
Flow Analysis and Optimization of LISP-like Structures*

I. Introduction

In [12] the authors introduced

by

Neil D. Jones & Steven S. Iluchnick

Department of Computer Science

The University of Kansas

Lawrence, Kansas

the concept of

binding time optimization and presented a series

of data flow analytic methods for determining some

of the binding time characteristics of programs.

In this paper we extend that work by providing

methods for determining the class of shapes which

an unbounded data object may assume during execu-

tion of a LISP-like program, and describe a number

of uses to which that information may be put to

improve storage allocation in compilers and

interpreters for advanced programming languages.

We are concerned chiefly with finding, for

each program point and variable a finite descrip–

tion of a set of graphs which includes all the

shapes of values the variable could assume at that

point during the execution of a program. If this

set is small or regular in structure, this

information can be used to optimize the program’s

execution, mainly by use of more efficient

storage allocation schemes.

In the first part we show how to construct

from a program without selective updating a tree

grammar whose nonterminals generate the desired

sets of graphs; in this case they will all be

trees. The tree grammars are of a more general

form than is usually studied [8,191, so we show

that they may be converted to the usual form.

The resulting tree grammar could naturally be

viewed as a recursive type definition [111 of the
values the variables may assume. Further,

standard algorithms may be employed to test for

infiniteness, emptiness or linearity of the tree

structure.

In the second part selective updating is

allowed, so an alternate semantics is introduced

which more closely resembles traditional LISP

implementations, and which is equivalent to the

tree model for programs without selective

updating. In this model data objects are

directed graphs. We devise a finite approximation

method which provides enough information to detect

cell sharing and cyclic structures whenever they

can possibly occur. This information can be used

to recognize when the use of garbage collection or

of reference counts may be avoided.

The work reported in the second part of this

paper extends that of Schwartz [17] and Cousot and

*
The work reported here was performed under the

partial support of National Science Foundation

grant MCS76-80269.

66045 USA

Cousot C71. They have developed methods for
determining whether the values of two or more

variables share cells, while we provide information

on the detailed structure of what is shared. The

ability to detect cycles is also new. It also

extends the work of Kaplan [13], who distinguishes

only binary relations among the variables of a

program, does not handle cycles, and does not

distinguish selectors (so that his analysis applies

to nodes representing sets rather than ordered

tuples).

II. Programs with Tree–like Data

In the first part of this paper, we shall

carry out our analyses on a simple programming

language called SL (Structure Language) whose

syntax is as follows ‘

program + {[label:] stint}+

s tmt + assi~n I if I goto

assign + var := exp I var := input I

output := exp

if + if test goto

test + atom exp I nuL2 exp I var {=1+} var

goto + goto label

exp + atom I var I var.sel I

eons(exp {, exp}*)

We assume that instances of the syntactic classes

var, sel, atom and label are members, respectively,

of the sets Var, Sel, Atom and Label which are

pairwise disjoint.

Informal Discussion

The langua~e SL closely resembles LISP with

the PROG feature but without functions or p–lists,

and extended to allow arbitrary numbers of
selectors. See Reynolds [16] for met~~ds to

handle recursively–defined functions.”

The semantics of SL are essentially those of

LISP, with two minor exceptions: the customary

uses of NIL (a special atom in LISP) must be done

$, A
Reynolds’ work came to our attention after this

development was completed. He treats a subset of

LISP with recursive function calls and without

sequential execution. It seems clear that the two
methods could be combined.

244

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.© 1979 ACM 0-12345-678-9…$5.00

via the empty or undefined data structure L; and

any attempt to apply a selector (e.g., CAR, CDR)

to an atom or L will result in program abortion

instead of being “undefined”.

In LISP without selective updating operations

it is natural to view the value of a variable as a

tree without regard to cells, pointers, etc. Each

internal node will have an edge labeled s leading

to a subtree, for each s in the set of selectors

Sel = {sell,selm}. If Tl,Tm are trees,

eons(T ,...
1

,Tm) denotes the tree consisting of a

root node, with edges labeled sel
1’

. . ..sel
m

leading to the roots of Tl,Tm. respectively.

If T has this structure, then T.sel denotes the
i

subtree T..
1

All trees in examples in this paper will use
the fixed set of selectors Sel = {hd,tl}. Trees
will be given pictorially with the root at the
top, leaves at the bottom, and atoms labeling the
leaves. Selectors may be omitted for convenience,
in which case the edge directed southwest (south-

east) from a node goes to the “hd” subtree (“tl”
subtree).

Semantics of SL

The value of an atom is an element of the set

ATOM and is given by the function ~ Atom +ATOM.

We assume that atoms are otherwise unspecified

simple data objects -- numbers, bounded-length

character strings, booleans, etc.

Trees are defined formally by the sequences

of labels encountered on paths from the root to

the leaves. Such a sequence is written as

‘1.s2
.sn.a where n > 0, s

I’. ..’sn
c Sel and

a E ATOM. The set of all such label sequences is

naturally described by Sel* x ATOM.

By definition a tree is a finite subset T of
,f

Sel x ATOM such that if ss .a ~ T, then
1 n

ss
1

‘.bc Tonlyifp=Oand a=b.
n.si.....sp

The null tree T = ~ is written as L (read

“bottom”).

The definition allows trees with “missing
branches” such as {hd.l,tl.hd.2}. In diagrams the

missing branches will be drawn, and filled in with

J.. Some examples are shown in Figure 1.

Diagram: I 1 A
12

Set: @ {l} {hd.l,tl.2} {tl.hd.hd.2,tl.tl.3}

se

and

Figure 1

By definition if T,Tl,Tm are trees and

Sel then

T.s = {tl . ..tn.atom I s.tl. ..tatomom ● T}

COW(T ,.. .,Tm) =
1

i~l {seli.tl . ..tn.atom I tl. ..tatomom c Ti}

The definitions are naturally extended as
follobs: Let A,BI,Bm be sets of trees. Then

A.s = {T.s I T c A-ATOM - {1}}

cofis(Bl,Bm) =

{cons(TI, ..., T ● Bm}Tm) I TI EB1,m

Following the style of denotational semantics

[15,181, we define the meanings of the various

constructs in terms of the domains ATOM,

“AL = 2Sel* x ATOM
and STORE = [Var + VALI (a

store a c STORE is a function mapping each
variable to its current value). We only define

the meaning of expression evaluation and assign–

ment statement execution. The other features of

SL can be formally defined by well-known means,

including continuations.

~: Exp + [STORE + VALI is a partial function

given by:

~[atoml o = {~ [atom]}

~[varl o = u(var)

~I[var.s] o = o(var).s [undefined if

o(var) = 1 or is an atom]

?~[cons(el,em)l u=

ccms(~llello,.. .,~[e 10)

~~: Assign+ [STORE+ STOREI ~s given by

~~[var := exp] u = lx c Var.
(i~x = var tllenj~[exp]o eZse o(x))

Execution of a statement and the whole

program will be aborted if

a) an expression which must be evaluated is

undefined

b) an if statement compares two values either of

which is a nonempty, nonatomic tree

c) a nonempty, nonatomic tree is read by a

statement “var := input”.

Note that point (b) implies that these tests model

EQ in LISP, rather than EQUAL.

III. Structure Shapes and Data Flow Equations

We now show how to construct a system of

forward data flow equations from a program. Let

X be a program variable in Var, and I a program

point. The system will then have a variable

F(I,X) . The least fixed point solution of the

system will associate with F(I,X) a set of tree

shapes which includes all possible shapes X could

have at point I in any possible execution of the

program.

The set of shapes is defined simply by:
*

Shape = 2se1
x {o}

That is. we have replaced all elements of ATOM by
the symbol O which represents an

Next, we form the lattice 2
Shape

arbitrary atom.

of all subsets of

245

Shape, with the usual subset ordering. The

variables in the equation system will have elements

of *Shape
as values.

As in [12] we first convert an SL program to
a flowchart and annotate it with program points in

‘lowchart~~= {0,1

the set ,.. .,n], one for each arc in the

Consider

Figure 2.

the flowchart segments of

%P11 ““”

s

/)J

(a) Non-if statement

%PI . . . I
P

s

db
J J

ye no

(b) if statement

Figure 2

The equations are formed as follows:

Form of S Equation

X := atom or X := input F(J,X) = {O}

X:=Y

x := Y.s

x := eons(yl,ym)

if atom X

F(J,X) = F(I1,Y) U . . .

u F(IP,Y)

F(J,X) = F(II,Y).s U . . .

u F(IP,Y).s

F(J,X) = i~leons(F(Ii,Yl),

. . ..F(Ii.Ym))

{

F (J ,X) = i~l F(Ii,X)
yes

n {o}

F(Jno,X) = i~l F(Ii,X)

- {o}

if nuZ2 X

ifx=Y

other

[

F (J ,X) = i;l F(Ii,X)
yes

n {1}

1F(Jno,X) = ill F(Ii,X)

- {1}

i

F (J ,x) = i~l (F(Ii,X)
yes

n F(Ii,Y)) n {O,L}

F(Jno,X) = i~l F(Ii,X)

n {0,1}

F (J ,Z) = F(Jno,Z) =
yes

F(II,Z) U . . . U F(IP,Z)

forZ+X, Y

F(J,X) = F(II,X) U . . .

u F(ID,X)

Finally, the equation

F(IO,X) = {L]

is included for the initial program point I
o

and

each variable X.

Note that the only way in which statements

constrain the shapes of values flowing to them is

through the possibilities for abortion of

execution. Taking these constraints into account

through backward flow analysis, as discussed in

our [12] or Kaplan and Unman’s [14], could

provide more specific information about shapes.

However, we ignore this possibility for the present

since the extension is straightforward.

To obtain the maximal information available

from forward flow analysis about the program’s

data values the F(I,X) sets should be as small as

possible, as long as they include every value

which may be computed. It is for this reason that

the sets {O}, {1} and {O,L} appear in the

equations –– to conclude as much as possible from

the program’s assumed correctness.

IV. Solving the Flow Equations

There are at least two methods available to

solve the data flow equations. One is iteration

in either its regular or chaotic form (see [12]

and [61) starting with every F(I,X) = d. It

should be clear that the functions involved are all

continuous, so solutions always exist.

This method is appropriate if the solution is

finite. Unfortunately this is not generally the

case for the systems under consideration here.

Instead, we shall introduce here a method based on

regular tree grammars which handles the finite and

infinite cases equally well. The objective is to

obtain a regular tree grammar such that the

language it generates is a safe approximation to

the minimal fixed point of the system of flow

equations. This is useful, since tree grammars

are a well–understood extension of regular string

grammars; consequently existing algorithms can be

used to test for finiteness, linearity, etc.

The approach is to form from each data flow

equation a production in an extended regular tree

grammar, which is then transformed into an

ordinary tree grammar.

Tree Grammars

A regular tree grammar (see, for example,

[81 or [19]) is a grammar <N,Z,P,S> with N a

finite set of nonterminal symbols, Z a ranked

alphabet of terminal symbols such that N n Z = 0,

S e N is the initial nonterminal, and P is a

finite set of productions of the form A“+ t where

A~Nandt~TZ(N). Here TX(N) is defined by

(i) N U Z. s TZ(N)

(ii) if k> 1, a c Zkand T1,Tk E TZ(N),

then a[T
1’””

.,Tk] ● TX(N)

(iii) nothing else is in TX(N)

Note that the linear representation a[Tl,Tk]

in (ii) corresponds to the tree
a

A
‘1 ““” ‘k”

246

7 ..,-,, .,m oraer co aescrlDe our cage–la~elea trees

by tree grammars, we choose k = m and

‘o
=ATOM u {-L}, xl = Sel, X2 = . . . = Zm_l =@,

Zm = {6}. If T is a tree as used in our

description of SL, the corresponding element B(T)

of TX(N) is recursively defined by:

~~(atom) = atom

g(l) = 1

A
sel

1
sel

m A
— sel

1
sel

II

m

. . .

@l) ~(Tm)

\’T-, . . . Tm

For example, we have the equation below:

m‘ ‘
hd tl

A
hd tl

~ahd=

tl

b c
a A

b c

We assume the semantics of a regular tree

grammar is defined by least fixed points, in the

same manner as was done by Ginsburg [9] for

context–free languages. That is, nonterminals are

interpreted as sets of trees, and the productions

are viewed as a system of set equations. It should

be clear that this gives the same generated set

L(G) as the usual tree-rewriting semantics since

the analogy between regular tree grammars and

context-free grammars is very close.

We will also write tree productions in the

SL notation for convenience. This does no harm

since it is easily seen that T, + T. by production

example, the natural interpretation of A + ~z \c

is that for all Tb < B, Tc c C, the tree AT

‘b C

is in A. Translating into TX terminology, the

production is as shown in Figure 3(a) and means

I I I I
B c #(Tb) ~(Tc)

(a) (b)

that if ~(Tb) c B, ~(Tc) c C, then the tree

in Figure 3(b) is in A.
Having shown the connection to ordinary tree

grammars, we now proceed to assume that all
grammars are expressed and interpreted in terms of

SL trees.

Definition An extended regular t~ee grammar is a

quadruple G = <N,Z,P,S> where N, Z’, P and S are as

above, except that P is now allowed to contain

productions of the form A + B.s where s e Sel.

The semantics of such a production in terms

of sets is simply the assertion that B.s s A.

For example the three productions

Ahd tl
A+B,A+ , A+A.tl

c c

would correspond to the set equation

{ Ahd tl
u

‘2
is in A for some T

}

1
‘1 ‘2

The new production type clearly gives rise to

a continuous function, so the solution of the

extended regular tree grannnar may be found, as

before, by least fixed points.

Examining the flow equations we see that they

are nearly in the extended tree grammar form

except for restrictions involving 0 and 1.

Removing these is safe, since the result is only

to enlarge the solution values. Referring to

Figure 2(a), let I be any of the ll,...,lP

preceding S; then the construction of the-grammar
can now be expressed by:

s Production

var
1

:= var
2

F(J,varl) + F(I,var2)

var
1

:= atom or F(J,varl) + 0

var
1

:= input

var
1

:= var
2

.sel F(J,varl) + F(I,var2).sel

var o
:= cons(var ,

1
,,,,v,var ,

F(J,varo) +

. . .,varm)

1 m

otherwise F(J,var) + F(I,var)

An Example

Consider the program in Figure 4 which builds

a linear tree X from input items, and then

transfers them to Y so they appear on Y in their
original order.

Figure 3

247

.. ----

I0

L: Z :=

(

input

1
1

x := Cons(z, x)

/
2

yes if~+Ogoto L

N:

Ino 4

.if nu~~ X goto N yes

/
no 5

Y

2

:= cons (X. hd, Y) 8

i
6

x := X.tl

1
7

goto M

Z:=z

Figure 4

The productions obtained from this are

(omitting those for Z):

F(O,X) + L F(O,Y) + 1

F(l,X) +F(O,X) I F(3,X) F(l,Y) +F(O,Y) I F(3,Y)

F(2,X) +
+l,X)

F(2,Y) +F(l,Y)

o

F(3,X) +F(2,X) F(3,Y) + F(2,Y)

F(4,X) +F(2,X) F(4,Y) +F(2,Y)

F(5,X) +F(4,X) I F(7,X) F(5,Y) +F(4,Y) I F(7,Y)

F(6,X) +F(5,X) F(6,Y) +
F(5,X).hd F(5,Y)

F(7,X) +F(6,X).tl F(7,Y) + F(6,Y)

F(8,X) +F(4,X) I F(7,X) F(8,Y) +F(4,Y) I F(7,Y)

Simplifying this by compressing chains of

productions and renaming, we get:

(A = F(l,X)); AA+l I ~ ~

A(B= F(5,X)): B+. II B.tl

(C= F(5>Y)): AC+L I ~ ~

(D =F(5,X).hd): D +B.hd

The solutions are:

A
\

A=B=C={L, OL,O
,... }

01

D = {O}

Note tnat the right llnearity or finiteness

of each variable is clearly evident.

Theorem If G = <N,I,P,S> is an extended regular

tree gramm%r. there is an ordinary regular tree

grammar G’ = <N,Z,P’,S> with L(G) = L(G’).

Proof We give the construction, which uses Btichi’s

method of “derived rules” [41. Define the relation
%onNU1

o
to be the smallest reflexive,

transitive relation such that

(a) A+

(b) A+

c+

X implies A %X

B. sel< , BNCand
1

A
sel

1
sel

m

imply A WT.
1’

‘1 ““”Ti ““”Tm

provided Tl,Tm all derive nonempty

sets of terminal trees.

Now define G“ = <N,E,P’’,S> where

P“=PU{A+XIA6N andA~X} and

pr = pl? - {A+-B.s c P}.

Essentially the same theorem was proved in

Reynolds [161 by another (more complex) method, so

we omit the proof that L(G) = L(G”)= L(G’). D

The Example Revisited

Elimination of productions with selectors on

the right proceeds as follows:

1. A ‘“1 and C ~J. follow from the
productions

2. B -A follows from B + B.tl, B %B and

B+ Ao A

3. D ‘o follows from D + B.hd and

B+ A
o 1

The revised grammar has productions

A+ll A
B+ ~“ I ~

o A

A
C+ll

o A

D+o

and it is easily checked that it has the same

solution as the grammar with selectors on the

right.

This method does not yield a perfect solution

to the original problem, for two reasons. First,

248

the flow analysis method associates with each node
and each variable a set of values. While this
makes grammatical analysis possible, it can lose
some information, as in the following example:

x := 1;

L: x := eons(x,x);

if - goto L

The values X may actually have at L are the
complete binary trees of heights 0,1,2,
However the method above leads to productions

A+o Ai A
A

which have all binary trees as solution.

The second reason is the restrictions

concerning 0 and L in the flow equations which were

ignored in constructing the productions. We

conjecture that these restrictions do not destroy

the regularity of the solutions, although they may

increase the complexity of obtaining them.

v. Relating The Tree Grammars To Storage

Allocation

A simple and fairly efficient implementation
of SL may be organized as follows. Each internal

node is represented by a record with fields

‘1’” ””’?ln’
one for each ‘selector in Sel. Any

nonatomlc tree is identified by a pointer to the
record for its root node. Each program variable is

bound to a Toot word, contained in a fixed runtime
location, whose content is a pointer to the root
record of its current value (or the value itself if
atomic) thus an assignment X := Y merely copies one
root word into another; X := Y.s copies the s field
of Y’s root record into X’s root word; and
x := eons(Y1,Ym) makes the root word of X point

to a newly allocated record whose fields s
l’”” ”’sm

are initialized to the values of Y
I’”” ”’ym” ‘his

method involves only a bounded amount of work for

each statement type, and provides maximal natural

storage sharing, i.e. all that can be achieved

without the use of a hashing cons [101.

There are some obvious inefficiencies common

to LISP-like languages which are amenable to data

flow analysis. We now briefly discuss those which

can be handled by use of the tree grammars just

presented. The main tool used is the fact that

familiar context–free and regular grammar

algorithms generalize directly to tree grammars.

In particular, infiniteness is easily decidable.

1. Let X be a variable, and consider

V(X) = U F(I,X), our upper bound on the set of

I .p$l

values X &a$ assume during execution.

a) If V(X) contains at most one shape other

than ~, a fixed location may be assigned

to the root record of X. so its subfields

may be addressed directly without
the root word.

b) If V(X) is finite, a storage area

may be allocated statically for X

need for

for X

before

execution. This area need not participate

in storage reclamation activities.

c) Now consider V(X) .seli. If this is empty,

no record within a value of X needs to

contain an seli field.

2. Let statement X := Y.s be preceded by program

point I. If O or J is in F(I,Y), a runtime

error is possible; if F(I,Y) ~ {0,1}, a

runtime error will definitely occur.

More will be said about optimization of LISP-

like programs in the second part of this paper,

particularly concerning storage reclamation by

reference counts and garbage collection, and the

use of CDR-coding [11.

VI. Elimination of Reference Counts and Garbage

Collection

In the remainder of this paper we assume an

implementation like that described in the last
section; in addition we extend the language (to a

more powerful version called SUSL) by the addition

of selective updating, in a manner similar to

RPLACA and RPLACD in LISP.

Two standard methods for storage management

are the use of reference counts and garbage

collection. Garbage collection is the more

powerful method, but the collection process is

quite expensive and, in its classical forms,

disruptive to the computation, especially in

interactive and real–time contexts. When cyclic

data structures cannot occur, as in SL, the method

of reference counting may be used; However, this

method requires both space overhead to store the

counts and time to update them.

In this part of the paper we describe a

method to reduce both types of overhead, often to

zero, by a pre–execution program analysis. The

analysis constructs finite approximations to the

actual runtime data structures which may occur,

and is guaranteed to detect cyclic structures and

nodes with reference counts greater than one, if
they can possibly exist. In this way, runtime

data cells may be put into three classes:

1.

2.

3.

In

Those whose reference counts never exceed

one. These may be returned to free

storage as soon as pointers to them are

destroyed. No reference counts need be

maintained.

Those which may not appear in cycles, but

whose reference counts may exceed one.

These may be allocated with reference

count fields which are maintained during

execution.

Other cells, which may appear in cycles.

The overhead of reference counts may be

avoided at the expense of using garbage

collection.

Clark & Green [53 it is observed that only

2% to 8% of LXSP cells are ever pointed to more

than once. so this optimization should result in

substantial savings. Further, our method for

detecting opportunities for optimization appears

to be significantly more general than that of

Barth [2].

249

Before proceeding to give an alternate

semantics for SL based on the ideas sketched above

and presenting methods for analyzing its storage

allocation properties, we shall extend the language

to include selective updating in a manner which

models the functions RPLACA and RPLACD in LISP and

assignment to records with pointers in languages

such as PASCAL and PL/I. The new operation is

written as X.s := Y and its intended effect is to

replace the s-labeled edge from the root of X by

an edge leading to the root node of Y. This

selective updating operation makes it possible to

create cyclic structures, as shown in Figure 5,

where performing X.hd := X on the structure in (a)

results in that shown in (b). Thus the language

with selective updating is more powerful than

without it. We call the language with selective

updating SUSL (Selective Updating Structure

Language).

x f--=x

aA
b c

(a) (b)

Figure 5

We now give a semantics for SUSL which

incorporates within it an alternate semantics for

SL equivalent to that in Section II and based on

the implementation ideas in Section V. To do this

redefine the STORE to consist of allwe first

directed

1.

2.

3.

4.

5.

graphs of the following sort:

each internal node has one son for each

selector in Sel

each leaf is labeled with an atom or L

(the null tree)

each variable in Var labels one and only

one node

each node is accessible from a variable–

labeled node

each node is a member of a universal set

NODEof nodes

For example, the graph in Figure 6(a) is a store

corresponding to the values of X, Y, and Z in (b).

(a) (b)

Figure 6

The following auxiliary function
the semantic definition:

node: Var + [STORE + NODEI

node vu = the node in u

is used in

labeled v

In the example in Figure 6(a) node Zu is the upper-

rightmost node.

The effect of the assignment statement is a

function

~~ : Assign + [STORE + STOREI,

defined below. In general, ~~[s]~ is found by
modifying u (unless S aborts), as described in the

following table. Afterwards, all nodes which are

inaccessible from variables are removed from the

new a.

Form of S

var := atom

var
1

:= var
2

var o
:= cons(var

1’

. . ..varm

var
1

:= var .sel
2

var
1

.sel := var
2

Mhsb

add a new leaf node labeled

~(atom) ; move var to the new
node

move var ~ to label node var20

make a new node n and move

var
o

to label it; for

i=l ,...,m, add an seli edge

from n to node vario

if node var20 has an sel

descendant n

then move varl to node n

else ~5~S]IJ is undefined

if node varlu has an sel edge

from it

then replace it by an sel edge

leading to node var.o

eZse~@S]o is und~ined

Execution is aborted in exactly the same situations

as in the semantics of SL given in Section II.

Let o be an acyclic STORE graph and X a

variable occuring in a. Define tree XIJ to be the

tree which results from performing node splitting

on the directed acyclic graph comprising all nodes

and edges reachable from node Xu. For example if

o is shown in Figure 6(a) then tree Zu is the tree

labeled Z shown in Figure 6(b).

Theorem Let assign be any SL assignment statement

(or, equivalently, and SUSL assignment statement

other than a selective updating operation) and a

an acyclic SUSL store with variables Xl,. . . ,Xn.

Then

~~SLIIassignl {Xl * tree Xla, . . . ,X * ih+ee X a}n n

where {a ‘bl,an S bn} denotes the finite

functionlf: {al,an}+{bl. bm},bm} satisfying

f(ai) = bi for i = 1,. ..,n.

Thus the two languages are semantically

equivalent if we ignore the selective updating

operation. We omit the proof of this since it

just amounts to showing that the usual LISP

implementation strategy is valid.

250

Define a node in a STORE graph to be shared
if there are two or more distinct paths from

variables (or possibly from the same variable) to

the node, and to be c~eZ.-ie if it is contained

within a cycle in the graph.

VII. Modeling the Sharing Semantics

As is usual in flow analysis, our approach
to define a system which is finite and whose

solution in effect symbolically executes the

program in parallel over all possible execution

paths. The structures just described may grow

unfoundedly in two ways: in depth (i.e. path

is

length from a variable to a leaf); and there may

be an unbounded number of inaccessible (garbage)

nodes. To remedy this we discard inaccessible

nodes, and consider only bounded approximations to

the graphs (annotated with sharing and circularity

information to aid in the reference count

analysis).

Define a directed graph to be k-limited if

each node is accessible from a node labeled with a

variable by a selector–labeled path of length s k.

Then the flow analysis lattice Share is the set of
all sets of directed k–limited graphs of the

following form:

1. each variable X c Var labels one node,

denoted node X, and each node may be

labeled by one or more variables

2. there are two sorts of nodes: unknown,
labeled ? and known, not labeled ?(an

unknown node represents a set of nodes

whose internal structure is not

represented in the k-limited approximation)

3. unknown nodes may be labeled with either

of the following (and possibly a variable):

s indicating that the unknown

structure represented by the node

may contain sharing

c indicating that the unknown

structure may contain a cycle

4. each leaf is labeled with o (indicating

an atom), 1 (indicating the null tree),
or ? and possibly s or C

5. each known node has one outgoing solid

sel
edge ~for each sel ~ Sel

6. each unknown node may have any number of

outgoing unlabeled dotted edges -–->,

each going to a different node

The lattice operations are set union (join) and

intersection (meet).

