
ROPAS

Research On Program Analysis System
National Creative Research Initiative Center 1998-2003

Programming Research Laboratory, School of Computer Science & Engineering

Seoul National University

ROPAS MEMO

2005-25

April 26, 2005

Taming False Alarms from a Domain-Unaware C Analyzer

by a Bayesian Statistical Post Analysis

Yungbum Jung, Jaehwang Kim, Jaeho Shin, Kwangkeun Yi
{dreameye,jaehwang,netj,kwang}@ropas.snu.ac.kr

Programming Research Laboratory
Seoul National University

April 26, 2005

Abstract

We present our experience of combining, in a realistic setting, a static analyzer with a
statistical analysis. This combination is in order to reduce the inevitable false alarms from
a domain-unaware static analyzer. Our analyzer named Airac(Array Index Range Analyzer
for C) collects all the true buffer-overrun points in ANSI C programs. The soundness is
maintained, and the analysis’ cost-accuracy improvement is achieved by techniques that
static analysis community has long accumulated. For still inevitable false alarms (e.g.
Airac raised 970 buffer-overrun alarms in commercial C programs of 5.3 million lines and
737 among the 970 alarms were false), which are always apt for particular C programs, we
use a statistical post analysis. The statistical analysis, given the analysis results (alarms),
sifts out probable false alarms and prioritizes true alarms. It estimates the probability
of each alarm being true. The probabilities are used in two ways: 1) only the alarms
that have true-alarm probabilities higher than a threshold are reported to the user; 2) the
alarms are sorted by the probability before reporting, so that the user can check highly
probable errors first. In our experiments with Linux kernel sources, if we set the risk of
missing true error is about 3 times greater than false alarming, 74.83% of false alarms
could be filtered; only 15.17% of false alarms were mixed up until the user observes 50%
of the true alarms.

1 Introduction

When one company’s software quality assurance department started working with us to build a
static analyzer that automatically detect buffer overruns1 in their C softwares, they challenged
us with three goals: they hoped the analyzer 1) to be sound, detecting all possible buffer
overruns; 2) to have a reasonable cost-accuracy balance; and 3) not to assume a particular set
of programming style about the input C programs because they handle a wide spectrum of C
softwares to be embedded in various electronic devices. Building a realistic C buffer-overrun
analyzer that satisfies all the three requirements was a hard challenge. In the literature, we
have seen impressive static analyzers yet their application targets seem to allow them to drop
one of the three requirements [7, 4, 13, 9]. The major challenge is how to reduce the number of
inevitable false alarms from a realistic, sound static analyzer that cannot assume a particular
style for the input C programs.

In respond to the challenge, we decided to try the following path: design a sound static
analysis whose accuracy is stretched to a point where the analysis cost remains acceptable, then
use a statistical post analysis in order to sift out alarms that are probable to be false. The

1Buffer overruns happen when an index value is out of the target buffer size. They are common bugs in
C programs and are main sources of security vulnerability. From 1/2[2] to 2/3[1] of security holes are due to
buffer overruns.

April 26, 2005 ROPAS-2005-25 2

analyzer named Airac(Array Index Range Analyzer for C) collects all the true buffer-overrun
points in ANSI C programs. The soundness is maintained, and the analysis’ cost-accuracy
balance is stroke with techniques that static analysis community has long accumulated. Now
for still inevitable false alarms, which are always apt for particular C programs, we use a
statistical post analysis. The statistical analysis, given the analysis results (alarms), sifts out
some alarms that are probable to be false. It estimates the probability of each alarm being true.
The probabilities are used in two ways: 1) only the alarms that have true-alarm probabilities
higher than a threshold are reported to the user. The threshold is determined by the user-
provided ratio of the risk of silencing true alarms to that of false alarming. 2) By sorting the
alarms to be reported in descending order, it allows the user to examine highly probable alarms
first.

Airac targets the full set of ANSI C constructs as indexing expressions: from simple arith-
metics to arbitrary expressions involving function calls, pointer arithmetics, and aliases. Airac
handles buffers that are dynamically allocated consecutive memory cells of dynamic lengths as
well as static arrays. “buffer overrun” happens when an index value denotes an address out-
side the target buffer area. Striking a cost-accuracy balance of Airac is done by the following
techniques: for accuracy improvement we use narrowing after widening, flow-sensitivity, poly-
variance, context pruning (an instance of trace partitioning[11]) and static loop unrolling. For
cost reduction, we used stack obviation (removal of the stack from our abstract state), selective
memory join (point-wise join for abstract memory is applied only to the changed entries), and
wait-at-join (a worklist iteration does not continue to pass a join point until all threads arrive).
For commercial C programs of 5.3 million LOC, Airac raises 970 buffer-overrun alarms, among
which 233 alarms are true. For some parts of the Linux kernel of 18,760 LOC, Airac raises 26
alarms, among which 16 are true.

The statistical method aiming to sift out false alarms is designed by the Bayesian data
analysis framework[8], implemented by the Monte Carlo method[12], and parameterized by a
simple decision theory[3]. We define a conditional probability formula for an alarm to be true
given the set of symptoms observed for the alarm. This probability formula has parameter
probabilities, whose distributions are determined by Bayesian analysis from the “training set”
(or “past experience knowledge”). The parameter probabilities are obtained by the Monte
Carlo method. The training set, which consists of alarms and their conditional probabilities of
having symptoms given that they are either true or false, is obtained by running our analyzer
for a set of Linux kernel, and textbook C programs and manually classifying the alarms into
either true or false. Having computed the probability of each alarm being true, we report only
the alarms that have the true-alarm probabilities higher than a threshold. The threshold is
determined by the user-provided ratio of the risk of silencing true alarms to that of raising false
alarms. The ratio, for each alarm, determines the expected risks of silencing it or alarming it.
The action with a smaller risk is chosen. This statistical engine’s effectiveness is promising. If
the user set the risk of missing true error is 3 times greater than false alarming, then 74.83%
of false alarms could be sifted out. Meanwhile, by ranking the alarms by higher probabilities
and examining from the top, the user encounters only 15.17% of false alarms until he or she
reaches 50% of the true ones.

2 Airac, the Analyzer

Airac is an abstract interpreter. To find out all possible buffer overruns in programs, Airac
considers all states which may occur during programs executions. It computes a sound ap-
proximation of dynamic program states occurring at each program point and reports possible
buffer overruns by examining the approximate states.

A concrete array block is abstracted as a triple that consists of abstract base address, offset,
and size. Abstract base address is one for each memory allocation site in C programs. Abstract
offset and size are integer intervals. For example, for the following C code:

April 26, 2005 ROPAS-2005-25 3

int p[5];
int *q = p + 3;
*(q+3) = 1;

The pointer p’s abstract value is 〈l, [0, 0], [5, 5]〉 where name l is the abstract base address for
the declared array. [0, 0] and [5, 5] are respectively the current offset and size as intervals. After
the pointer arithmetic, q is initialized as 〈l, [3, 3], [5, 5]〉; then the value of q+3 is 〈l, [6, 6], [5, 5]〉
whose offset exceeds its size, where our analyzer raises a buffer overrun alarm.

2.1 Semantics and Its Abstraction

C program’s collecting semantics is defined as the set of transition sequences of machine states.
A machine state is a tuple of a program point, data stack, environment, memory, and control
stack (dump). A C program’s semantics is the least fixed point of the following function:

F : 2Machineω → 2Machineω

F(X) = {m0} ∪ {t→ mn+1 | t let= · · · → mn ∈ X,mn → mn+1}

where Machine = Edge× State and the program points Edge = Lab× Lab are the set of edges
between two program labels. Labels are uniquely assigned to all the expressions and commands
of the input C program.

We approximate the collecting semantics by T ∈ Edge → Ŝtate that maps each program
point to an abstract state Ŝtate. The abstract state at each program point approximates all
the states occurring at the point in all the concrete transition sequences. The map is defined
as the least fixed point of the following function:

F̂ : (Edge → Ŝtate) → (Edge → Ŝtate)
F̂(T) = λ〈l, l′〉.s where 〈l,⊔{s′|p ∈ pred(l), T 〈p, l〉 = s′}〉 →# 〈l′, s〉

The pred(l) is the set of predecessors of label l in the transition sequences.

2.2 Fixpoint Algorithm

The fixpoint algorithm is a chaotic working set algorithm. The working set consists of labels of
expressions whose abstract state has to be re-computed. When a computed machine state for
T 〈l, l′〉 is changed, we add l′ to the working set, indicating we have to re-compute the states
of the edges from l′. The working set is a stack, hence each abstract transition step follows
the program’s execution flow in a depth-first order of the flow graph. When the next program
points to evaluate are multiple (as when we compute conditional expressions), those two points
are grouped together and pushed as a single unit to the working set stack. This grouping
adds a flavor of breadth-first traversal of the flow graph. The fixpoint algorithm consists of
two loops: widening iterations followed by narrowing iterations (because of the infinite-height
interval domain). The working set algorithm selectively applies the widening and narrowing
operations at the heads of flow cycles.

