is not in �c
l� for an arbitrary l then it is de	nitely not
in any cache line�
This memory reference will always miss the cache�

� if �c
l� � fsg for a cache line l then s is de	nitely in cache line l�
This memory reference will always hit the cache�

� if �c
l� � fI� sg for a cache line l then s is de	nitely in cache line l for the
second and all following executions of n�

In ��� references to instruction caches are further categorized taking the loop
nesting level of the instruction into account� An instruction within a loop is
called �rst miss if the 	rst reference to the instruction is a cache miss and all
remaining references during the execution of the loop are cache hits� Likewise�
a �rst hit indicates that the 	rst reference to the instruction will be a hit and

� Our join functions are associative� On nodes with more than two predecessors� the
join function is used iteratively�

all remaining references during the execution of the loop will be misses
see
Table ��� This categorization of instructions is used in a timing tool to compute
the WCET of a program�

Other program The instruction is In the worst
lines in the loop always executed in case treat the
that map to the the loop and is in instruction
same cache line cache initially as�

no no �rst miss
no yes always hit
yes no always miss
yes yes �rst hit

Table �� Categorizations of Instructions for the WCET analysis according to ����

For fully associative caches and set associative caches� two di�erent join func�
tions have to be used� For the identi	cation of �always hits�� the join function
corresponds to set intersection� and for the identi	cation of �always miss�� the
join function corresponds to set union�

During the analysis for direct mapped caches there never occur empty sets�
The interpretation of sets of one element is equivalent under union and intersec�
tion� �
A �B� � � and A � � and B � � �
A �B� �
A �B��

	�� Join Functions for Fully Associative Caches with LRU

Replacement

For the fully associative cache with LRU replacement strategy we can use the
following join function to determine if a memory block s is in the cache at a
control ow node n� �J �

Massoc

�c�� �c�� � �c where

�c
lx� � fsi j �la� lb with si � �c�
la�� si � �c�
lb� and x � max
a� b�g�

The position of the memory blocks in the abstract cache state� i�e� the number
of the cache line� represents the relative age of a memory block� If a memory
block s has two di�erent relative ages in two abstract cache states� i�e� is in
di�erent positions s � �c�
lx� and s � �c�
ly� then the join function takes the
oldest relative age� i�e� the highest position�

Example � �J �
Massoc

� l� l� l� l�
�c� fsag fsbg fscg fsdg

�c� fscg fseg fsag fsdg

�J �
Massoc

�c�� �c�� fg fg fsc� sag fsdg

An abstract cache state �c at a control ow node n can be interpreted in the
following way�

� If s � �c
l� for a cache line l then s is de	nitely in the cache�
A reference to s will always hit the cache�

� If s � �c
lx� then s will remain in the cache for at least

capacity
line size � x� cache

updates that put a �new� element into the cache�

To determine if a memory block s is never in the cache at a control ow node
n we use the join functions� �J �

Massoc

�c�� �c�� � �c where �c
l� � �c�
l� � �c�
l�

Here we have the same join function as for the direct mapped cache�
An abstract cache state �c at a control ow node n can be interpreted in the

following way�

� if a memory block s is not in �c
l� for an arbitrary l then it is de	nitely not
in any cache line� This memory reference will always miss the cache�

� If s � �c
lx� with x minimal then s will remain in the cache for at most

 capacityline size
� x� cache updates that put a �new� element into the cache�

	�� Join Functions for A
way Set Associative Caches with LRU

Replacement

For the A�way set associative cache with LRU replacement strategy we can use
the following join function to determine if a memory block s is in the cache at a
control ow node n� �J �

MA�way

�c�� �c�� � �c where

�c
lx� � fsi j �la� lb with si � �c�
la�� si � �c�
lb� and x � max
a� b�

and
la� si��
lb� si��
lx� si� �MA�wayg�

An A�way set associative cache is partitioned into n�A fully associative sets�
�J �
MA�way