Given a fixed set of selectors and a fixed

set of variables, the number of k-limited graphs

with no inaccessible nodes is clearly finite. As

an example of a k–limited graph, consider the

3-limited graph in Figure 7.

A node in a Share graph is defined to be

shared if there are two or more distinct paths from

variables (or possibly the same variable) to the

node, or if it is accessible from a node labeled

s, or if it is itself labeled c. It is cycZie

if it is included in a cycle or labeled c.

Xk---,

A 1

z ?, w o I

‘s)
I/’ ‘, /---

0 1

?C ?s

o
Y

Figure 7

VIII . Constructing the Data Flow Equations

Our epproach is to associate with each program

point I a set of k-limited graphs F(I), each graph

modelling a store resulting from one or more

execution paths. Consider the flowchart segments

of Figure 2.

The equations are formed as follows, where

D=

The functions

Form of S

assignment

if atom var

;f nuZZ var

F(I1)U. ..UF(I)
P

clean and next are defined below.

Equation

F(J) = ‘U cZean(next[S];)

;ED

{

“F(J yes) = {~ c D I node var ~ is
labeled o or ?}

F(Jno) = {~ c D I node var ~ is

unknown, or is known and

not labeled O}

[

F (J yes) = {~ ~ D I node var ~ is
labeled .L or ?}

F(Jno) = {~ = D I node var ~ is

unknown. or is known and

[
not labeled L)

if var = var

1

F (J yes) = F(Jno) = {; 6 D I

ifvar~ + var~ node var ~ and
1

node var2~ are both

labeled O or both

labeled L}

other F(J) = D = F(I1) U . . . U F(lP)

TO define czean and next, let XShare be the
set of all sets of graphs satisfying conditions 1

through 6 of the definition of Share; however,

they need not be k-limited. The functionalities

are now next: Assign + Share + XShare and ezean:

XShare + Share. The idea is that next applies the

statement, and clean makes the resulting graph(s)

k-limited.

The function node can be carried over to the

graphs in Share and XShare naturally.
We now explain how to compute next [S] ~ for

an assignment statement S and set of graphs ~.

251

First,

If {~1 e Share, nezt [s] {7} will normally

consist of one graph, obtained by modifying 7 as

described in the table below. However ne$t [S] {~}

will be empty if S aborts, and may have more than

one element if a variable is moved to a descendent

of an unknown node.

Form of s next [S] {7}

}{

var := atom or Add a new leaf labeled O to ~;

var := Zkp,Lt Move var to the new node

var
1

:= var Move varl
2

to label node var25

var o := eons(var Make a new node n and move varo
1’

. . .,varm) to label it; for i = 1,...,m

add an sel i edge from n to node

vari~

var .sel := var
1 2

ease

node varl~ has an sel edge:

replace it by an sel edge

leading to node var27

node var ~ is labeled o or ~:

next [~] {7} = 0

node varl~ is unknown:

Add an edge –---> from

node var27 (if not present)

var
1

:= var .sel
2

case

node var27 has an sel descendent

n: move var ~ to node n

node var2~ is known but has

label O or 1:

next [S1 {7} = @

node var27 is unknown with

immediate descendants

nl,n :

next [Slr{T} = {7.,71, . . . ,;r}

where: 7.,71>. . .,?r are ~

with var
1

moved to nodes

node var~ nl,. ..,n
2’ r

respectively.

In Figure 8 we illustrate next [s] ~ for

several statements S, where ~ contains only the

single 3-limited graph of Figure 7.

The purpose of the function clean is to

restore the k–limited character of the graphs in

next [S] ;. We first define for any XShare ~,
a subgraph @~) which consists of all nodes n

which are not accessible from any variable–labeled

node by a selector–labeled path of length k - 1 or

less, together with all edges in ~ between such nodes.

next[X := a]; =

I
I

6
Y

next[Z := X.hd]~ =

x~.-.,

‘“l \?

4+
~1 Zx /

/ ‘\ 0/
\ /

/‘_-

0 1

?C ,?s

0

Y

..
1

4$
xc.,

nedi Y := Cons(x,z)];= z
\

?/\w o I
/, /

/’ /=--

0 1.

?C ,?s
I

x c-\

z A \
next[Y :=W.tl]; =

?,\Yw o I

*

/\)
/ ~--’

o 1

?C ,?s

o

x

o

0 ,

Xu..

A \
z ?,., W o ,’

*

/ \/<_, ~
/

o 1

?C ,?s

,

Figure 8

252

Now clean is the set of k-limited graphs
resulting from applying the f~llow~ng
transformation to each graph ‘Y in o:

1.

2.

3.

4.

5.

Remove all nodes which are inaccessible
from variables

Partition @ti) into s~rongly connected
components C~,c2, . . .

for each Ci do

‘if Ci contains at least one edge

then coalesce C into a single unknown
i

node, labeled c

Let the resulting graph be called ~’.

partition ~fi’) into undirected connected
components C;, C;, . . .

jfop each C; do

<f c; contains more than one node

then coale~ce C~ into a single unknown
node n;

if c; contains a node labeled c

then label ~ with c

else if C; contains a shared node

or a node labeled s

then label ~ with s

The “coalescing” operation above is done by
merging the nodes of C into a single node n,
preserving incoming and outgoing edges and
variable labels within C. More precisely,

1.