2.3 Accuracy Improvement

We use some techniques to improve the analysis accuracy: 1) we use widening and narrowing
for interval domain[5]; 2) we use destructive assignment to achieve flow sensitive analysis
except for within cyclic call chains; 3) we use context pruning to confine interval values; 4)
we use function-inlining for polyvariant analysis; 5) we use static loop unrolling. Though each
technique is independent of others, using all the techniques in combination results in a synergy
for improving the analysis accuracy.

April 26, 2005 ROPAS-2005-25 4

2.4 Cost Reduction

We present three techniques for cost reduction of Airac. They are stack obviation, selective
join and wait-at-join. From experiment results on parts of the Linux kernel, we could observe
that stack obviation is a very powerful technique for cost reduction. The wait-at-join technique
works well for most programs with some exceptions.

Table 1: Experiment result of cost reduction techniques
Version Timea(s) Speed-Up Timeb(s) Speed-Up
none 18317.55 0% 16253.18 0%
selective join 16055.58 12.35% 14286.72 12.1%
wait-at-join 19317.67 -5.45% 13153.43 19.98%
stack obviation 3717.06 79.71% 3247.79 81.02%
all 3461.57 81.11% 2320.58 85.73%

athe sum of analysis time for 43 Linux kernel programs.
bsame as a except one program that wait-at-join has bad influence upon work

list algorithm.

2.4.1 Stack Obviation

When fixpoint iteration reaches the junction points, Airac has to compare abstract states
and/or join them. These tasks take most of the analysis time. The speed of the analysis highly
depends on how we handle such operations efficiently. Since abstract stack Ŝtack is a finite
map from program label to abstract value, the number of entries is directly proportional to
the size of the program. In order to avoid scanning the Ŝtack component every time we join
or compare machine states, we transform the original program to have all stack variations of
each transition reflected on memory. Let’s consider the following ?: expression:

y = (x > 0) ? 1 : 2;

Suppose that x has the interval value [−1, 1]. Then expression x > 0 can be evaluated to have
both true and false. So the value of y after this expression must be [1, 2]. But if Airac obviates
join operation for stack, then constant value 1 and 2 which are stored in stack can’t be joined.
To avoid this, we transform the above expression to the following expression:

y = { var tmp; if (x > 0) tmp = 1; else tmp = 2; tmp; };

The temporary variable tmp is used to reflect the changes of stack on the memory. Through
this transformation the order of stack can be checked by looking at the order of memory. This
technique can reduce the analysis time by 79.71%.

2.4.2 Selective Memory Join

Airac keeps track of information that indicates changed entries in abstract memory. Join
operation is applied only to those changed values. Comparing with pre-state, Airac reduces
size of the information by removing unchanged entries. This technique can reduce analysis
time by 12.35%.

2.4.3 Wait-at-Join

For program points where many control flows join, Airac delays the computation for current
point until all computations for the incoming edges are done. By this, Airac can reduce redun-
dant computations after the junction point. However, it is very difficult to decide whether all

April 26, 2005 ROPAS-2005-25 5

threads have reached current point or not. So Airac chooses a simple strategy which waits until
the working stack becomes empty. This technique is very powerful for C programs that have
many junction points, e.g. switch statements, label expressions. This technique can reduce
analysis time by 19.98% for most programs.

2.5 Airac’s Cost, Accuracy and Scalability

We implemented Airac using nML2 and analyzed various softwares from toy C programs to
serious ones such as GNU softwares, Linux kernel sources and commercial softwares. All these
commercial softwares are embedded softwares3. Airac found some fatal bugs in these softwares
which were under development. Table 2.5 shows the result of our experiment.

Table 2: Analysis speed and accuracy of Airac
Time #Airac Alarms #RealSoftware #Lines
(sec) #Buffers #Accesses bugs

GNU S/W tar-1.13 20,258 576.79s 24 66 1
bison-1.875 25,907 809.35s 28 50 0
sed-4.0.8 6,053 1154.32s 7 29 0
gzip-1.2.4a 7,327 794.31s 9 17 0
grep-2.5.1 9,297 603.58s 2 2 0

Linux kernel vmax302.c 246 0.28s 1 1 1
version xfrm user.c 1,201 45.07s 2 2 1
2.6.4 usb-midi.c 2,206 91.32s 2 10 4

atkbd.c 811 1.99s 2 2 2
keyboard.c 1,256 3.36s 2 2 1
af inet.c 1,273 1.17s 1 1 1
eata pio.c 984 7.50s 3 3 1
cdc-acm.c 849 3.98s 1 3 3
ip6 output.c 1,110 1.53s 0 0 0
mptbase.c 6,158 0.79s 1 1 1
aty128fb.c 2,466 0.32s 1 1 1

Commercial software 1 109,878 4525.02s 16 64 1
Softwares software 2 17,885 463.60s 8 18 9

software 3 3,254 5.94s 17 57 0
software 4 29,972 457.38s 10 140 112
software 5 19,263 8912.86s 7 100 3
software 6 36,731 43.65s 11 48 4
software 7 138,305 38328.88s 34 147 47
software 8 233,536 4285.13s 28 162 6
software 9 47,268 2458.03s 25 273 1

“#Lines” is the number of lines of the C source files before preprocessing them. “Time”
is the user CPU time in seconds. “#Buffers” is the number of buffers those may be overrun.
“#Accesses” is the number of buffer-access expressions that may overrun. “#Real Bugs” is
the number of buffer accesses that are confirmed to be able to cause real overruns. Two graphs
in Figure 1 show Airac’s scalability behavior. X axis is the size (number of lines) of the input
program to analyze and Y axis is the analysis time in seconds. (b) is a microscopic view of
(a)’s lower left corner. Experiment was done on a Linux system with a single Pentium4 3.2GHz
CPU and 4GB of RAM.

2Korean dialect of ML programming language. http://ropas.snu.ac.kr/n
3Their real names cannot be disclosed due to the contract.

April 26, 2005 ROPAS-2005-25 6

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50000 100000 150000 200000 250000

A
na

ly
si

s
T

im
e(

se
c)

Size(# of lines)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

A
na

ly
si

s
T

im
e(

se
c)

Size(# of lines)

(a) (b)

Figure 1: Airac’s scalability

Airac is scalable enough to analyze real world softwares. Airac can analyze programs of up
to about 10,000 lines at once. GNU softwares such as grep, gzip and sed were analyzed as a
whole. And these analyses took less than an hour to finish.

3 Statistical Taming of False Alarms

Reducing the number of false alarms is the key issue of increasing accuracy of sound analyzers.
Sound analyzers that cannot assume a particular style for the input programs can often report
many false alarms compared to true ones. Controlling the abstraction level of the analysis
will work but not very effectively. It is clear that by using less abstract domains we can
distinguish more concrete values, but practically, relying solely on this approach will soon
hit an unacceptable cost. Furthermore, if the analyzer must handle unlimited set of input
programs, there will always be some programs that fool the analyzer. User annotation in
source codes can be a powerful method [7]. For example, user may place assertions between
lines of the source code such as, “at this point of the program this variable always has a
value in certain interval”. Then the analyzer will be able to repair its accuracy based on such
annotations. Heuristics can be applied to classify alarms into true and false[10] ones. However,
unless they are based on a strong basis, we can hardly be confident with their classifications.
Using this approach we are tempted to give up the soundness and claim that such sacrifice
is inevitable to increase precision. But, it is always better to know where all possible bugs
than only knowing some of them quick and effectively. Without giving up its soundness, Airac
is handling the problem of false alarms using statistical post analysis built on top of a firm
theoretical background.

3.1 Bayesian Analysis

We use Bayesian statistics[8] to compute the probability of an alarm being true. Let ⊕ denote
the event an alarm raised is true, and let ª denote it is false. Si denotes that a single symptom
is observed in the raised alarm and ~S is a vector of such symptoms. How we define symptoms
and extract them will be discussed later in 3.2. P (E) denotes the probability of an event E,
and P (A | B) is the conditional probability of A given B. We call the probability P (⊕ | ~S) of
an alarm being true given its symptoms as the trueness of the alarm.

Bayes’ theorem is used to predict the probability of a new event from prior knowledge. In
our case, we accumulate the number of true and false alarms having each specific symptom from
alarms already verified and classified to be true or false by humans. From this knowledge we
are able to compute the trueness of new alarms using their symptoms. Using Bayes’ theorem,

April 26, 2005 ROPAS-2005-25 7

the trueness P (⊕ | ~S) can be computed as the following:

P (⊕ | ~S) =
P (~S | ⊕)P (⊕)

P (~S)
=

P (~S | ⊕)P (⊕)

P (~S | ⊕)P (⊕) + P (~S | ª)P (ª)
.

