
Formally Optimal Boxing

Fritz Henglein & Jesper Jorgensen

DIKU, Department of Computer Science

University of Copenhagen, Universitetsparken 1

DK-21OO Copenhagen @

Denmark

e-mail: henglein@diku.dk & knud@diku.dk

Abstract

An important implementation decision in polymorphically
typed functional programming languages is whether to rep-

resent data in boxed or unboxed form and when to transform
them from one representation to the other. Using a langnage

with explicit representation types and boxing/unboxing ope-
rations we axiomatize equationally the set of all explicitly
boxed versions, called completions, of a given source pro-
gram. In a two-stage process we give some of the equa-
tions a rewriting interpretation that captures eliminating
boxing funboxing operations without relying on a specific

implementation or even semantics of the underlying lan-
guage. The resulting reduction systems operate on con-

gruence classes of completions defined by the remaining

actuations E, which can be understood as moving box-

in g/uiLboxing operations along data flow paths in the source
progl am. We call a completion eopt formally optimal if ev-

ery other completion for the same program (and at the same
representation type) reduces to eopt under this two-stage re-

duction.
We show that every source program has formally optimaJ

completions, which are unique modulo E. This is accom-
plished by first “polarizing” the equations in E and orienting
them to obtain two canonical (confluent and strongly nor-
m dizing) rewriting systems. The completions produced by
L,:roY’s and poulsen’s algorithms are generafly not formally

optimal in our sense.

The rewriting systems have been implemented and ap-

plied to some simple Standard ML programs. Our results

show that the amount of boxing and unboxing operations
is also in practice substantially reduced in comparison to

Leroy’s completions. This analysis is intended to be inte-

grated into Tofte’s region-based implementation of Standard

ML currently underway at DIK~J.

Keywords

Representation analysis, polymorphism, type inference.

Pern-rbion to copy without fee all or part of this material is

granted provided thet the copies ere not mede or distributed for
direct commercial adventage, the ACM copyright notica and the

titfe of the publication and its date appeer, and notice is given
thet copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee
endor specific permission.

POPL 94- li94, Portfand Oragon,USA

@ 1994 ACM 0-89791636-0/’94/001..$3.50

1 Introduction

1.1 Representation analysis

Revreseratdion analvsis seeks to optimize the run-time rep-

resentation of elements of data types in high-level program-
ming languages. A problem specific to polymorphically
typed languages such as Standard ML or Haskell is how
to represent the actual arguments to polymorphic functions.
The polymorphic (generic) parts of arguments to a polymor-
phic function can be of any type and will usuaJly be called
with actual arguments of different types. There are several
possible ways of implementing such polymorphic functions.

The predominant one is to ensure that actual arguments
are represented uniformly, independent of their actual type,

using boxed representations.

A boxed representation of a data structure is a pointer to

some area in memory where the actuaf contents of the data
structure reside. 1 The point of this representation is that

it has the same “size” for all types of data structures. By
passing only arguments in boxed representation a (truly)
polymorphic function can be correctly implemented by a
single piece of code since it is guaranteed to nrwer actually
inspect the data structure itself. Other operations, however,

such as integer addition or a conditional checking the value
of a Boolean expression require access to the contents of

the data and are penalized by the additional level of indi-

rection incurred by boxing, as they first have to unboz the

represent ation; i.e., dereference the pointer. Furthermore,

boxed representations require more space than unboxed rep-

resentations thus increasing the space demand ancl garbage
collection costs. Parameter passing, on the other hand, is

generally more efficient for boxed than unboxed data repre-

sent ations. Thus there are competing demands on the repre-

sentation of dat a in a program. A boxed representation can,
of course, be transformed to an unboxed representation at

run-time, and vice versa. These conversions cau contribute
substantially to the run-time cost of a program, however,

both in terms of time and space.
Boxing anaiysis is a special representation analysis that

seeks to minimize the need for run-time conversions whilst
satisfying the representation demands on all data in a pro-

gram. Boxing analysis can be facilitated by making repre-
sentation choices and boxing/unboxing operations in a pro-

gram explicit. This amounts to a translation to a language

1The elements of “small” data structures such as pointer-sized in-
teger representations may be considered simultaneously boxed and
unboxed. In the following we shall think of these as two separate rep-
resentations with associated trivial boxing and unboxing operations.

213

with explicit boxed and unboxed types and new operations

denoting boxing andunboxing operations without, however,

changing the “underlying” program. We shall call these ex-
plicit boxing and unboxing operations (repr-esentation) coer-

cions. There are, in principle, many different possible trans-
lations for the same program corresponding to different rep-

resentation choices for the data structures in the program

and different needs for representation coercions. We shall

refer to any one of these translations as a cornpietionof the
underlying program. The question then is: which comple-

tion should be chosen for a given program?
In a naive translation every expression is translated to (a

computation of) its boxed representation where operations
that need to inspect the contents of snch a representation
use explicit unboxing operations. The rationale for making
boxing explicit is that some boxing/unboxing operations can
be eliminated in the later transformational stages of snch
a compiler [P JL91], as for example in the Glasgow Haskell
Compiler. Other translations may elide some of these boxing
and unboxing operations directly; e.g., the type inference

based translations of Leroy [Ler92] and Poulsen [Pou93].

1.2 A coercion calculus for boxing

Beyond offering yet another translation we seek to formu-

late and answer the more fundamental qnestions that un-
derlie the very purpose of boxing analysis and, more gener-

ally, similar static analyses: Given two completions for the
same program, which of them is better? What does it mean
for one completion to be “better” than another completion
in the first place? Which programs, if any, have “opti-

mal” completions; i.e., completions that are bet t er than any
other for the same program? Can such optimal completions

be computed, and how? Of course, it doesn’t make mnch
sense to compare the quality of completions on the basis of

their actual run-time cost on a specific computer assuming

a specific language implementation. In any scenario where

we take the actual semantics of the langnage fully into ac-

couni the answer to the last two questions would be “no” on

recursion-theoretic grounds anyway (assnming the language
is universal, of course).

If we can pick any one of a collection of completions for a

given program it is a fundamental assumption that all com-

pletions mnst be coher-enfi i.e., they have the same observa-

tional behavior. Our approach is to assume that we know

nothing eke about the programming language than that any

two completions of the same program are coherent. For a
paradigmatic functional language we show that coherence
can be axiomatized by an equational theory; i.e., a theory
of equations of the form e’=e” where e’, e“ are comple-
tions of the same program (for a given result representation

type). This axiomatization contains the equations box; unbox
.— L and unbox; box = L, which express that first boxing and
then immediately unboxing (or the other way round) a value
(boxed value) is observationa.lly indistinguishable from do-
ing nothing at all to the value. We interpret these equations

as left-to-right rewriting rules in accordance with our expec-
tation that performing a pair of coercions is operationally

more expensive than doing nothing at all. Thk gives us a
rewriting system modulo the remaining equational axioms.
These remaining equations intuitively simply “push” coer-
cions back and forth —- e.g., from actual argument to formal

parameter in a function application — bnt they do not elim-
inate them.

The rewriting system gives us a relatively simple — and

coarse — notion of quality: if e’=+-” e“ then e“ is bet-

ter than e’, and if e’=+-* e“ for all completions e’ of a

given program then e“ is an “optimal” completion (modulo
the remaining equational axioms mentioned above). Unfor-

tunately the resulting notion of rednction is not Church-
Rosser; i.e., there are two coherent completions that have

no common reduct and are thns “locally” optimal. This is

due to the fact that a box ;unbox-redex may only be elimi-

nated at the expense of introducing a unbox ;box-redex, and
vice versa.

By prioritizing elimination of unbox; box-redexes over
box; unbox or the other way round, however, we arrive at

two formal optimatity criteria for completions. We show
that every program has a formally optimal completion at
any given representation type under each of the two priori-
tizations. This is accomplished by orienting the equations E
as left-to-right or right-to-left rewriting rules depending on
the polarity of the coercions involved. (Any simple-minded
orientation of E leads to nonconfluence and nontermination
of Knuth-Bendix completion.) The resulting two rewriting

systems can be used to compute specific optimal comple-

tions.

Formulating boxing analysis in the framework of a for-

mal coercion calculus has the advantage that the results we

obtain are extremely general and robust:

1.

2.

3.

4.

1.3

They apply to any interpretation whatsoever of the

underlying programming language; e.g., to a call-by-
value, call-by-name, or lazy interpretation of our func-
tional Iangnage.

They can be combined with other optimizations unre-

lated to boxing as the calculus makes few assumptions
about the underlying language or its implementation

technology.

They admit talking about optimality relative to an

explicit, formally specified criterion.

They leave a great degree of freedom as optimality is

accomplished up to a well-defined congruence relation
on completions; for example, the notion of optimalit y

is not overcommitted by insisting on syntactic unique-

ness.

New results

The contributions in this paper are:

A general framework and robust criterion for the qual-
ity of boxing completions, which accounts for the costs
of boxing/unboxing operations, but abstracts from
other langnage properties and implementation con-
cerns.

Proof of the existence of formally optmml (boxing)
complets ons and their uniqueness rnodulo an equa-
tional theory for moving boxing and nnboxing ope-

rations along data flow paths. Our notion of formal
optim.slity is independent of any specific properties of
the underlying programming language.

A rewriting-based algorithm for computing formally

optim~ completions, which are uniformly better than
those described in [PJL91, Ler92, Pou93] in our (for-

mal) sense.

214

● An experimental implementation of the algorithm and

test results for a call-by-value language that support

empirically that our completions are also better in
practice than those reported in the literature previ-
ously.

The boxing algorithm and the quality of its output is ap-
parently the most immediate and practically most relevant
contribution of our work. It could certainly have been pre-
sented, together with the empirical results, independently of
the coercion calculus and its formal optimality criteria. But

this would have been unsatisfactory in several respects:
With a proliferation of different algorithms for the same

problem there is a clear need for a systematic comparison
between them. Using exclusively empiricaJ data is unsatis-

factory for this purpose as they can only report on system
perform ante where the interaction of boxing with other sys-

tem properties changes frequently and is difficult to quan-
tify. Our optimality criterion is simple, natural and facili-

tates a completely formal comparison of boxing completions;

furthermore, it makes the basis of comparison explicit and

thus, if nothing else, facilitates a substantive criticism of its
rationale.

Our boxing algorithm has been developed from a system-
atic analysis of the coercion calculus and its optimality cri-

terion. Without the general framework it would doubtlessly

appear ad ~OC. It would also be impossible to say anything
about its “robustness” and global properties; for example,
the algorithm produces the same completion when given ei-

ther one of the completions of [P JL91, Ler92, Pou93] as its
initiaJ input. This follows from the coherence of all com-

pletions and the Church-Rosser and strong normalization

properties of the rewriting systems.

1.4 Notation and terminology

Since most of the notation in this paper is fairly standard,
we will only describe the notation that is not. The notation

[Z’+di]tmeans “substitute ti for the i’th occurrence of z
in t“,for some fixed ordering of occurrences of zin -t. We
will also use the term [z’wfi]tas a pattern. If a term t’
matches this pattern then the part of t’ that matches the
i’th occurrence of z in t will have to match ti. Ordinary
substitution [z +xt ‘]t will SJSObe used as a pattern in a similar
way, except that then all the occurrences of z will have to

mat ch the same expression.
We use the notation ~ for tuples, and i!i selects the i’th

element of ~. If E is a tuple of variables and ~ a tuple of

terms of the same length then [Tfi-+atis parallel substitution

of the variables iu z for the corresponding elements of ~.
Free indices are always assumed universality quantified,

i.e. if we write z,+ this means for all z ~i=tiand the range

of z is assumed given by the cent ext.
We use ~ for syntactic equality to distinguish it from

provable equality =.
We write A 1- e =+R e’ to indicate that e rewrites

to e’modulo the equational theory axiomatized by A. The
rewrit i rig rules are given by R. Often R will be a set of equa-

tions E oriented uniformly from left to right or from right
to left, in which case we shall write E+ or E+, respectively.

2 A functional language: Core-XML

Our setting is a polymorphically typed higher-order func-
tional language. We shall restrict ourselves to a smsll

core language with no primitive types, called Core-XML in
[HM93], to develop our theory. In Section 6 it is shown how

to extend our results to arbitrary type constructors such as
integers, Booleans, pairs and lists and to (monomorphically
or polymorphically typed) constants such as a fixed point
operator and primitive operations for other kinds of type
constructors.

e E Expression ; x E Variable; T c Type

u c TypeScheme

e .._..— $I,lz:r .e]eelletz:a= eine

T ..—..— & I 7--+’r

u ::= 7- Iva.a

Figure I: Syntactic categories of Cor~XM.L

The syntactic constructs for expressions, types and type

schemes in Core-XML are given in Figure 1. We call an

expression e well-formed (or simply a Core-XML expression)

under type assumption r if P 1- e : a is derivable from the
inference rules in Figure 2 for some type scheme a. It is
easy to see that there is at most one typing derivation for e,
which SJSOdetermines a.

A type normalized Core-XML expression is one that sat-

isfies the following two conditions. Type abstractions oc-
cur only as the bound expression of let-expressions; i.e.,
let x = ACY1.ArxlAan. el in ez. We shall abbreviate this

to let z = AaI ...an. el in ez. Type applications are only

allowed for variables; i.e., z{rl }{TZ }... {~,}. This will be

written as t{rl ...rn}.

PROVISO: Henceforth all Core-XML expressions will be as-

sumed to be type normalized.

Usually ML is presented as an implicitly typed language

[Mi.178, DM82]. By erasing all occurrences of types and type
schemes in expressions (including curly brackets, colons, pe-
riods and A’s) in the typing rules for Core-XML, we ar-

rive at the implicitly typed language of Core-ML expressions
[HM93]. In contrast to Core-XML an implicitly typed Core-

ML expression e may have many different typing derivations.
Every one of its typing derivations, however, corresponds to

a unique explicitly typed Core-XML expression whose era-
sure is e, and vice versa.

Our point of departure for boxing analysis is that we are

given an explicitly typed Core-XML expression or, equiva-
lently, a Core-ML expression and a specific typing derivation
for it. Even though the specific nature of typing derivations
is irrelevant for typability of implicitly typed expressions the
quality of boxing analysis is very much dependent on which
typing derivation is chosen for a Core-ML expression; i.e.,

one derivation may result in less boxing than another for the

same Core-ML expression. More on this in Section 7.

3 Explicitly boxed Core-XML

Explicitly boxed Core-XML is a refinement of Core-XML

in which representation types (boxed/unboxed types) and
conversions between these are made explicit.

3.1 Representation types

Representation types p are just the standard types of Core-
XML, together with one additional type constructor, [.].

215

17t-el:a r{z:a}l-e2:~

rt-letz:rr =elinez:~
r{z:u}+z:u

L

Figure 2: Typing rules for Core-XML

Types of the form [p] are boxed t~pes; they describe ele-

ments that have been boxed. Types with any other top-

level type constructor (in our case only -+) are unboxed
types; their elements are not boxed. Since doubly boxed

representations are useless we prohibit boxed types of the
form [[p]]. Boxed types may otherwise, however, occur in-
side both boxed and unboxed types. We add type variables
denoted by metavariables a, ,fl for unboxed and boxed types,

respectively. Type schemes are now prenex-quantified repre-
sentation types where the quantification is over boxed type

variables only. Abstract syntax definitions of representation

types, boxed and unboxed types, and type schemes are given

in Figure 3.

p e RepType; u E UnboxedTyped; rr ~ BoxedType;
c G PolyType

p ::=VIT

v ::= Crlp-+p

n’ ““– pl [v]..—

a ::= p [Vp.a

Figure 3: Representation types

DEFINITION 1 The (rmderiging) standard type (or type er-

a use) IPI of representation type- ‘p is the type- arrived--at by
erasing all occurrences of [.] in p and treating both boxed
and unboxed type variables as standard type variables. We
say that p represents Ipl. We say p is valid for (closed) Core-
XML expression e if e has type lpi. ❑

3.2 Coercions

Repre9entchorz coercions (or simply coercions) are opera-
tions that coerce an element from one representation to an-

other. The primitive coercions are

box” : u w [w]
unbox” :[V]-V

where boxu coerces an unboxed element of type w to a boxed
representation, and unbox. takes such a boxed representation
and coerces it back to the unboxed representation.

Beyond these primitive coercions we add the identity co-
ercion L. (at every type r), composition of coercions c, c’
writ ten in diagrammatical order c; c’ and coercions induced

by the type constructors. In our case these are coercions

of the form c~c’ and [cl. A coercion of the form cac’

appli~s to functions ~ by ‘(wrapping” them with the input
coercion c and the output coercion c’. The result is an un-

boxed function where c is applied to the input before it is
passed to j and c’ is applied to the result of ~ before it is

ret urned as the output. A coercion of the form [c] applies c

to the underlying unboxed value of a boxed representation
and ret urns a boxed representation for the result. We will
sometimes omit subscripts on coercions when these are not
important for the presentation.

The rules for forming coercions are displayed in Figure 4.
In the following we will use c, c’, d, etc. to denote arbitrary
coercions.

The formation rules for coercions are sufficient to con-
struct coercions that can transform a value from any one of

its representations to any other representation:

PROPOSITION 2 Let PI, PZ be arbitrary representation
types. Then

IPII = IP21 * (3C) E C:p, - pz.

Q

Indeed this is possible even without the [.]-coercion con-

structor. We have added it solely to facilitate coercion fac-

toring and simplification “underneath” boxed representa-

tions for ~+ EP+-reduction modulo q$ (see Section 5), where
we may introduce box; unbox-redexes in order to eliminate

unbox; box-redexes.

3.3 Type inference rules

The type inference system for explicitly boxed Core-XML is
almost identical to the standard type system. See Figure 5.
There are two noteworthy differences, however.

1. Quantification in type schemes is only over boxed type
variables. The fact that these type variables indeed

range over boxed types only is captured in the rule for

type application: a polymorphically typed expression

can only be applied to a boxed type, not an unboxed

type.

2. There is an additional rule for applying coercions to
expressions.

DEFINITION 3 (Erasure, completion)
The erasure (or underlying Core-XIklL ezpresszorz) Iel of

an explicitly boxed Core-XML expression e is the (standard)
Core-XML expression arising from e by erasing all occur-
rences of coercions (including angled brackets) and replac-

ing all represent ation type occurrences p by \p 1. We say e is

a (boxing) completion of Iel at type p if e has type p. ❑

4 Axiomatization of completion congruence

A given Core-XML expression e can have many completions.

Without going into the semantics of Core-XML we assume
that all completions of e at a specific representation type

216

bLp:p-p
Ec:pl---+pl’ t-c’: pz+pz’ I-c:p%+p’ I--c’: p’+p”

b C+c’ : pl’-+p2M pl-+p2’ k C;c’:p+ p“

1- boxu : v + [v] 1- unbox. : [v] w v
I-c: v’vv’

k [c]: [v] - [v’]

Figure 4: Coercion formation rules

r{z:pl}t-e:p2 rl-el:p1+p2 I’1-e2:p1

r 1-k:pl. e : p1+p2 rl-e1e2:p2

rkel:u r{~:a}t-e2:p r{$:a}Fz:a

I’1-letz: a=elinez:p

rl-e:a rl-e:b’p.ff
if /3 @ FV(r) r * e{~} : [/3*lf]~

I’ 1- A/3.e : V~.U

17i-e:r Ec:p+p’

r 1-(c)e : p’

Figure 5: Typing rules for the explicitly boxed CoreML language

have the same observational (input/output) behavior, but
possibly different performance. In fact we shall assume noth-
ing else about the semantics of explicitly boxed Core-XML,

and in fact nothing at all about the semantics of standard
Core-XML.

DEFINITION 4 (Completion congruence) Representation co-

ercions c and c’ are congruent, written c ~ c’, if they have
the same type signature p + p’. Explicitly boxed expres-

sions e and e’ are congruent, written e ~ e’, if they have the

same erasure and type (under the same type assumptions);

that is, they are completions of the same expression at the

same representation type. El

In this section we shall give an axiomatization of com-

pletion congruence by a typed equality theory. The point of
this is that the axioms can be grouped into a “pure” equality
theory E that moves coercions along data flow paths with-
out eliminating them, and a small group consisting of two
axioms that express that boxing composed with unboxing in
either order is equal to the identity coercion. In Section 5

we interpret the second group as rewriting rules modulo E

to capture the intuition that boxing and unboxing coercions

are more expensive than the identity, but that the effects

of moving along data flow paths are not taken into account.

(Note that for any specific semantics moving coercions does

make quite a difference — this is the most important part

of a semantics that is disregarded in our treatment!) -

(C;c’) ;C” = c; (c’ ;C”) (1)
C;l. = c (2)
L;c=c (3)

(c, + C2); (C,’ + c,’) = (cl’; C,) + (C2;C2’) (4)
I,+I,=L (5)

[cl] ; [C21 = [cl ;C21 (6)
[Ll = L (7)

C;boxv~ = box~ ; [c] (8)

unbox~ ;C == CC] ;unboxv~ (9)

Figure 6: Equality rules for coercions

box”; unbox” = L (d)
unbox” ;boxv = $ (~)

Figure 7: The ~ and $ rules for coercions

4.1 Coercion coherence

Consider the equality axioms in Figures 6 and 7 for coer-
cions. We assume that the coercions on both sides of an

equality are well-formed and have the same type signature.
We denote the single equality axiom box; unbox = t by 4,

and unbox ;box = L by $.

DEFINITION .5 (Coercion equality)
We say c and c’ are A-equal, written A t- c = c’, if c =

c’ is derivable from the equality axioms A and the equations
in Figure 6 together with reflexivity, symmetry, transitivity
and compatibility of = with arbitrary contexts. ❑

If A in the definition is empty we say c and c’ are equal
and write E c = c’. Note that equality is not just synt attic

identity; e.g., we have k La + La = Lm+.m.

LEMMA 6 (Coherence of coercions)

Coercions c and c’ are congruent if and only if they are

W-equal; i.e., c = c’ iff 4+ 1- c = c’ •l

4.2 Expression coherence

Let us extend the equality axioms for coercions with the

equality axioms for explicitly boxed Core-XML expressions

in Figures 8 and 9. The expressions on both sides of an
equality are assumed to be well-formed and to have the
same type in a single type environment. In other words,
the equations in Figures 8 and 9 should be understood as
abbreviations for more complex rules for typed equality. For
example, rule 10 is an abbreviation for:

17be:p rk(~o)e:p

I’l-(~P)e=e:p

217

DEFINITION 7 (Completion equality)
We say eand e’are A-equal, A t- e = e’, if e = e’ is

derivable from the axioms A together with equations in Fig-

ures 6 and 8 and rules for reflexivity, symmetry, transitivity

and compatibility of =. ❑

THEOREM 8 (Coherence of completions) Explicitly boxed
expressions e’ and e“ are congruent if and only if they are

E$@equal; i.e.,

e’ ~ e“ ifFEq$~ E e’ = e“

PROOF: (If) Assume Eq$@ ~ e’ = e“. By inspection of E
we can verify that e’ and e“ have the same erasure. Since

both e’ and e“ are completions at the same type they are

congruent, i.e., e’ G e“.

(Only if) We will prove this by induction on the struc-
ture of the common erasure of e’ and e“. We call an ex-

plicitly boxed Core-XML expression head coercion free (cf.
[CG90]) if it is not of the form (c)e. Without loss of gener-

ality we may assume that coercions are only applied to head

coercion free expressions and that every head coercion free

sub expression has exactly one coercion applied to it. This
follows from (c)(c’)e = (c’ ;c)e, and e= (c)e (see Figure 8).

Now assume that we have r 1- e’ : p and r 1- e“ : p:

Base case 1: le’1 = z{?}. Let e’ - (c’)z{~} and e“ =

(c’’) z{~}. Let r’be the type of z{~} and T“ the type

of x{~}. Note that ~’and r“ have the same type erasure
~ = r’. By Proposition 2 there exists a coercion cwith type

signature r’ - r“. Since c; C’ ~d C“ both have the same
type signature we obtain:

(c’)x{T} = Lemma 6

(C; C’’)Z{7} = Equation (11), Figure 8

(c’’) (c)~{~} = Equation (15), Figure 9

(C’’)Z{7}

Base case 2: le’1 - z follows from Lemma 6.

Inductive step 1: le’1 s Xz :r~ .el. Assume that e’ ~

(c’)h :p’, el’ and e“ G (c’’)Ax :p” .el”. Since C’ has type

signature P’-+P1’ * p and c“ has type signature p“-+.pl”
-+ p for some types PI’ and PI” by Lemma 6 there exists

a coercion d such that I#ti 1- c’ = cl’-+cz’ ;d and g$~ F c“
= c1 “+cZ”; d. In fact, without loss of generality d = LO or

d = boxu where p=[v]. So in either cases d is completely

determined by p.
This means that, under E#@-equalit y, we have

e’= (d)~z:pd .(cz’)[z+(cl’)z] el’

and

e“= (d)h:pd .(Cz’’)[Z++(CI’’) Z]el”

for some type pd and by induction

(cz’)[z+(cl’)$]el’= (cz’’)[z++(cl’’) z]el”

which proves that e’=e”.

Inductive step 2: Ie’1 s e, ez. Let e’ s (c’)(el’ ez’) and
e“ a (c”)(el” ez”). We know that there exists a coercion d
such that (d)ez’ and ez” have the same type. Let the inverse
d-l of a coercion d be a coercion such that #@ t- d-l; d = L

(such a coercion always exists according to Proposition 2).
We then have, under E@&equality:

(c’)(el’ e2’) =

(L-+c’)el’ e2’ —.

((d-’ ;d)-+c’)el’ ez’ .—

(d~~)(d-l~c’)el’ ez’ =

(d-’-+)elel’ (d)e~’ = (induction)

(d-’-+)elel’ ez” = (induction)

(L-+c’’)el” ez” =

(c’’)(el” ez”)

Inductive step 3: Ie’1 ~ let x = AiY. el in ez. We will
only show this in the case where the tuple @ has length one.

The other cases are similar. So the case we prove is Ie’1 a
let z = Aa. el in ez. Let e’ s (d’)(let z = A~.el’ in ez’)

and e“ s (d’’)(let z = A~ .el “ in ez”). Since elf and el”

have the same type erasure there exists a coercion c(~) such
that (c(/3))e1’ and e]” have the same type. We then have:

(d’)(let z = A@ .el’ in ez’) =

let x = A@. el’ in (d’)ez’ =

let z = A~ .(c(/3)-l)(c(~))el’ in (d’)ez’ =

let z = A,B. (c(/3))el’ in

(d’)([z{[v,]}~(c(~,)-1)(~{[~]})] ez’) = (induction)

let x =A/3. el” in

(d’)([~{[~i]}t+ (c(~i)-’)(~{[w,] })]ez’) = (induction)
let z = A,B. el” in (d’’)ez” .

(d’’)(let z = A~.el” in ez”)

This shows that if any two congruent completions of a

Core-XML expression are observationally indistinguishable
— a prerequisite for our assumption that we are aLlowed to

pick any completion of a program at aLl — then the observa-

tional congruence of explicitly boxed Core-XML must satisfy

E@@-equality, and vice versa. Otherwise one could find two

congruent completions with different observable behavior.

4.3 Positive and negative coercions

It is difficult to reason directly about reduction systems on
congruence classes defined by an equational theory. What

we would actually like to do is to characterize E-equality

by a canonical term rewriting system that commutes with
@-reduction and q$-reduction. Finding a confluent rewrit-

ing system for E-equality is not straightforward, however.

In particular, the E-equations cannot simply be oriented in
one direction or the other since they will inevitably lead to

critical pairs without common reducts. Consider for exam-
ple the rules of Figure 9 oriented from left to right. In the
expression

((c~c’)~z.e) e’

both rules 12 and 13 are applicable, and Knuth-Bendix com-
pletion appears not to terminate. Note that by following one
reduction path we might fail to eliminate a box/unbox pair
using ~ or @ that could be eliminated by following the other
path.

The main idea behind the reduction system for E@ J-
equality we are about to describe is that coercions may be

split up into two kinds of coercions that interact differently
with the E-equations. The two kinds of coercions are called
positive and negative coercions.

DEFINITION 9 (Positive and negative coercions)

218

lsE!YYJ
Figure 8: Equality rules for coercion application

(c -+ d)k.e = Az. (d)([zt+(c)x]e) (12)

((c + d)e) e’ = (d)(e ((c)<)) (13)

(d)let x = A~. (c)e in [z’xz{~}]e’ = let z = A/3. e in (d)([z’t--(c)z{~}] e’) (14)
(C)Z{T} = X{F’} (15)

Figure 9: Equality rules for explicitly boxed expressions

A coercion c is positive if c:+ is derivable from the rules

in Figm-e 10 and negative if c: – is derivable. ❑

A coercion may be neither positive nor negative. By

adding a superscript + or — to a coercion we indicate that a

coercion is in fact positive or negative. (These annotations

can be regarded as side conditions that have to hold before
a rule may be applied. So in the equations of Figure 11 a

superscript + on a coercion means that the coercion has to
be positive for the rule to be applicable.) However, it can be

shown that it is always possible to factor a coercion c into a
positive coercion c1 + and a negative coercion C2- such that

@J 1- c = CI’~ C2-, and into a negative coercion c]’- and a
posltlve coercion cz’+ such that #@ E c = CI’–; C2’+.

L,:+ box.:+
C:– d:+ C:+ d:+ C:+

c-+. d:+ c;d:+ [c] :+

C:+ d:–
Lr:—

C:– d:– C:–
unboxu : —

c+.d:— c;d:- [C] :–

Figure 10: Positive and negative coercions

The positive coercions alone define a subtype hierarchy
on representation types.

DEFINITION 10 We define p ~ p’ if there exists a positive

coercion c+ such that !- c+ : p - p’. ❑

PROPOSITION 11 The representation types of any (stan-

dard) type r- (i.e. , representation types whose type erasure
is r) form a finite lattice under <. ❑

4.4 A Polarized Axiomatization of congruence comple-
tions

To define our reduction system we first define a new axiom-
atization of completion congruence which takes the polarity
of coercions into account. Most importantly, the new equa-
tions can be easily oriented in one or the other direction to

yield a confluent rewriting system together with @ respec-
tively @reduction.

First we need to define notation used in our new axiom-

atization.

DEFINITION 12 For every representation type p(~), i.e. with

type variables ~, we define a coercion ~(F,~) parameterized

over the tuples of coercions E and ~ in the following way:

&(?jF) = c!i

,@lJ2 (d) = h (a,q+;2 (CJ)

[U](C,T) = [@,a)l

•1

The equations of the new axiomatization, shown in Fig-
ure 11, are those of Figure 9 where all but the last equation

have been split into two polarized equations with side con-
ditions on the polarity (+ or –) of the coercions occurring in

them. The only exception is the last equation in Figure 9. If
we had chosen to treat it analogously to the other equations

we would have obtained the following rules:

(C-)Z{T} = Z{T’} (15-’)

(C+)Z{F} = X{F’} (15+’)

Thk would, however, not be strong enough to characterize

E~@equality.

If one examines rule 15–’ more closely one will notice that c

must have signature ~I+x]p - [@--#]p where the type of z

is V,b’.p (we assume without loss of generality t,hat the type
of x is only quantified over one type variable). Furthermore,

one can show #@ E c = ~(d,d–l), where i- d : rr + # and
t-d-l:~’~x. From this one can see, if we regard rules

15–’ and 15+’ as a left-to-right rewrite rule, that rule 15-’
is more restrictive than rule 15- since it requires more of

the structure of the coercion involved.
The following lemma will be used in proving Theorem 14:

LEMMA 13 Let c1, C2, dl, etc. be tuples of coercions. Then
———

the following results hold:

1. 44 ~ @Zdl ~dz) = Z_ti,~) ;~(=,~)
2. r#J@!- p(c,r) ; ~(r,d) = ~(~,d) ; ~(~,r) ❑

Let EP be the set of equations in Figure 11. We have the
following theorem:

THEOREM 14 For all completions e and e’:

E@~Fe=e’iff EP#@i-e=e’

PROOF: (Only if) This is trivial for all equations except
equations 15+ and 15-. We will therefore cover one of these
cases here. Equation 15 - is shown by the following:

(~(c-,L))~{~}
(~(c-,(c-~’ ;c-))z{7r} : (Lemma 13)

(fl(Lc-))(P(c-, (c-) -l))z{T} = (13)

(P(~,c-))~{~’}

219

((c+ + d-)}k. e = Xz .(d-)([z~(c+)x]e) (12-)

Ax. (d+)([zt+(c-)z]e) = ((c– ~ d+))kz .e (12+)

(d-)(e ((c+)e’)) = ((c+ ~ d-)e) e’ (13-)

(((c– -+ d+))e) e’ = (d+)(e ((c–)e’)) (13+)

(d-)let< = A~.e in [z’+(c-)z{r}]e’ = let z = A~.(c~)e in (d-)([z’+z{~’}]e’) (14-)

let x = A~. (c+)e in (d+)([z’+z{x}]e’) = (d+)let z = A/3. e in [z’~(c+)z{~’}]e’ (14+)

(~(~-, ~))~{z} = (l(T, C-)) Z{F’}

(P(~, ~))~{fi} = (P(e, r))z{~’}

(15-)

(15+)

Figure 11: Polarized Equslity equations for explicitly boxed expressions

Equation 15- is shown similarly

(if) All cases except equation 15 are fairly straightfor-
ward. We will cover equations 13 and 15. First equation

13:

((c~d)e) e’ = (factoring)

((c+ad-)(c--d+)e) e’ = (13-)

(d-)(((c--d+)e) (c+)e’) = (13+)

(d-)(d+)(e ((c-) (c+)e’)) =

(d)(e ((c)e’))

Then on to equation 15. We will only proof this for the

case where the type of z have the form V,B.P (the proof for

b’~.p is similar). The signature of c in equation 15 is then

~+r]p - [,B+m’]p and we may therefore prove #@ 1- c =
p(djd–l) where 1- d: ~ - T’ and 1- d-l : r’ Q r. We now
have:

(CJx{?r}

([(dd-’))~{~}
(/JW1))(~(b))z{~}
(/j@_l))(~(d-,L))(~(d+,~))~{~}
(fl(d-’))(fl(d-,~))(~(~,d+))z{m”}
(/j@-l))(fl(L>d+))(~(d-,L))z{T”}
(/jW1))(~(@+))M@-))z{m’}
$$;;-’))(~(’,d))z{~’}

——
= (Lemma 13)

= (factoring)

= (15+)

= (Lemma 13)

= (15-)

= (Lemma 13)

= (Lemma 13)

5 Reduction of completions

The axiomatization of completion congruence by EP@/L
equality gives a “local” characterization of congruence of
completions: Any completion of a Core-XML expression e
can be transformed to any other completion of e at the same
type by substituting equals for equals; i.e., by replacing any
subexpression that matches one side of an equation by the
other side. In this section we treat @ and @ as rewriting
rules corresponding to “improvement s“ of a completion, but
taken modulo all the remaining equations.

5.1 Optimal coercions

Our aim is to find completions with a minimum of box-

ing und unboxing operations without, however, taking the
actual operational semantics of explicitly boxed Core-XML

into account beyond the fact that it must satisfy EPq$@
equality. Let us take a look at the equations for coer-

cions then. Clearly, @ and ~ eliminate primitive coercions
when applied as left-to-right rewriting rules whereas the

remaining-coercion equations just express differences in the
presentation of a coercion

(C;c’);c” = C;(c’;C”)

C;L * c

L;c=+c
I,+L+I,

(c~d); (c’~ d’) =+- (C’ ;C) - (d; c’)

[~] = L

[cl ; [c’] a [c; c’]
box ; [c] =+ c; box

[c] ;unbox ==+ unbox ;C

box ;unbox ==+ L (d-)

unbox; box ==+ L (ti+)
unbox ;C; box ==+ [c] (*-)

Figure 12: Coercion reduction

DEFINITION 15 (Formally optimal coercions)

A coercion c is (formally) optimal if all congruent coer-
cions c’ = c can be reduced to c by @&reduction. ❑

Clearly, every coercion equal to an optimal coercion is

also optimal. We shall see that, for every coercion type
signature I- - r’ with Irl = 1~’1, optimal coercions exist and
are unique modulo coercion equality.

Consider the coercion reduction rules in Figure 12. We
write c ==+; c’ if c reduces to c’ by these rules.

THEOREM 16
The coercion reduction system in Figure 12 has the fol-

lowing properties.

1.

2.

3.

4.

5.

It is confluent.

It is strongly normalizing.

If c =.+~ c’then 1- c =+$+ c’ .

It preserves polarity; that is, if c is positive or negative
and c -L c’, then c’ is also positive, respectively
negative.

If c is a normal form then:

● CEL,

220

e C = box,

. c - unbox,

● c G C’-+C”, C ~ (C’+C”) ;box, 01 C E

unbox; (c’~c”) where c’ and c“ are normal forms,

or

● c - [c’] where c’ is a normal form.

❑

This theorem guarantees that optimal coercions exist

and are unique:

COROLLARY 17
For all p, p’ with Ipl = Ip’1 there exists a unique optimal

coercion R c: p ---A p’. ❑

By analysis of R-normal forms we can also guarantee

that all optimal coercions can be uniquely +/– and –/+

factored:

COROLLARY 18

1. Every optimal coercion c has a unique +/–-factoring;

that is, there exist unique d~, d; such that 1- c =

d~;d~.

2. Every optimal coercion c has a unique –/+-factoring;

that is, there exist unique d;, d: such that E c =

d~; d;.

❑

5.2 Optimal completions

We saw that all congruent coercions can be #@-reduced to a
unique optimal coercion. For explicitly boxed Core-XML ex-

pressions we could interpret # and @ as left-to-right rewrit-
ing rules rnodzdo (or under) E; that is, on the E-congruence

classes of explicitly boxed Core-XML expressions. This ex-
presses that we consider any two E-equal completions as

indistinguishable in terms of boxing performance in a for-
mal sense whereas rewriting with # or ~ is an improvement

of the boxing performance of a completion.
Unfortunately, q$+-reduction on E-congruence classes is

not Church-Rosser; that is, there are congruent completions

that have no common reduct. Consider, for example, the
two completions

el - let id:Vp.p-8 = A~.Ay:~.y in
(k:int .Z + (unbox) (id{[int]} (box) x))

(if . . . then 2 else (unbox) (id{[int]} (box) 5))

ez = let id:V~./3~/3 = A~ .Ay:,f3 .y in
(~x:[int] . (unbox)z + (unbox) (id{[int]} z))

(if . . . then (box)2 else (id{[int]} (box) 5))

Neither one of them is reducible to the other by @&

reduction modulo E. The main difference between el and

ez is the representation type of z. In el it is unboxed whereas

in ez it is boxed. By introducing a box;unbox-pair in front
of the constant 2 in el we can ~-reduce (modulo E) el to

ez. Conversely, by int reducing an unbox ;box-pair in front of
(id{[int]} (box)5) in .2 we can q$-reduce (modulo E) ez to

el. Thus we can trade off a box;unbox-redex for an unbox; box-
redex.

By prioritizing elimination of one kind of redex over the
other we end up with a formal notion of optimality that en-

tails that, for any given represent ation type, every source

Core-XML expression has an optimal completion that is

unique modulo EP-equality.

5.3 ~-free and q$-free completions

In the example above we saw that by introducing a redex

of one kind (say ~) we could eliminate a redex of the other
kind (@). Thk is an improvement if redexes of the second
kind are considered arbitrarily more expensive than redexes
of the first kind. But it is not obvious which of the two
kinds of redexes should be considered more expensive. Thus
we shall pursue two different notions of optimdity. In the

first we get rid of all @redexes first — even at the cost

of introducing additional gi-redexes — and then getting rid

of all @redexes without letting @-redexes slip back in. In

the second we, dually, get rid of all @-redexes first, possibly

introducing new @-redexes, and then eliminate all +-redexes

without readmitting @redexes.

DEFINITION 19 (@-free completions, qLfree completions)

1.

2.

We say a completion e is ~-}ree if every congruent com-
pletion e’ ~ e v-reduces to e under E@-equality; i.e,

Eq$ + e’ *$ e.

We say a completion e is q$-free if every congruent com-

pletion e’ ~ e ~-reduces to e under E@-equality; i.e.,
E$ k e’ =+; e.

❑

Because of the strong global requirement that all congru-

ent completions must be ~-reducible modulo Ed to c for c to

be called ~-free it is not even clear that @-free completions
(or @free completions) exist. This can be shown, however,

by orienting the EP-equations from right to left, treating
them as rewriting steps modulo q$-equality, and combining

them with @&reduction on coercions. We shall refer to
the resulting system somewhat loosely as @-E--rewriting

modulo ~, even though ~-rewriting is not modulo 4.

LEMMA 20 (Properties of ~+ E~-reduction modulo 4)

@- E~-reduction modulo c# is canonical; that is, it is
strongly normalizing and confluent.

PROOF: Strong normalization: Without loss of generality
we may assume that every completion has exactly one coer-
cion applied to each subexpression in the underlying Core-
XML expression, since a consecutive coercion application

(c)(cf)e is equal to (c’; c)e and a subexpression e without a
coercion is equal to (J)e.

Let c1, c~ be the vector of all coercion occurrences
in a completion in some particular order such that they are

in one-to-one correspondence with the subexpressions of the
underlying Core-XML expression. Since completion rewrit-

ing does not change the underlying Core-XML expression,

a completion rewriting step corresponds to a rewriting step

on this vector.
A ~+-reduction step operates on a single element of the

coercion vector above. By Theorem 16 #@-reducing a coer-
cion is strongly normalizing. Thus there can be only finitely
many @reduction steps at the beginning of the reduction or
after an EP- step is executed.