2.

3.

4.

5.

Create a new node ~

Label it with ? and with all variables
labeling nodes in C

Redirect any edge coming into C to point
to n

Replace any edge coming out of C by a

dotted edge from ~ ---> to the same
endpoint, provided such an edge does not
already exist

Delete all nodes of C and edges between
them.

As an example of clean, suppose we start with

the graph in Figure 9(a). Steps 1 through 5

result in the graphs in Figure 9(b) through (f),

assuming the resulting graph is to be 2-limited.

Note that our comments about backward flow

analysis in Section III apply here as well.

IX. Solution of the J?1OW Equations

Note that Share is finite. It is not hard to

see that F() is monotonic, so the minimal fixed

point solution may be obtained by regular or

chaotic iteration.

As an example of the kind of information that

can be obtained from the equations, suppose no node
accessible from node Xo in any Share graph in the

solution is in a cycle or labeled c. Then no node

accessible from X in any computation can be part of

a cycle, so the descendants of X need not be

managed by garbage collection. Similar remarks

apply to sharing: a non–shared node can be

deallocated as soon as any reference to it is

destroyed.

(a)

x Y

(b)

Y

(c)

(d)

Figure 9

253

x Y

(e)

x z

&1 ?C ,?s

I

AZ

(f)

Figure 9 (continued)

establishing these facts will be
next section. First we give an

Theorems

proved in the
example of the flow equations and their solution,
using again the program in Figure 4. For
illustrative purposes we compress this program a
bit and insert a few program points to obtain the
flowchart and forward flow equations in Figure 10.

z := O&/t

Lx := Cm’w(z,x)

I1

yes Z+o

1
no

[

null X~j

1

no
2

Y := cons(X.hd,Y)
4

!

3

x := X.tl

{1XY
F(0) =

11

F(1) = F(0) U~—~[X := ~fl~] F(0)

F(2) = F(l) U F(4)

AF(3) =~—~[X :=x.hd y] F(2)

F(4) =~—~[X :=Y.tl] F(3)

Figure 10

To solve the equations we proceed by the

method of chaotic iterations, iterating F(1) to

stability and then in turn iterating F(2), F(3) and

F(4) until the whole system stabilizes. The

solution for F(1) and F(2) with k = 2 is indicated

by the table in Figure 11. No shared or cyclic

structures occur, so the simplest storage

allocation method may be used. Further, X := X.tl

frees one cell which can be used immediately by

the Y := eons(X.hd,Y).

x Y x Y x Y 1

Figure 11

x. Theorems on Detection cf Sharing and Cycles

We show in this section that the Share model
is capable of detecting any sharing or cycling

which may occur in the data structures of a SUSL

program. Of course, since the model is finite and

based on conservative assumptions, it may also

indicate the possibility of sharing or cycling

where none occurs in the actual program.

To state the results we first need to define

a compatibility relation between STORE and Share
graphs which will embody t?le intuitive notion
that, if a STORE o results from a SUSL computation
leading to program point I,, then the set Of share
graphs F(I) contains a graph 7 representing o.
For example, for the STORE graph in Figure 12(a),

the Share graph in (b) is compatible, while that in
(c) is not.

254

x

2AY
a

1 b d

(a)

x

Y ~M,
o‘b

?s

(b) (c)

Figure 12

Let nodes(u) be the set of nodes in graph u.

By definition an adm{s,s{ble nod~ comespondence
from o to 7 is any function r: nodes(o) + nodes(~)
such that

1. r(~ode XU) = node X7 for all X c Var

2. Let there be an edge in u from n to n]

with selector label sel. Then

(a) if r(n) is knownz there is an sel-

labeled edge in’y from r(n) to r(nl)

(b) if r(n) is unknown, either r(n) = r(nl)

or there is a dotted edge from
r(n) to r(nl)

Further, o and 7 are compatible (written o - ~) iff

1) there is an admissible node correspondence

r from u to 7

2) if node n is shared in a then either r(n)

is shared in T or r(n) is accessible in I’

from a node labeled s or c

~) if node n is contained in a cycle in u

then either I’(n) is contained in a cycle
in Y or r(n) is labeled c

Thus it is easy to see that the graph in Figure

12(c) is not compatible with that in Figure 12(a)

because, among other reasons, the tail descendant

of node Xa is node Yu, while the tail descendant
of node X7 is not node Y?.

We next show that the transition functions

~~() and ~—~() preserv. compatibility.

Theorem: Let assign be an SUSL assignment
statement, u a STORE graph and ~ a Share graph

such that u - 7. Then there exists

“;g%%;i:~ $! ‘Uch ‘hat

Proof: The proof (omitted for brevity)
compares the effects of ~~, next and clean on G

and ~, by an enumeration of cases, to show that the
diagram in Figure 13 commutes.

In the diagram o’ = ~~[assignla, r is t~e
admissible node correspondence given, by u ‘_’Y, ‘Y’
is a graph in nert [assign]{;}, 7“ = e~ean ‘Y’, and

r’ and r“ are appropriate admissible node

correspondences. Cl

graph X7 for a variable X and a Share graph T to be

the subgrap~ of T comprising all nodes reachable

from node X’Y and all edges between them. We then
have the fo~lowing two corollaries.