�c�� �c�� corresponds to the application of �J �
Massoc

to the fully associative
sets of �c� and �c��

Example � �J �
MA�way

� Let fl�� l�g and fl�� l�g be the fully associative sets of a
two�way set associative cache with � lines�

l� l� l� l�
�c� fsag fsbg fg fse� sdg

�c� fscg fsag fsdg fsfg

�J �
Massoc

�c�� �c�� fg fsag fg fsdg

An abstract cache state �c at a control ow node n can be interpreted in the
following way�

� If s � �c
l� for a cache line l then s is de	nitely in the cache� A reference to
s will always hit the cache�

� If s � �c
lx� and flj � � � � � lc� � � � � lj�A��g is the fully associative set of the
cache with j � x � j � A � �� then s will remain in the cache for at least

j � A� �� � x cache updates that put a �new� element into the cache�

To determine if a memory block s is never in the cache at a control ow node
n we use the same join functions and the same interpretation as in the fully
associative case� �J �

MA�way
� �J �

Massoc
�

� Analysis of Loops

Loops are of special interest� since many programs spend most of their runtime
within loops� In a control ow graph� a loop is represented as a cycle� The start
node of a loop has two incoming edges� One represents the entry into the loop�
the other represents the control ow from the end of the loop to the beginning
of the loop� The later is called loop edge
�

A loop usually iterates more than once� Since the execution of the loop body
usually changes the cache contents� it is useful to distinguish the 	rst iteration
from all others� This could be achieved by virtually unrolling each loop once�

Example �� Let us consider a su�ciently large fully associative data cache with
LRU replacement strategy and the following program fragment�

� � �
�� Variable x not in the data cache ��
for i��� to �� do � � � y��x � � � end

� � �

In the 	rst execution of the loop� the reference to x will be a cache miss�
because x is not in the cache� In all further iterations the reference to x will be a
cache hit� if the cache is su�ciently large to hold all variables referenced within
the loop�

For the abstract interpretation� the join function �J �
Massoc

combines the ab�
stract cache states at the start node of the loop� Since the join function is �sim�
ilar� to set intersection� the combined abstract cache state will never include
the variable x� because x is not in the abstract cache state before the loop is
entered� For a WCET computation for a program this is a safe approximation�
but nevertheless not very good�

Loop unrolling would overcome this problem� After the 	rst unrolled itera�
tion� x would be in the abstract cache state and would be classi	ed as always
hit�

For nested loops� loop unrolling can be an expensive transformation which is
exponential in the nesting depth� This problem is similar to the problem of ana�
lyzing procedures in program analysis� for which solutions exist
see Section ���

For our analysis of cache behavior we transform loops into procedures to be
able to use the existing methods and tools�
see Figure ���

��� Callstring Approach

There are only a 	nite number of cache lines and for each program a 	nite
number of memory blocks� This means� the domain of abstract cache states

� We consider here loops that correspond to the loop constructs of �higher program�
ming languages�� Program analysis is not restricted to this� but will produce more
precise results for programs with well behaved control �ow�

� Ludwell Harrison III ���� also proposed this transformation for the analysis of loops�

proc loop
L
���

��� if P then

while P do BODY

BODY �� loopL��� ��
end� end

���
���
loop

L
��� ���

���

Fig� �� Loop transformation�

�c � L� �S
�

is 	nite� Additionally� the abstract cache update functions �U and the
join functions �J are monotonic� This guarantees that abstract interpretations
with both the callstring approach and the functional approach will terminate�

In the callstring approach� the high complexity of the functional approach
can be circumvented� If we restrict the callstring length to �
callstring
���� then
for each transformed loop only two di�erent incoming abstract cache states are
considered� One for the call to the loop�procedure at the original place of the
loop in the program
��
see Figure ��� and one for the recursive call of the loop�
procedure
��� The 	rst call corresponds to the 	rst iteration of the loop� The
second call corresponds to all other iterations of the loop�

This means� we can interpret the abstract cache states �cf for the 	rst iteration
and �co for all other iterations at a control ow node n within the loop�procedure
according to Table �� Note� For A�way set associative caches and fully associative
caches the determination of �always hit� and �always miss� requires analysis with
both �J �

M and �J �
M � We call the analysis with �J �

M must analysis because it
computes all blocks that must be in the cache� And we call the analysis with
�J �
M may analysis because it computes all blocks that may be in the cache�

��� Functional Approach

During the analysis of a program� PAG tabulates for each procedure
and each
loop that has been transformed into a procedure� all abstract cache states within
the procedure for all di�erent incoming abstract cache states�

This computes the same values as if the loops had been unrolled� In the worst
case� the exponential growth in program code of the loop unrolling corresponds to
exponentially many di�erent incoming abstract cache states that are tabulated
during the analysis� But often� there are much less di�erent incoming abstract
cache states than unrolled loop bodies for a deeply nested loop nest�

The functional approach gives the most detailed results for the abstract in�
terpretation but may be very expensive�

Interpretation of the Interpretation of the Combination
abstract cache state �cf abstract cache state �co of �cf�s� and
for a reference to a for a reference to a �co�s��
memory block s� memory block s�

always hit always hit always hit
always miss always hit �rst miss
always miss always miss always miss
always hit always miss �rst hit
always hit � �rst hit
always miss � always miss

� always hit �rst miss
� always miss always miss
� � always miss

Table �� Interpretation of abstract cache states for callstring���� The second part de�
scribes the categorization for a WCET analysis according to Table � if no classi�cation
into �always hit� and �always miss� is possible�

	 Example

We consider must and may analysis for a fully associative data cache of � lines
for the following program fragment of a loop� where ��x�� stands for a construct
that references variable x�

while ��e�� do ��b��� ��c��� ��a��� ��d��� ��c�� end

The control ow graph and the result of the analysis with callstring
�� are
shown in Figure �� We assume that each variable 	ts exactly into one cache
line� The nodes of the control ow graph are numbered � to �� and each node
is marked with the variable it accesses
a� b� c� d� e�� For the analysis� we assume
the loop has been implicitly transformed into a procedure according to Figure ��

Each node is marked with the abstract cache states
in the same format as
in Example �� computed by the PAG�generated analyzer immediately before the
abstract cache states are updated with the memory references� The loop entry
edge is marked with the incoming abstract cache states� The loop exit edge is
marked with the outgoing abstract cache states�

�
 Data Caches and Combined Data�Instruction Caches

���� Scalar Variables

In the current design� the work is limited to the prediction of memory references
to addresses that can be determined at analysis time� This allows for example
for the prediction of instruction cache behavior�

Our analysis can also be used to predict the behavior of data caches or
combined instruction�data caches for programs that use only scalar variables�

d

c

c

a

e

�

�

�

�

�

b

mayf fb�eg fd�zg fb�dg fe�zg

mustf f g f g fb�dg fe�zg

musto�mayo fcg fdg fag fbg

mayf feg fbg fd�zg fb�dg

mustf feg f g f g fb�dg

musto�mayo feg fcg fdg fag

mayf fbg feg f g fd�zg

mustf fbg feg f g f g

musto�mayo fbg feg fcg fdg

mustf�mayf fcg fbg feg f g

musto�mayo fcg fbg feg fdg

mustf�mayf fag fcg fbg feg

musto�mayo fag fcg fbg feg

mustf�mayf fdg fag fcg fbg

musto�mayo fdg fag fcg fbg

EXIT

ENTRY

may feg fb�cg fd�zg fa�b�dg

must feg f g f g fdg

may fb�eg fd�zg fb�dg fe�zg

must f g f g fb�dg fe�zg

LOOP EDGE

Fig� �� Must and may analysis for a fully associative data cache with callstring����
must and may are the abstract cache states for the must and the may analysis�
mustf and mayf are the abstract cache states for the �rst loop iteration� musto and
mayo are the abstract cache states for all other iterations� The abstract cache states
can be interpreted for each variable reference according to Table �

�Node�Variable� Interpretation

���e�� ��b� �rst hit
���c� �rst miss

���a�� ���d� always miss

���c� always hit

For this kind of programs� it is possible to compute for each data reference to
a procedure parameter or a local variable the address within the procedure stack
frame by a static stack level simulation ����� For each call to a procedure� the
address of the procedure stack frame depends only on a statically computable
o�set to the procedure stack frame of the caller�

For our abstract interpretation� we extend the function that maps control
ow nodes to the list of referenced memory blocks by an argument that is the

set of possible absolute stack frame addresses�� � L� � V � �N� � S��
Additionally� we assume a function H that maps call nodes to their relative

stack frame o�set or stack height� H � V � N��
All abstract semantic functions and join functions have to be de	ned on pairs

of abstract cache states and sets of actual stack frame addresses�

�U �M � �C��N� �S � �C��N� and �J �
M �
 �C��N���
 �C��N���
 �C��N��

Only the abstract semantic function for procedure calls�� have to change the
actual stack frame address�

�U �M
�c� s� fh�� � � � � hxg� �

����
���

�
�UM
�c� s�� fh� �H
n�� � � � � hx �H
n�g

�

for a call node n�
�UM
�c� s�� fh�� � � � � hxg

�
otherwise

�J �
M

�c��H���
�c��H��� �

�
�JM
�c�� �c���H� �H�

�

For programs without recursive procedures� there are only 	nitely many stack
frame addresses� This guarantees termination of the abstract interpretation�
With the functional approach and the callstring approach where the procedure
nesting depth of the program does not exceed the callstring length� the sets of
stack frame addresses for the �U � and �J � functions contain always exactly one
element� This means there is no loss of information�

For programs with recursive procedures� the number of stack frame addresses
may grow in	nitely during the analysis so that the analysis does not terminate�
Cousot and Cousot ��� proposed a technique called 	widening
 that speeds up
the analysis�

We use a �widening� function � to restrict the number of stack frame ad�
dresses� When during the analysis the number of elements in a set of stack frame
addresses exceeds a given limit R� � replaces this set by N�

��� This can only
occur when the join function is applied�

�	 This works for C�type languages where all procedures are �global�� PASCAL�like
languages with local procedures referencing local variables of other procedures can�t
be modeled in this way�

�� This holds only for procedures of the original program� The newly introduced loop�
procedures do not change the procedure stack frame address�

�� PAG includes a �negative� set representation� so that this operation is e�ciently
implemented�

�
fh�� � � � � hxg� �

��
�
fh�� � � � � hxg if x � R

N� otherwise

An occurrence of N� means a total loss of information on the stack frame address�
Accordingly� the update and join functions can not compute any relevant infor�
mation� but map all abstract cache states to the most unde	ned cache state �M�
�U �M
�c� s�N�� � �J �

M

�c��N���
�c��H�� � �J �
M

�c��H��
�c��N��� �
�M�N���

�Mdirect
� ��Massoc

� ��MA�way
� �li �� S j i � � � � �n�

��Massoc
� ��MA�way

� �li �� fg j i � � � � �n�

���� Writes

So far� we have ignored writing to a cache and only considered reading from a
cache� There are two common cache organizations with respect to writing to the
cache �����

� Write through� On a cache write the data is written to both the memory
block and the corresponding cache line�

� Write back� The data is written only to the cache line� The modi	ed cache
line is written to main memory only when it is replaced� This is usually
implemented with a bit
called dirty bit� for each cache line that indicates if
the cache line has been modi	ed�

The execution time of a store instruction often depends on whether the mem�
ory block that is written is in the cache
write hit� or not
write miss�� For the
prediction of hits and misses we can use our analysis� There are two common
cache organizations with respect to write misses�

� Write allocate� The block is loaded into the cache� This is generally used for
write back caches�

� No write allocate� The block is not loaded into the cache� The write changes
only the main memory� This is often used for write through caches�

Writes to write through�write allocate caches can be treated as reads� For no
write allocate caches� the update functions have to be adapted� For A�way set
associative caches
A � �� and fully associative caches� a write access to a block
s is treated as a read access� if s is already in the concrete or abstract cache
state� Otherwise� and for direct mapped caches��� the write access is ignored�
i�e� the update functions is the identity function for this case�

Write back caches write a modi	ed line to memory when the line is replaced�
The timing of a load or store instruction may depend on whether a modi	ed or

�� This is to preserve the interpretation of sets of one element as always hits�

an unmodi	ed line is replaced��� To keep track of modi	ed cache lines� we extend
the cache states by a �dirty� bit� where d means modi	ed� p means unmodi	ed���
c � L� fd� pg� S� and �c � L� �fd�pg�S

�

�
The update functions distinguish reads and writes� The dirty bit is set to d only
on writes�

UM � Cc �
fr� wg � S� � Cc

�UM � �C �
fr� wg � S� � �C

�U �M � �C � �N� �
fr� wg � S� � �C � �N�

Let n be a control ow node� sa be one read or write memory reference at n� �c��
the abstract cache state for the may analysis immediately before sa is referenced�
and �c�� � �UM
�c�� �m� sa��m � fr� wg the abstract cache state immediately after
sa was referenced� �c�� the abstract cache state for the must analysis immediately
before sa is referenced� and �c�� � �UM
�c�� �m� sa��m � fr� wg the abstract cache
state immediately after sa was referenced�

must may
�c�� �c��

n � sa

�����y
�UM

�����y
�UM

�c�� �c��

Let lx the cache line where sa has been stored in �c�� � Then �c��
lx� contains all
possible memory blocks that may have been replaced by sa�

� If fs j
d� s� � �c��
lx�g � �� then no dirty memory block has been replaced�
This reference has de	nitively caused no write back�

� If there is a dirty line s � fs j
d� s� � �c��
lx�g and s is an always hit in �c��
and s is a always miss in �c�� � then a dirty memory block has been replaced�
This reference has de	nitively caused a write back�

� If fs j
d� s� � �c��
lx�g � � then for a WCET analysis we have to consider a
possible write back�

The identi	ed
possible� write backs can be used in another abstract interpreta�
tion similar to the cache analysis for the prediction of the write bu�er behavior�

�� State of the Implementation and Future Work

The presented techniques have been validated with an ANSI�C frontend that
has been interfaced to PAG� We are currently developing a PAG interface for
executables based on the Wisconsin architectural research tool set
WARTS��

�� Many cache designs use write bu�ers that hold a limited number of blocks� Write
bu�ers may delay a cache access� when they are full or data is referenced that is still
in the bu�er� To analyze the behavior of the write bu�ers possible �write backs� have
to be determined�

�� For the abstract interpretation� d � p and �fd�pg � d�

�� Conclusion

We have described several semantics of programs executed on machines with
several types of one level caches� Abstract interpretations based on these seman�
tics statically analyze the intrinsic cache behavior of programs� The information
computed allows interpretations such as �always hit�� �always miss�� �	rst hit��
�	rst miss�� and �write back�� It can be used to improve execution time calcula�
tions for programs� The analyses are speci	ed as needed by the program analyzer
generator PAG�

Acknowledgements

We like to thank Susan Horwitz for making available the ANSI�C frontend�
and Mark D� Hill� James R� Larus� Alvin R� Lebeck� Madhusudhan Talluri� and
David A� Wood for making available the Wisconsin architectural research tool
set
WARTS��

References

�� Martin Alt and Florian Martin� Generation of e�cient interprocedural analyzers
with PAG� In SAS���� Static Analysis Symposium� pages ������ Springer�Verlag
LNCS
��� September �

��

� Martin Alt� Florian Martin� and Reinhard Wilhelm� Generating data�ow analyzers
with PAG� Technical Report A���
�� Universit�at des Saarlandes� �

��

�� Robert Arnold� Frank Mueller� David B� Whalley� and Marion Harmon� Bound�
ing worst�case instruction cache performance� In IEEE Symposium on Real�Time

Systems� pages ������� Dec �

��
�� Swagato Basumallick and Kelvin Nilsen� Cache issues in real�time systems� In

Proceedings of the ���� ACM SIGPLAN Workshop on Language� Compiler and

Tool Support for Real�Time Systems� June �

��
�� P� Cousot and R� Cousot� Static determination of dynamic properties of programs�

In Proceedings of the second International Symposium on Programming� pages ����
���� Dunod� Paris� France� �
���

�� P� Cousot and R� Cousot� Abstract interpretation� a uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints� In Conference

Record of the �th ACM Symposium on Principles of Programming Languages� pages
����� Los Angeles� CA� January �
���

�� P� Cousot and R� Cousot� Static determination of dynamic properties of general�
ized type unions� In Proceedings of an ACM Conference on Language Design for

Reliable Software� volume ����� pages ���
�� Raleigh� NC� March �
���
�� P� Cousot and R� Cousot� Static determination of dynamic properties of recursive

procedures� Formal Description of Programming Concepts� pages ������ �
���

� Wolfgang A� Halang and Krzysztof M� Sacha� Real�Time Systems� World Scien�

ti�c� �

�
��� Ludwell Harrison� Personal communication on Abstract Interpretation� Dagstuhl

Seminar� �

��

��� J�L Hennessy and D�A� Patterson� Computer Architecture� A Quantitative Ap�

proach� Morgan Kaufmann� �

��

�� Sung�Soo Lim� Young Hyun Bae� Gye Tae Jang� Byung�Do Rhee� Sang Lyul Min�
Chang Yun Park� Heonshik Shin� Kunsoo Park� Soo�Mook Moon� and Chong Sang
Kim� An accurate worst case timing analysis for risc processors� IEEE Transac�

tions on Software Engineering� ������
������ July �

��

��� Scott McFarling� Program optimization for instruction caches� In Architec�

tural Support for Programming Languages and Operating Systems� pages �����
��
Boston� Massachusetts� April �
�
� Association for Computing Machinery ACM�

��� Abraham Mendlson� Shlomit S� Pinter� and Ruth Shtokhamer� Compile time in�
struction cache optimizations� Computer Architecture News� ���������� March
�

��

��� Frank Mueller� Static cache simulation and its applications� Phd thesis� Florida
State University� July �

��

��� Frank Mueller� David B� Whalley� and Marion Harmon� Predicting instruction
cache behavior� In Proceedings of the ���� ACM SIGPLAN Workshop on Lan�

guage� Compiler and Tool Support for Real�Time Systems� June �

��

��� Kelvin D� Nilsen and Bernt Rygg� Worst�case execution time analysis on modern
processors� In Proceedings of the ���� ACM SIGPLAN Workshop on Language�

Compiler and Tool Support for Real�Time Systems� June �

��

��� Chang Yun Park and Alan C� Shaw� Experiments with a program timing tool
based on source�level timing schema� IEEE Computer� ����������� May �

��

�
� Karl Pettis and Robert C� Hansen� Pro�le guided code positioning� In ACM

SIGPLAN��	 Conference on Programming Language Design and Implementation�
pages ����� White Plains� New York� June �

��

�� P� Puschner and Ch� Koza� Calculating the maximum execution time of real�time
programs� Real�Time Systems� ����
����� �
�
�

�� J� Rawat� Static analysis of cache performance for real�time programming� Mas�
ters thesis� Iowa State University� May �

��

� Micha Sharir and Amir Pnueli� Two approaches to interprocedural data �ow anal�
ysis� In Steven S� Muchnick and Neil D� Jones� editors� Program Flow Analysis�

Theory and Applications� chapter �� pages ��
���� Prentice�Hall� �
���

�� A�J� Smith� Cache memories� ACM Computing surveys� �������������� Sep �
���

�� Alexander D� Stoyenko� V� Carl Hamacher� and Richard C� Holt� Analyzing hard�
real�time programs for guaranteed schedulability� IEEE Transactions on Software

Engineering� ������ August �

��

�� Reinhard Wilhelm and Dieter Maurer� Compiler Design� International Computer
Science Series� Addison�Wesley� �

��

�� Michael E� Wolf and Monica S� Lam� A data locality optimizing algorithm� SIG�

PLAN Notices� ����������� June �

�� Proceedings of the ACM SIGPLAN �
�
Conference on Programming Language Design and Implementation�

Speci�cation

For the sake of simplicity and space� we assume only references to 	xed ad�
dresses� and we consider only direct mapped caches and the must analysis for
fully associative caches�

DOMAIN store�lines � set�int�

ACACHE � int 	
 store�lines

�� Set of all abstract cache states

GLOBAL cache�size � int

store�line�size � int

maxsym � int �� number of memory locations

cache�mode � int

�� cache�mode � � is direct mapped

�� cache�mode � � is fully associative

NODE uses � �Symbol �� The externally defined

�� function �uses� returns at every control flow node the

�� list of memory locations which are referenced

PROBLEM cache

direction � forward

carrier � ACACHE �� the used domain

init � 	
 �	��� �� initialize all nodes with the abstract

�� cache where all cache lines are empty

combine � join

TRANSFER default � list�update�uses����

�� for each statement update the cache with all memory references

SUPPORT

list�update�� �acache� � acache�

list�update�obj�xs�acache� � list�update�xs�update�obj�acache���

update �� int�ACACHE 	
 ACACHE�

update�loc�acache� �

letrec sline � loc � store�line�size�

pos � is�in�cache�loc�acache�� in

if pos � 	� �� loc is not in cache

then update�cache�out�acache�pos�sline�

else update�cache�in�acache�pos�sline�

endif�

join�a�b� � if cache�mode � � then a lub b �� standard set union

else merge�a�b�maxsym�store�line�size� 	
����

�� for fully associative with LRU

endif�

find�cache�line��ACACHE�int�int 	
 int�

find�cache�line�����	�� � 	��

find�cache�line�acache�sline�n� � if sline � acache�n� then n

else find�cache�line�acache�sline�n	��

endif�

merge��ACACHE�ACACHE�int�ACACHE 	
 ACACHE�

merge�����	��acache� � acache�

merge�a�b�line�acache� � letrec

s� � find�cache�line�a�line�cache�size��

s� � find�cache�line�b�line�cache�size��

zz � max�s��s��� in

if s�
�� �� s�
�� then

merge�a�b�line	��acache�zz	
acache�zz� � line�

else merge�a�b�line	��acache�

endif�

is�in�cache�associative��int�ACACHE�int 	
 int�

is�in�cache�associative�����	�� � 	��

is�in�cache�associative�sline�acache�pos� �

if sline � acache�pos� then pos

else is�in�cache�associative�sline�acache�pos	��

endif�

is�in�cache�direct��int�ACACHE 	
 int�

is�in�cache�direct�sline�acache� � let pos � sline � cache�size�

in if sline � acache�pos� then pos

else 	� endif�

is�in�cache��int�ACACHE 	
 int�

is�in�cache�sline�acache� �

if cache�mode � � then is�in�cache�direct�sline�acache�

else is�in�cache�associative�sline�acache�cache�size�

endif�

�� update function for cache states 																													

shift��ACACHE�int 	
 ACACHE�

shift�acache�	�� � acache�

shift�acache�pos� � shift�acache�pos	
acache�pos	����pos	���

update�cache�out�direct�acache�pos�sline� �

update�cache�in�direct�acache�pos�sline��

update�cache�in�direct�acache�pos�sline� �

acache�pos	
�sline���

update�cache�in�associative�acache�pos�sline� �

if acache�pos� � �sline� then shift�acache�pos���	
�sline��

else update�cache�out�associative

�acache�pos	
acache�pos��sline��pos�sline�

endif

update�cache�out�associative�acache�pos�sline� �

let acache � shift�acache�cache�size	���

in acache��	
�sline���

update�cache�in�acache�pos�sline� �

if cache�mode � � then update�cache�in�direct�acache�pos�sline�

else update�cache�in�associative

�acache�pos�sline�

endif�

update�cache�out�acache�pos�sline� �

if cache�mode � � then update�cache�out�direct�acache�pos�sline�

else update�cache�out�associative�acache�pos�sline�

endif�

max�x�y� � if x � y then y else x endif�

