
ROPAS

Research On Program Analysis System
National Creative Research Initiative Center 1998-2003

Programming Research Laboratory, School of Computer Science & Engineering

Seoul National University

ROPAS MEMO

2005-24

April 26, 2005

Soundness by Static Analysis and

False-alarm Removal by Statistical Analysis:

Our Airac Experience∗

Yungbum Jung, Jaehwang Kim, Jaeho Shin, Kwangkeun Yi
{dreameye,jaehwang,netj,kwang}@ropas.snu.ac.kr

Programming Research Laboratory
Seoul National University

April 26, 2005

Abstract

We present our experience of combining, in a realistic setting, a static analysis for
soundness and a statistical analysis for false-alarm removal. The static analyzer is Airac
that we have developed in the abstract interpretation framework for detecting buffer over-
runs in ANSI + GNU C programs. Airac is sound (finding all bugs) but with false alarms.
Airac raised, for example, 970 buffer-overrun alarms in commercial C programs of 5.3
million lines and 233 among the 970 alarms were true. We addressed the false alarm
problem by computing a probability of each alarm being true. We used Bayesian analysis
and Monte Carlo method to estimate the probabilities and their credible sets. Depending
on the user-provided ratio of the risk of silencing true alarms to that of false alarming, the
system selectively present the analysis results (alarms) to the user. Though preliminary,
the performance of the combination let us not hastefully trade the analysis soundness for
a reduced number of false alarms.

1 Introduction

When one company’s software quality assurance department started working with us to build a
static analyzer that automatically detect buffer overruns1 in their C softwares, they challenged
us on three aspects: they hoped the analyzer 1) to be sound, detecting all possible buffer
overruns; 2) to have a “reasonable” cost-accuracy balance; 3) not to assume a particular set
of programming style about the C programs to analyze. Building a C buffer-overrun analyzer
that satisfies all the three requirements was a big challenge. In the literature, we have seen
impressive static analyzers, but their application targets allow them to drop one of the three
aspects [6, 3, 9, 8].

In this article, we present our response that consists of two things: a sound analyzer named
Airac and a statistical analysis engine on top of it. Airac collects all the true buffer-overrun
points in C programs yet always with false alarms. The soundness is maintained, and the
analysis accuracy is stretched to a point where the analysis cost remains acceptable. The
statistical engine, given the analysis results (alarms), estimates the probability of each alarm
being true. Only the alarms that have true-alarm probabilities higher than a threshold are
reported to the user. The threshold is determined by the user-provided ratio of the risk of
silencing true alarms to that of false alarming.

∗An extended version of this paper will be submitted to a conference. This work was supported by
Brain Korea 21 of Korea Ministry of Education and Human Resource Development, and by National Security

April 26, 2005 ROPAS-2005-24 2

Time #Airac Alarms #RealSoftware #Lines
(sec) #Buffers #Accesses bugs

GNU S/W tar-1.13 20,258 576.79s 24 66 1
bison-1.875 25,907 809.35s 28 50 0
sed-4.0.8 6,053 1154.32s 7 29 0
gzip-1.2.4a 7,327 794.31s 9 17 0
grep-2.5.1 9,297 603.58s 2 2 0

Linux kernel vmax302.c 246 0.28s 1 1 1
version xfrm user.c 1,201 45.07s 2 2 1
2.6.4 usb-midi.c 2,206 91.32s 2 10 4

atkbd.c 811 1.99s 2 2 2
keyboard.c 1,256 3.36s 2 2 1
af inet.c 1,273 1.17s 1 1 1
eata pio.c 984 7.50s 3 3 1
cdc-acm.c 849 3.98s 1 3 3
ip6 output.c 1,110 1.53s 0 0 0
mptbase.c 6,158 0.79s 1 1 1
aty128fb.c 2,466 0.32s 1 1 1

Commercial software 1 109,878 4525.02s 16 64 1
Softwares software 2 17,885 463.60s 8 18 9

software 3 3,254 5.94s 17 57 0
software 4 29,972 457.38s 10 140 112
software 5 19,263 8912.86s 7 100 3
software 6 36,731 43.65s 11 48 4
software 7 138,305 38328.88s 34 147 47
software 8 233,536 4285.13s 28 162 6
software 9 47,268 2458.03s 25 273 1

Table 1: Analysis speed and accuracy of Airac

2 Airac, a Sound Analyzer

Automatically detecting buffer overruns in C programs is not trivial. Arbitrary expressions
from simple arithmetics to values returned by function calls can be array indexes. Pointers
pointing buffers can be aliased and they can be passed over as function parameters and returned
from function calls. Buffers and pointers are equivalent in C. Contents of buffers themselves
also can be used as indexes of arrays. Pointer arithmetic complicates the problem once more.

Airac’s sound design is based on the abstract interpretation framework[4, 5]. To find out all
possible buffer overruns in programs, Airac has to consider all states which can occur during
programs executions. Airac computes sound approximation of program state at every program
point and reports all possible buffer overruns by examining the approximate program states.

For a given program, Airac computes a map from flow edges to abstract machine states.
The abstract machine state consists of abstract stack, abstract memory and abstract dump.
Abstract stack, abstract memory and abstract dump are maps of which range domains consist
of abstract value. We use interval domain Ẑ for abstract numeric values. [a, b] ∈ Ẑ represents
an integer interval that has a as minimum and b as maximum. And this interval means a set of
numeric values between a and b. To represent infinite interval, we use −∞ and +∞. [−∞,+∞]
means all integer values. The abstract array is a triple which consists of its initial address,

Research Institute of Korea Ministry of Information and Communication.
1Buffer overruns happen when an index value is out of the target buffer size. They are common bugs in

C programs and are main sources of security vulnerability. From 1/2[2] to 2/3[1] of security holes are due to
buffer overruns.

April 26, 2005 ROPAS-2005-24 3

offset interval and size interval. We use allocation sites to denote abstract memory locations.
An integer array which is allocated at l and has size s is represented as 〈l, [0, 0], [s, s]〉.

2.1 Striking a Cost-Accuracy Balance

Airac has many features designed to decrease false alarms or to speed-up analysis and all
techniques don’t violate the analysis soundness.

2.1.1 Accuracy Improvement

We use the following techniques to improve the analysis accuracy of Airac:

• Unique Renaming Memory locations are abstracted by allocation sites. In Airac, sites
of variable declarations are represented by variable name and other sites are assigned
unique labels. So to prevent interferences among variables, Airac renames all variables
to have unique names.

• Narrowing After Widening The height of integer interval domain is infinite. Widening
operator[4] is essential for the analysis termination. But this operator decreases accuracy
of analysis result. Narrowing is used for recovering accuracy.

• Flow Sensitive Analysis Destructive assignment is always allowed except for within
cyclic flow graphs.

• Context Pruning We can confine interval values using conditional expressions of branch
statements. Airac use these information to prune interval values and this pruning improve
analysis accuracy.

• Polyvariant Analysis Function-inlining effect by labeling function-body expressions
uniquely to each call-site: the number of different labels for an expression is bound by a
value from user. This method is weakened within recursive call cycles.

• Static Loop Unrolling Loop-unrolling effect by labeling loop-body expressions uniquely
to each iteration: the number of different labels for an expression is bound by a value
from the user.

2.1.2 Cost Reduction

When the fixpoint iteration reaches the junction points, we have to check the partial orders
of abstract machines and we also commit the join(t) operations. These tasks take most of
analysis time. The speed of the analysis highly depends on how we handle such operations
efficiently.

We developed techniques to reduce time required for partial order checking and join oper-
ation.

• Stack Obviation We transform the original programs whose effects on stack are reflected
by the memory. And this transformation makes Airac avoid scanning abstract stacks
during ordering abstract machines.

• Selective Memory Join Airac keeps track of information that indicates changed entries
in abstract memory. Join operation is applied only to those changed values.

• Wait-at-Join For program points where many data flows join, Airac delays the compu-
tation for edges starting from the current point until all computations for the incoming
edges are done.

April 26, 2005 ROPAS-2005-24 4

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50000 100000 150000 200000 250000

A
na

ly
si

s
T

im
e(

se
c)

Size(# of lines)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

A
na

ly
si

s
T

im
e(

se
c)

Size(# of lines)

(a) (b)

Figure 1: Airac’s scalability

3 Performance of Airac

This section presents Airac’s performance. Numbers that are before the statistical engine sift
out alarms that are probably false.

Airac is implemented in nML2 and tested to analyze GNU softwares, Linux kernel sources
and commercial softwares. The commercial softwares are all embedded softwares. Airac found
some fatal bugs in these softwares which were under development. Table 1 shows the result
of our experiment. “#Lines” is the number of lines of the C source files before preprocessing
them. “Time” is the user CPU time in seconds. “#Buffers” is the number of buffers those
may be overrun. “#Accesses” is the number of buffer-access expressions that may overrun.
“#Real Bugs” is the number of buffer accesses that are confirmed to be able to cause real
overruns. Two graphs in Figure 1 show Airac’s scalability behavior. X axis is the size (number
of lines) of the input program to analyze and Y axis is the analysis time in seconds. (b) is
a microscopic view of (a)’s lower left corner. Experiment was done in a Linux system with a
Pentium4 3.2GHz CPU and 4GB of RAM.

We found some examples in real codes that Airac’s accuracy and soundness shines:

• In GNU S/W tar-1.13 program rmt.c source, Airac detected the overrun point inside the
get string function to which a buffer pointer is passed:

static void

get_string (char *string)

{

int counter;

for (counter = 0;

counter < STRING_SIZE;

counter++) {

.....

}

string[counter] = ’\0’;

// counter == STRING_SIZE

}

int

2Korean dialect of ML programming language. http://ropas.snu.ac.kr/n

April 26, 2005 ROPAS-2005-24 5

main (int argc, char *const *argv)

{

char device_string[STRING_SIZE];

......

get_string(device_string);

......

}

• Airac catched errors in the following simple cases, for which syntactic pattern matching
or unsound analyzer are likely to fail to detect.

– Function pointer is used for calculating an index value:
int incr(int i) { return i+1;}

int decr(int i) { return i-1;}

main() {

int (*farr[]) (int) = {decr, decr, incr};

int idx = rand()%3;

int arr[10];

int num = farr[idx](10);

arr[num] = 10; //index:[9, 11]

}

– Index variable is increased in an infinite loop:
main() {

int arr[10];

int i = 0;

while(1){

*(arr + i) = 10; //index:[0, +Inf]

i++;

}

}

– Index variable is passed to a function by parameter and updated in the function:
simpleCal(int idx) {

int arr[10];

idx += 5;

idx += 10;

arr[idx]; //index:[17, 17]

}

main() {

simpleCal(2);

}

4 Sifting-out False Alarms
By Statistical Post Analysis

We use Bayesian approach [7] to compute the probability of alarms being true. Let ⊕ denote
the event an alarm raised is true and ª the event an alarm is false. Si denotes a single
symptom is observed in the raised alarm and ~S is a vector of such symptoms. P (E) denotes
the probability of an event E, and P (A | B) is the conditional probability of A given B. Bayes’
rule is used to predict the probability of a new event from prior knowledge. In our case, we
accumulate the number of true and false alarms having each specific symptom from alarms
already verified and classified to be true or false by humans. From this knowledge we compute
the probability of a new alarm with some symptoms being a true one.

April 26, 2005 ROPAS-2005-24 6

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

of

 a
la

rm
s

probability for an alarm to be true

of true alarms
of false alarms

Figure 2: Probability of alarms being true. False alarms are counted in negative numbers. 52%
of false alarms have probabilities under 0.14.

To compute the Bayesian probability, we need to define symptoms featuring alarms and
gather them from already analyzed programs and classified alarms. We defined symptoms
both syntactically and semantically. Syntactic symptoms describe the syntactic context before
the alarmed expressions. The syntactic context consists of program constructs used before the
alarmed expressions. Semantic symptoms are gathered during Airac’s fixpoint computation
phase. For such symptoms, we defined symptoms representing whether context pruning was
applied, whether narrowing was applied, whether an interval value has infinity and so forth.

From the Bayes’ theorem, probability P (⊕ | ~S) of an alarm being true that has symptoms
~S can be computed as the following:

P (⊕ | ~S) =
P (~S | ⊕)P (⊕)

P (~S)
=

P (~S | ⊕)P (⊕)

P (~S | ⊕)P (⊕) + P (~S | ª)P (ª)
.

By assuming each symptom in ~S occurs independently under each class, we have

P (~S | c) =
∏

Si∈~S

P (Si | c) where c ∈ {⊕,ª}.

Here, P (Si | c) is estimated by Bayesian analysis from our empirical data. We assume prior
distributions are uniform on [0, 1]. Let p be the estimator of the probability P (⊕) of an alarm
being true. P (Si | ⊕) and P (Si | ª) are estimated by θi and ηi respectively. Assuming
that each Si are independent in each class, the posterior distribution of P (⊕ | ~S) taking our
empirical data into account is established as following:

ψ̂j =
(
∏

Si∈~S θi) · p
(
∏

Si∈~S θi) · p+ (
∏

Si∈~S ηi) · (1− p)

April 26, 2005 ROPAS-2005-24 7

where p, θi and ηi have beta distributions as

p ∼ Beta(N(⊕) + 1, n−N(⊕) + 1)
θi ∼ Beta(N(⊕, Si) + 1, N(⊕,¬Si) + 1)
ηi ∼ Beta(N(ª, Si) + 1, N(ª,¬Si) + 1)

and N(E) is the number of events E counted from our empirical data.
Now the estimation of p, θi,ηi are done by Monte Carlo method. We randomly generate

pi, θij , ηij values N times from the beta distributions and compute N instances of ψj . We
take the mean ψ̄j for ψ̂. Then the 100(1 − 2α)% credible set of ψ̂ is (ψjα·N , ψj(1−α)·N) where
ψj1 < ψj2 < · · · < ψjN

. After obtaining the probability ψ̂ for each alarm to be true, we have
to decide whether we should report the alarm or not. To choose a reasonable threshold, the
user supplies two parameters defining the magnitude of risk: a1 for not reporting true alarms
and a2 for reporting false alarms.

⊕ ª
risk of reporting 0 a2

risk of not reporting a1 0

Since the probability of an alarm being true error is ψ̂, the expectation value of risk when we
raise an alarm is a2 · (1 − ψ̂), and a1 · ψ̂ when we don’t raise. To minimize the risk, we must
choose the smaller side. Hence, the threshold of probability for reporting can be chosen as:

a1 · ψ̂ > a2 · (1− ψ̂) ⇐⇒ ψ̂ >
a2

a1 + a2
.

For example, user can supply a1 = 9, a2 = 1 if he or she believes that not alarming for true
errors have risk 9 times greater than raising false alarms. Then the threshold for the probability
being true to report becomes 1/10 = 0.1 and whenever the probability of an alarm is greater
than 0.1, we should report it. For a sound analysis, to miss a true alarm is considered much
riskier than to report a false alarm, so it is recommended to choose the two risk values a1 À a2

to keep more soundness.
We have done some experiments with our samples of programs and alarms. Samples were

first divided into learning set and testing set. 50% of the alarms were randomly selected and
their symptoms were counted based on their classes. With these precalculated numbers, ψ̂ for
each remaining alarm was computed by taking the mean of 2000 ψj ’s which was computed
from p and each θi and ηi of its symptoms, all randomly generated. We can view alarms in
the testing set as new alarms, since their symptoms didn’t contribute to the numbers used for
the calculation of ψ̂.

The histogram in Figure 2 was constructed from the data of 3 runs of the experiment
previously described. Dark bars indicate true alarms and white ones are false. Although
probability of true alarms range from 0.14 to 0.78, 52% (=100 * 92/(92+82)) of false alarms
have probability less than 0.14. If we had assumed the risk of missing true error is about
6 times greater than false alarming, then we could choose 0.143 as a threshold. Using this
threshold, more than half of false alarms can be filtered, or deferred. We believe we will be
able to distinguish true and false alarms even better than we do currently, if we extract better
symptoms coupled with the weak points of Airac.

5 Conclusion

Our Airac experience encourages us to conclude that it is not inevitable to trade the soundness
for a reduced number of false alarms. By striking a cost-accuracy balance of a sound analyzer,
we can first achieve an analyzer that is itself useful with small false-alarm rate in most cases
(as the experiment numbers showed for analyzing Linux kernels). Then, by a careful design of

April 26, 2005 ROPAS-2005-24 8

a Bayesian analysis of the analyzer’s false-alarm behaviors, we can achieve a post-processing
engine that sifts out false alarms from the analysis results. For the Bayesian analysis engine
to be effective the analyzer designer must be able to pin-point the exact symptoms for false
alarms. This ability comes from a deep understanding of the analyzer’s weaknesses.

Though the Bayesian analysis phase still has the risk of sifting out true alarms, it can reduce
the risk at the user’s desire. Given the user-provided ratio of the risk of silencing true alarms
to that of false alarming, a simple decision theory determines the threshold probability that
an alarm with a lower probability is silenced as a false one. Because the underlying analyzer is
sound, if the user is willing to, (s)he can receive a report that contain all the real alarms. For
Airac, when the risk of missing true alarms is six times greater than that of false alarming, all
the real alarms are reported with the half of false alarms sifted out.

Acknowledgements We thank Jaeyong Lee for the design of the statistical analysis. We thank
Hakjoo Oh and Yikwon Hwang for helping our experiment by selecting sample programs and
manually classifying alarms.

References

[1] bugtraq. www.securityfocus.com.

[2] CERT/CC advisories. www.cert.org/advisories.

[3] Bruno Blanchet, Patric Cousot, Radhia Cousot, Jerome Feret, Laurent Mauborgne, An-
tonie Mine, David Monnizux, and Xavier Rival. A static analyzer for large safety-critical
software. In Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation, pages 196–207, June 2003.

[4] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings of
ACM Symposium on Principles of Programming Languages, pages 238–252, January 1977.

[5] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
Proceedings of ACM Symposium on Principles of Programming Languages, pages 269–282,
1979.

[6] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cssv: towards a realistic tool for statically
detecting all buffer overflows in c. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages 155–167. ACM
Press, 2003.

[7] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data
Analysis. Textx in Statistical Science. Chapman & Hall/CRC, second edition edition, 2004.

[8] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106,
2004.

[9] Yichen Xie, Andy Chou, and Dawson Engler. Archer: using symbolic, path-sensitive anal-
ysis to detect memory access errors. In ESEC/FSE-11: Proceedings of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 327–336. ACM Press, 2003.