I-byr - by r’ l\ -by r“

7 +;’ ~?”
nert [assignl e Lean

Pigure 13

Corollary If graph X?’ contains no shared

nodes for all $’ f F(I) for alll program points I,
then variable X requires neither reference counting
nor garbage collection, i.e.,, any node reachable
from the root of X may be deallocated immediately
when a reference to it is removed.

Proof By the theorem, all sharing which can

occur in the STORE semantics is recognized in t~e
compatible Share graphs. If no node in graph XY is

ever shared in. any possible ~, then nodes reachable

from X can never be shared. Cl

Corollary If graph XT contains no cyclic

nodes for all 7 : F(I) for all I, then variable X

requires no garbate collection, i.e., management of

storage for nodes reachable from the root of X

may be done by reference counting.

Proof Similar to that for preceding

corollary. D

The above results are global in two respects--
they concern the behavior of a variable throughout
the execution of a program and concern all nodes
reachable from it. The information present in the
F(I) is sufficient, however, to obtain results
which are local in both senses. This could be

applied to make very efficient use of a dynamic
storage management system in which cells are

divided into three types: those which are

immediately deallocated, those which are reference

counted and those which are garbage collected.

Then a particular cell which can be identified as

never being shared in the future can be allocated

as the first type, one which may be shared but

will never be cyclic as the second type, and the
remainder as the last type. We leave the

detailed development and analysis of this approach
to later work.

It should be noted in closing that Baker [11
has studied the situation in which reference
counting is an appropriate method for dynamic

storage management. His findings indicate that

our intended use is an appropriate one.

To relate the above theorem to the

identification of situations where storage

management niethods simpler and more efficient than

gargabe collection can be used, we first define

255

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

REFERENCES

Baker, Henry G., Jr., List Processing in Real

Time on a Serial Computer, CACM, vol. 21,
no. 4, 1978, pp. 280 - 294.

Barth, J. M., Shifting Garbage Collector
Overhead to Compile Time, CACM, vol. 20,
no. 7, 1977, pp. 513 - 519.

Brainerd, W. S., Tree Generating Regular
Systems, Infomat{on and Control, vol. 14,
1969, pp. 217 - 231.

Biichi, J. R., Regular Canonical Systems,

Archiv f. Math. Logik und Grund., vol. 6,
1964, pp. 91 - 111.

Clark, D. W. and C. C. Green, An Empirical
Study of List Structure in LISP, CACM,
vol. 20, no. 2, 1977, pp. 78 - 87.

Cousot, Patrick and Rhadia Cousot, Automatic
Synthesis of Optimal Invariant Assertions:
Mathematical Foundations, Proc. ACM Symp. on
Artif. Intel. and Prog. Lang., SIGPLAfl
Notices, vol. 12, no. 8, August 1977,
pp. 1 - 12.

Cousot, Patrick and Rhadia Cousot, Static

Determination of Dynamic Properties of
Generalized Type Unions, SIGPLAN Notices,
vol. 12, no. 3, March 1977, pp. 77 - 94.

Engelfriet, J., Tree Automata and Tree
Grammars, DAIMI Report FN-10, Department of
Computer Science, University of Aarhus,
Denmark, 1975.

Ginsburg, Seymour, The Mathematical Theo~y
of Context-Free Languages, McGraw-Hill, New
York, 1966.

Goto, E., Monocopy and Associative Algorithms
in an Extended LISP, University of Tokyo,
Japan, May 1974.

Hoare, C. A. R., Recursive Data Structures,

Inte~. J. Comp. and Sys. Sei., vol. 4, no. 2,
1975, pp. 105 - 132.

Jones, N. D. and S. S. Muchnick, Binding Time
Optimization in Programming Languages: Some

Thoughts Toward the Design of an Ideal
Language, Proc. 3rd ACM SIGACT - SIGPLAN

Symp. on Prine. ofProg. Lang. January 1976,

PP. 77-94.

Kaplan, Marc, Relational Data Flow Analysis,
Technical Report 243, Dept. of Elec. Eng. and
Comp. Sci., Princeton University, April 1978
(revised).

Kaplan, Marc and J. D. Unman, A General
Scheme for the Automatic Inference of Variable
Types, Conf. Record of .5th ACM Symp. on PrZne.
ofProg. Lang., Tucson, AZ, January 1978,
pp. 60 - ~~.

15. Milne, Robert and Christopher Strachey, A
Theorg of Programming Language Semant<cs,
Chapman and Hall, London; Halsted Press, John
Wiley, New York, 1976.

16. Reynolds, John C., Automatic Computation of
Data Set Definitions, PYOC. of IFIF Congress

68, August 1968, pp. B69 - B73.

17. Schwartz, J. T., Optimization of Very High
Level Languages - I: Value Transmission and
Its Corollaries, Computer Languages, vol. 1,
1975, pp. 161 - 194.

18. Stoy, Joseph E., Denotational Semantics:
The Scott-St~aehey Approach to P~ogrming
Language Theoryj, MIT Press, Cambridge, MA,
1977.

19. Thatcher, J., Tree Automata: An Informal
Survey, in Aho, Alfred (cd.), Currents in the
Theory of Computing, Prentice-Hall, 1973,
pp. 143 - 172.

256