221

An E; step generally operates on several coercions in
the coercion vector simultaneously. Consider the type sig-

natures of the coercions in the coercion vector. An E=- step
rewrites at least one coercion F c: p --+ p’ to a new coercion

c’ that has domain type or range type properly increased in
the subtype hierarchy of Definition 10. Since the subtype

hierarchy has only finite ascending chains (Proposition 11)
it follows that EP- steps can only be applied a finite number

of times. Thus every @- EP- -reduction sequence is finite.

Confluence: Since ~+ E~-rewriting modulo i#Jis strongly

normalizing it is, by Newton’s Lemma, sufficient to show
local confluence; that is, if e has overlapping redexes and
reduces by single rewriting steps to e1 and ez then there
exists a common reduct e’ to which both el and ez reduce,
possibly in several steps.

Let us consider such triples e, el, e~. By Theorem 16 y@-
reduction on coercions is confluent. Note that ~-redexes do

not overlap with any Ep+ -redex due to the polarization and
orient ation of the EP rules. We only have to worry about

overlaps of EP+ -rules modulo ~-equality. There are only two
kinds of overlaps:

1. Application of the same rule to the same subexpres-

sion, only with different coercions; e.g.,

((c; ~ c;); C)kz.e =+ (E)Aq.(c~)([z w (c~)z]e)

and

((d; + d;); Z)kz.e ==$. (d) Az.(dJ)([z t- (d~)z]e)

where

~~(c; +c;);c=(d; +d:); d.

In this case it is sufficient to show that

b E_*+ C;; c;

~l-d~$d;;d:

for some positive c:, d: and negative c1-, d4 –, where

c: and d: have the same range type p, since then

we can apply the same rule again to each of the two

different reducts to get a common reduct. By choosing
the maximal representation type greater than domain

types of G and d for p this is easily accomplished.

2. Overlaps due to three pairs of adj scent rules in Fig-

ure 11: 12–/12+, 13–/13+, and 14–/14+. Let us con-
sider 12-/12+:

(c; + df)kz.(d~)([z w (c~)z]e)

can be rewritten to

(c; ~ d~)(c~ + d~)~z.e

and to

kz.(d~)(d~)([z + (c~)(c~)z]e).

For the first redllct we get furthermore

.—

=

+; (+/--fact.)

Similarly, we can rewrite the second reduct to the same
final completion above.

~z.(d~)(d~)([x + (c$)(c~)z]e) =

k.(d;; df)([z t-+ (c;; c~)z]e) *J (+/--fact.)

ku.(d~; dj)([z * (c:; c~)z]e) =

~~.(d:)(dj)([~ * (c;)(c~)~]e) *EF

(c: + d~)k. (df)([z E-+ (c~)z]e)

In these reductions we used the fact that every coer-
cion can be @@-reduced to a +/—-factored coercion by

Corollary 18.

The other two pairs of rules with critical pairs are han-
dled completely analogously.

This completes the proof. ❑

Having a canonical reduction system for EP#@-equality
and thus for congruence it follows that every congruence

class of completions contains both @-free and #-free com-
pletions.

THEOREM 21 (Existence and uniqueness of ~-, resp. q$-free

completions)
Let e be a (closed) Core-XML exrnession and let o be a

valid

1.

2.

,
represent ation type for e.

Then e has a @-free completion e’ at p; e’ is further-

more uniquely determined up to EP qkequalit y.

e has a @-free completion e“ at p; e“ is uniauely de-. .
termined up to EP&equalit y.

PROOF: We only give a proof of 1. The proof of 2 is similar.

(It requires a lemma analogous to Lemma 20.)
Consider all the (congruent) completions of e at p. By

Theorems 8 and 14 we know that they are all EP@@equal,

By Lemma 20 ~- 11~-rewriting modulo ~ is canonical. It

reduces any two congruent — and thus EP~ +-equal — com-
pletions to a normal form e.f that is unique up to @-equality.

Thus enf is a @free completion of e. It can be shown that
any ~-free completion of e at p must be E= ~-equal to e~fi
❑

Intuitively, a @-free completion “prefers” to keep data in
a boxed representation and unboxes a representation only
when it is sure the unboxed value is required by some opera-
tion. This way passing arguments to polymorphic functions
and returning their results can be expected to be efficient
whereas operations requiring unboxed data such as integer

operations may be inefficient due to the cost of unboxing
arguments and boxing the results.

Dual to this, a ~-free completion prefers to keep data
in unboxed representation; it boxes a value only when it is

sure to be required due to a call to a polymorphic function.
Thus primitive operations will generally be executed fast as

no coercions need to be performed for neither the arguments
nor the result, but calls to polymorphic functions may be ex-

pensive due to the need for boxing (parts of) the arguments
and unboxing (parts of) the resnlt.

Since the degree of polymorphism in a program tends
to be greatest when higher-order functions are used a @
free completion will generally be better for higher-order pro-
grams, especially if there is little “ground type” processing

222

such as arithmetic operations. On the other hand, @free
completions will generally do best where there is little poly-

morphism and/or lots of operations on ground types.

The rules for @+ E~-rewriting modulo @ suggest an ex-
plicit construction of ~-free completions: take an arbitrary

completion and execute the @-reduction system until a nor-

mal form is reached . Analogously for @-free completions.
An even simpler method consists of devising syntax-directed

translations that produce a ~-free or qLfree completion di-

rectly.

The canonical construction of a ~-free completion con-
sists of keeping all data in their “maximally” boxed repre-
sentation (i.e., representing a standard type by the maximal
type in the representation type hierarchy) and boxing a un-

boxed value as soon as it is produced by some operation and
unboxing it just before it is used by some operation.

The canonical construction of a &free completion con-
sists of keeping all data in their “minimally” boxed represen-

tation where an unboxed value is only boxed just before it

is passed to a polymorphic function and the result of a poly-

morphic function is immediately unboxed. This is actually
the construction described by Leroy [Ler92].

5.4 Optimal @-free/@-free completions

The two constructions above for a @-free and a ~-free com-
pletion are canonical since they use a universal standard

representation (maximally boxed or minimally boxed) for all
data independent of their context. They are not “optimal”

since they typically cent ain many q$-, respectively +-redexes

modulo EP-equality. We shall now set out to construct opti-

mal @-free and ~-free completions, which have no remaining

redexes — and are thus @q$-normal forms modulo E.

DEFINITION 22 (Optimal @-free/@-free completions)

1. A completion e is a (formally) optimal $-free comple-
tion if e is ~-free and every congruent ~-free comple-
tion e’ ~-reduces to e modulo E; i.e., E k e’ =+$ e.

2. A completion e is a [formally) optimal #-free comple-
tion if e is #-free and every congruent +-free completion
e’ ~-reduces to e modulo E; i.e., E 1- e’ ~~ e.

u

1$’e have shown that @-free completions are EpqLequal,
and ~-free completions are EP@-equaL There are canonical
rewriting systems for ~-reduction and ~-reduction modulo
Ep. As a result we obtain our main theorem:

THEOREM 23 (Existence of $-free and q$-free optimal com-

pletions)
Let e be a (closed) Core-XML expression and let p be a

valid represent ation type for e. Then e has both an optimal

t$free completion and an optimal ~-free completion at p.
Furthermore, both are unique modulo EP. !2

For the proof we employ again a rewriting system. ThE
time we use q$+ E~-rewriting. This rewriting system oper-
ates on equality classes defined by the coercion equations in

Figure 6 and the application equations in Figure 8. Note
that the EP-equations are oriented from left to right, oppo-

site to the orientation we had chosen for ~- EP+-reduction
modulo @.

The proof of the theorem is omitted. It is analogous to
the proofs of Lemma 20 and Theorem 21.

6 Implementation

We have written a prototype implementation in Haskell of

our rewriting systems. The implementation handles the
Core-XML language extended with a conditional, pairs, a

fixed-point operator and arbitrary polymorphic constants.

Polymorphic constants enable us to introduce lists by just

adding a list type to the implementation.
The implementation is parameterized in such a way that

one can specify from what canonical completion reduction
is going to start, and what reduction system is to be used:
(4 F c’ =+-* +-E; c, + C’ =+&~- C, @ t_ C’ ==+;-E~ C,

or 1- c’ =+.$- ~~ c). (Recall that reduction to an optimal

completion involves two phases.)

Running the system will produce a normal form com-
pletion in the form of an SML-program in which box and

unbox operations behave like the identity function, but also

perform profiling operations. That is, besides returning its

input the box and unbox coercions count how many times
they are called. The final result of running such an SML

program is the actual result together with a count of the
box and unbox operations executed.

6.1 Adding new type constructors

Adding new type constructors like pairs, list, etc., is quite
simple. If we add a new type constructor (e.g., for list types

p list) we also have to add a new constructor (e.g., map c) on

coercions, and we have to extend Figure 6 with some new

equations for this new coercion constructor. For list these

rules are
map LP = Lp ttst

map (c ;d) = (map c); (map d) In terms of category theory

type constructors can be seen as functors, and the rules
above are simply the two conditions that must hold for a

functor.

6.2 Handling of primitives

Extending our work to handle language primitives and poly-
morphic constants is straightforward and elegant. We will
show how one can derive very natural rules for conditionals

directly from rules 15- and 15+ of Figure 11. The type of
the conditional is if_ then_ else_: ‘v’a.(bool, cr, a)~a. Treat-

ing the conditional as a free variable we see that equations
15- and 15+ provide the necessary and sufficient coherence

conditions. Since language primitive are implemented “in-
Iine” we can dispense with the requirement that they be

applied only to boxed types. Instantiating equation 15- to
if - then - else _ yields

(~~~~*P,*P~+c-)(if _ then _ else .){/}=
((Lbool,C-,C-)-+Lp) (if _ then_ else _){p}

for any negative coercion c– : p’ --+ p. Applying both sides
of the equation to argument (el, ez, e3) we obtain the natural

equation

(c-)if el then e, else e, = if el then (c-)ej else (c–)es

In this way one can develop specific rules for program con-
structs like condition al, fix-point operator, pairing, and

primitive operations. Polymorphic constants can be han-
dled directly by ueing rules 15- and 15+.

223

We give one more example to show the connection
of equations (15), (15-), and (15+) to what Wadler has

termed “free theorems” (see Reynolds [Rey83] and Wadler
[Wad89]). Assume that we have a function r such as reverse
with type VIY. a list-+a list.If we instantiate rule 15– to
this we get

(t-map c-)r{p’} = (map c--+~)r{p}

but this is essentially, if we disregard the instantiation, the

same as

map c– or=romapc–

which is a well-known free theorem.

6.3 Performance results

Figure 13 gives results of some experiments performed with
our implementation. The six programs that were selected

for the experiments were: insert-sort, a insert sorting pro-

gram where the insert function is polymorphic; flip-list,

which “flips” the elements of a list of pairs of integers;

leroy, which is an almost “pathological” program for which

Leroy’s benchmark shows a major slow-down compared to

a fully boxed implementation; pouken, a program for which

Poulsen [Pou93] reports that his algorithm gives very poor
results (30 0/300 box/unbox-operations); sieve, which com-

putes the prime numbers between 1 and 100; and poly, a

constructed example program with a lot of polymorphism.
The example programs insert-sort, flip-list, leroy, pouken
are all taken from [Pou93].

For all six programs we have generated three comple-
tions, the optimal ~-free normal form, the optimal q$-free

normal form and Leroy’s completion. We have run the three
completions and counted the number of box and unbox ope-

rations performed. Figure 13 shows the results.

The results indicate that the optimal @-free normal form

completions found by our system are generally better and
oft en much better than Leroy’s completion, especially when
a lot of polymorphism is involved, like in poly. In one case,

sieve, Leroy’s completion performs fewer unbox-operations
than the optimal @-free normal form we produce. The rea-

son for this is that the optimal @free completion we produce
places unbox operations as “late” as possible thus possibly

duphcating unboxing operations.

7 Related work

7.1 Boxing

The substantial cost of manipulating data in boxed represen-
tation, especially for numeric programs, has been observed

in both dynamically typed high-level languages like LISP
and statically typed polymorphic languages such as Stan-

dard ML, and Haskell.
Most of the efforts in LISP implementation have focused

on optimizing number representations by keeping them in
unboxed form [Ste77, BGS82, KKR+ 86]. Peterson [Pet89]

uses an elaborate execution-frequency based criterion for the

cost of representation coercions. In this setting he shows
how the optimal placement of coercions can be reduced to a
well-known network flow problem. Common to all these ef-

forts is the intent to optimize representations of atomic data,
particularly numbers. Indeed in Peterson’s framework ope-
rations on pairs and lists simply require boxed arguments.

rProgram

insert-sort

E
flip-list

leroy

poulsen

sieve

poly

Completion

opt. @free norm.

opt. #-free norm.

Lerov

opt. @-free norm.

opt. ~-free norm.

Lerov

opt. +-free norm.

opt. #-free norm.

Leroy

opt. @-free norm.

opt. #-free norm.

Leroy

opt. @-free norm.

opt. @free norm.

Leroy

opt. t$free norm.

opt. #-free norm.

Lerov

m
289 307

156 307
I

20 I 20

4
30 35

20 20

709 709

446 446

1219 1219

3 3

3 3

31 31

=T--=-l
436 I 748

411 748

=t=lu
Figure 13: Performance: benchmarks

Steenkiste and Hennessy, however, have found that in a suite

of ten LISP programs up to 80% of the representation coer-
cions are list tagging/untagging operations.

Peyton Jones and Launchbury [P JL91] and Leroy [Ler92]
suggested making representation types and boxing and un-

boxing operations explicit in programs. Even though there
are some technical differences, the languages they use are at

the core the same: Core-ML with explicit boxing/unboxing
coercions.

Peyton Jones and Launchbury do not provide a method

of inferring a completion, but concentrate on the seman-
tics of their explicitly boxed language and on optimization

of boxing by program transformation. Those optimizations
are, for example, a form of common sub expression elimi-

nation that cannot be formalized in our framework as the
transformations may change the underlying program.

Leroy describes a translation of Core-ML expressions to

explicitly boxed Core-ML expressions. This translation is
not deterministic as it depends on the specific typing deriva-
tion of the underlying Core-ML expression, but every trans-

lation of such a source Core-ML expression is a completion
in our sense (not the other way round, however). The ex-

perimental results of incorporating his boxing analysis in
the Gallium compiler for CAML Light show that the result-

ing performance can be drastically different from the orig-
inal compiler that uses canonically boxed representations.

The results, though, are not uniformly better, The canon-
ically boxed completions are +-free whereas Leroy’s is @

free in our terminology. The results are in line with our
general considerations that indicate that monomorphic pro-

grams should generally fare better with a @-free completion
whereas highly polymorphic programs are likely to be bet-
ter off with a +-free completion. Our rewriting system for

@free completions will improve the result of Leroy’s comple-
tion by eliminating all @redexes, and our rewriting system
for @-free completions will improve the canonically boxed
completion by eliminating all g$-redexes.

224

Using Leroy’s framework Poulsen [Pou93] presents a

more involved translation, but draws on constraint solving

to eliminate more boxing/unboxing operations than Leroy’s

translation in many, but not all cases. The interesting aspect

of Poulsen’s completions is that they, just like our optimzd
completions, are not required to have a canonically defined

representation type for the types occurring in type appli-

cations as in Leroy’s work, but determines an appropriate

representation type as part of the constraint solving process.
On the other hand it appears that some boxing/unboxing

operations are built into the constructors of the language
and are not accounted for in the question of optimizing the

boxing in the program.
Given a Core-ML expression with type r the result of a

boxing analysis depends on the particular typing derivation
chosen. Leroy’s completion uses implicitly the derivation
obtained by Algorithm W [Mi178] since his translation per-
forms type inference and boxing simultaneously where let-

bound variables receive the principal type of the bound ex-

pression. (Peyton-Jones/Launchbury and Poulsen also ap-
pear to assume that type inference is performed in the style
of Algorithm W.) The principal type of a function is the
“most” polymorphic type and thus imposes the most box-
ing demands on the arguments to the function. A “more”

monomorphic derivation, on the other hand, could still yield
the same type for the whole expression, but using more

monomorphic types for the local variables. Bj@ner gives an
algorithm called M for finding a minimally polymorphic typ-
ing derivation [Bj@92]. Minimally polymorphic derivations

do not aJways exist, but his algorithm generally lowers the

local degree of polymorphism in comparison to Algorithm

W. Note that our boxing analysis does not presuppose a

specific typing derivation for a Core-ML expression, but in-
terfaces with any of its type derivations, which is represented
by an explicitly typed Core-XML expression.

7.2 Coherence and equivalence

The notion of coherence appeared first in computer sci-

ence literature in the work of Breazu-Tannen, Coquand,
Gunter, Scedrov [BTCGS91, BTGS90] and Curien, Ghelli

[CG90, Ghe90]. They use it to give interpretations of sub-

type based systems, where application of the subtyping rule

is interpreted by an (explicit) coercion. Since a given pro-

gram with subtyping may have many different translations

it is integral to prove that all of them are coherent for the se-
mantics (via arbitrary translation and interpretation of the
target program) to be well-defined.

Thatte describes a method for inferring very powerful
implicit coercions between isomorphic types in a type in-

ference system enriched with coercions between arbitrary
isomorphic types. Our application can be viewed as simple
variant of this problem as arbitrary representation types of

the same standard type — and only those — can be coerced
to each other. On the other hand Thatte does not deal with
optimizing the coercions required in this fashion.

The notion of completion and its congruence theory is
inspired and closely related to the work reported in [Hen93],
which explicates type tagging and untagging operations in
dynamiczdly typed languages. The purpose of doing so is
completely analogous to boxing analysis: to eliminate most

statically type tagging and untagging operations and to im-
plement only the remaining ones whiIe still obtaining “safe”
program execution; i.e., well-defined program behavior. See

also the work by Cartwright, Fagan and Wright on soft typ-

ing [CF91, WF92].

8 Conclusion and further work

We have presented a calculus, formal optimality criteria and

rewriting-based algorithms for finding good representations

of data as boxed or unboxed data in a polymorphically typed

programming language. The word “good” here is to be un-

derstand in a very general and broad sense. What has been
left out is a detailed analysis of specific language properties

and implementation considerations that have an effect on

the actual performance. This haa been done to make the

results “universal)’ and applicable in different settings, even
different semantics of the same language.

Judging by experimentation with some short Standard
ML programs our “formally” optimal completions also tend
to be consistently better in practice than previously de-
scribed boxing analyses if we count only the number of box-

ing/unboxing operations executed. Since no implementation
decisions are made at the time the boxing analysis is con-
ducted its output should combine well and without much
interference with later implementation phases.

The general framework of treating boxing analysis as a
translation of a program to a language with explicit boxing

and unboxing operations, due to Leroy [Ler92] and implicit

also in Peyton Jones and Launchbury [PJL91] encapsulates

boxing analysis as a single phase. The representation type of
an explicitly boxed program specifies its interface and thus

allows separate compilation of program modules.
There are several problems with making full use of

boxing-optimized programs:

1.

2,

Garbage collection often requires “tagging” of heap-
allocated data with explicit type and size information.
Thus an unboxed representation may well have to be

tagged (= boxed) anyway to accommodate the garbage
collect or.

A boxed representation is the result of an evaluation.
In lazy languages often boxed representations are re-

quired since the evaluation of an expression is not stat-

ically known to terminate or to be advantageous. Thus

an expression determined to be best kept in unboxed

form by our boxing analysis may still have to be boxed

at run-time.

For the future we plan to devise efficient algorithms for
computing optimal boxing completions, which also take ac-
count of control dependencies and carefully place coercions

at points where they get executed with minimum run-time
frequency. We expect to use analyses such as Peterson’s

[Pet89] for this purpose.

Finally, we intend to integrate our boxing analysis af-
ter region inference has been performed into the region-
based implementation of Standard ML currently underway
at DIKU (see [TT94]). The use of region-based memory
management also obviates the need for global garbage col-
lection and thus the first of the two restrictions above.

Acknowledgements

We would like to thank Neil Jones for first pointing out
the applicability of the framework of dynamic typing to box-
ing analysis. Special thanks go to Eigil Rosager Poulsen

225

from whose thesis most of our test examples were taken.

We would aJso like to thank the following people with whom

we have had interesting and fruitful discussions on formally
optimaJ boxing: Anders Bondorf, Christian Mossin, Robert

Gluck, David Sands and Mads Tofte.

References

[BGS82]

[Bj@92]

[BTCGS91]

[BTGS90]

[CF91]

[CG90]

[DM82]

[Ghe90]

[Hen93]

[HM93J

[KKR+86]

R. Brooks, R. Gabriel, and G. Steele. An op-
timizing compiler for lexicaJly scoped LISP. In
Proc. SIGPLAN ’82 Syrnp. on Compiler- Con-
struction, Boston, Massachusetts, pages 261–
275, June 1982. SIGPLAN Notices, Vol. 17,

No. 6.

Nikolaj Bj@ner. Minimal typing derivations.
DIKU Student Report, July 1992.

V. Breazu-Tannen, T. Coquand, C. Gunter,
and A. Scedrov. Inherit ante as implicit coer-

cion. Information and Computation, 93(1) :172–
221, July 1991. Presented at LICS ’89.

V. Breazu-Tannen, C. Gunter, and A. Scedrov.
Computing with coercions. In M. Wand, edi-

tor, Proc. ACM Symp. on Lisp and Functional
Programming (LFP), Nice, France, pages 44-
60, 1990.

R. Cartwright and M. Fagan. Soft typing.

In Pr-oc. ACM SIGPLAN ’91 Conf. on Pr-o-
grarnming Language Design and Irnpiementa -

tzon, Toronto, Ontario, pages 278-292. ACM,
ACM Press, June 1991.

P. Curien and G. Ghelli. Coherence of sub-

sumption, In A, Arnold, editor, Proc, 15th Coil.

on Trees in Algebra and Programming, Copen.

hagen, Denmark, pages 132–146. Springer, May

1990.

L. Damas and R. Milner. Principal type
schemes for functional programs. In Proc. 9th
Annual ACM Syrnp. on Principles of Program-
ming Languages, pages 207–212, Jan. 1982.

G. Ghelli. Proof Theoretic Studies about a

Minimal Type System Integrating Inclusion and
Parametric Poigmorphisrn. PhD thesis, Uni-
versit a di Piss, Dipartimento di Informatica,

March 1990.

Fritz Henglein. Dynamic typing: Syntax and
proof theory. Science of Computer- Program-
ming, 1993. Special Issue on European Sympo-
sium on Programming 1992 (to appear).

Robert Harper and John Mitchell. On the
type structure of Standard ML. ACM Transac-

tions on Programming Languages and Systems
(TOPLAS), 15(2):211-252, April 1993. Based

on paper presented at POPL ’88.

D. Kranz, R. Kelsey, J. Rees, P. Hudak,
J. Philbin, and N. Adams. ORBIT: An op-
timizing compiler for Scheme. In Pr-oc. SIG-
PLAN ’86 Symp. on Compiler Construction,
pages 219-233, 1986.

[Ler92]

[Mi178]

[Pet89]

[PJL91]

[POU93]

[Rey83]

[Ste77]

[TT94]

[Wad89]

[WF92]

X. Leroy. Unboxed objects and polymorphic
typing. In Proc. 19th Annual A CM SIGPLAN-

SIGA CT Symposium on Principles of Program-
ming gLanguages (POPL), Alb uquerque, New

Mexico, pages 177–188. ACM Press, Jan. 1992.

R. Milner. A theory of type polymorphism in
programming. J. Computer and System Sci-
ences, 17:348–375, 1978.

J. Peterson. Untagged data in tagged envi-
ronments: Choosing optimaJ representations

at compile time. In Proc. Functional Pro-
gramming Languages and Computer Architec-

ture (FPCA), London, England, pages 89–99.
ACM Press, Sept. 1989.

Simon Peyton Jones and John Launchbury.

Unboxed values as first class citizens. In

Proc. Conf. on Functional Programming Lan-

guages and Computer Architecture (FPCA),

Cambridge, Massachusetts, pages 636-666.
Springer, Aug. 1991. Lecture Notes in Com-

puter Science, Vol. 523.

Eigil Poulsen. Representation analysis for ef-
ficient implementation of polymorphism. Mas-
ter’s thesis, DIKU, University of Copenhagen,
1993.

J. Reynolds. Types, abstraction and parametric

polymorphism. Information Processing, pages

513-523, 1983.

G. Steele. Fast arithmetic in MacLisp. In Proc.

1977 MA CSYMA User-s’ Conference, NASA

Scientific and Technical Information Oficel

Washington, D. C., July 1977.

Mads Tofte and Jean-Pierre TaJpin. Imple-
mentation of the typed call-by-value ~-calculus
using a stack of regions. In Proc. 21st An-
nual ACM SIGPLAN–SIGA CT Symposium on
Principles of Programming Languages (P OPL),
Portland, Oregon (this proceedings). ACM,

ACM Press, Jan. 1994.

P. Wadler. Theorems for free! In Pr-oc. Func-
tional Programming Languages and Computer
Architecture (FPCA), London, England, pages
347–359. ACM Press, Sept. 1989.

A. Wright and M. Fagan. Soft typing and global
represent ation optimization. Manuscript, July
1992.

226