By assuming each symptom in ~S occurs independently under each class, we have

P (~S | c) =
∏

Si∈~S

P (Si | c) where c ∈ {⊕,ª}.

Here, P (Si | ⊕) is estimated by ψ̂ using Bayesian analysis of our empirical data. We
assume prior distributions are uniform on [0, 1]. Let p be the estimator of the ratio P (⊕) of
true alarms to all raised alarms. Each P (Si | ⊕) and P (Si | ª) is estimated by θi and ηi

respectively. Assuming that each Si are independent in each class, the posterior distribution
of P (⊕ | ~S) taking our empirical data into account is established as following:

ψ̂j =
(
∏

Si∈~S θi) · p
(
∏

Si∈~S θi) · p+ (
∏

Si∈~S ηi) · (1− p)
(1)

where p, θi and ηi have beta distributions as

p ∼ Beta(N(⊕) + 1, n−N(⊕) + 1)
θi ∼ Beta(N(⊕, Si) + 1, N(⊕,¬Si) + 1)
ηi ∼ Beta(N(ª, Si) + 1, N(ª,¬Si) + 1)

and N(E) is the number of events E counted from our empirical data. Now the estimation
of p, θi,ηi are done by Monte Carlo method. We randomly generate pi, θij , ηij values N times
from the beta distributions and compute N instances of ψj . Then the 100(1 − 2α)% credible
set of ψ̂ is (ψjα·N , ψj(1−α)·N) where ψj1 < ψj2 < · · · < ψjN

. We take the upper bound ψj(1−α)·N

for ψ̂, since the maximal probability being true is our concern as seen later.

3.2 Symptoms

We defined both syntactic and semantic symptoms to cover possible factors influencing anal-
ysis accuracy. We consider 22 symptoms in total, of which 12 were syntactic ones and 10
were semantic ones. There are three types of symptoms: 1) syntactic context of the alarmed
expression; 2) general factors that influence analysis accuracy; 3) properties within the array
access expression.

3.2.1 Syntactic Context

We defined syntactic symptoms to describe the syntactic context around the alarmed expres-
sions. Nested branches and loops are useful symptoms to distinguish true alarms, since complex
program structures can cause the programmer make more errors.

3.2.2 General Accuracy Factors

We collect symptoms from preceding program points of the alarm which can help Airac improve
its accuracy. Most of them are related to the number of joins, or whether narrowing, and
pruning was successful or not. For example, conditional expressions such as x < 10 can be
used to confine the value of x. So such conditional expressions can be thought as good symptoms
indicating Airac will have better accuracy from that point. On the other hand, program points
after many control flows join should have decreased accuracy in Airac. Hence, it can be a good
symptom indicating false alarm spots. These type of symptoms are also collected during the
fixpoint iterations, since they are tightly connected to the analysis itself.

April 26, 2005 ROPAS-2005-25 8

3.2.3 Array Access Expression

How tightly the value of the array index or the array itself was approximated can be a good
symptom. Since widening operations do over approximations, and its accuracy is often unre-
coverable at the narrowing stage, array indexes with infinity can be usually thought as false
alarms. Conversely, array indexes with exact boundaries strongly indicate true alarms. From
the analysis result, we extract symptoms relevant to how precise the values of array offset, size
and index are.

3.3 Sifting Out False Alarms

We can use the estimated trueness for sifting out false alarms systematically. Users who may
want to see unsound, but accurate results of the analysis can count on this method. To decide
whether we should sift out an alarm or not, we need a threshold to compare with the estimated
ψ̂ with 100(1−2α)% credibility. To choose a reasonable threshold, user supplies two parameters
defining the magnitude of risk: rm for missing true alarms and rf for reporting false alarms.
Only their ratio, not their absolute values matter.

⊕ ª
risk of reporting 0 rf

risk of not reporting rm 0

Given an alarm whose trueness is ψ, the expectation of risk when we raise an alarm is rf ·(1−ψ),
and rm · ψ when we don’t. To minimize the risk, we must choose the smaller side. Hence, the
threshold of trueness to report the alarm can be chosen as:

rm · ψ ≥ rf · (1− ψ) ⇐⇒ ψ ≥ rf
rm + rf

.

If the trueness of an alarm can be greater than or equal to such threshold, i.e. if the upper
bound of trueness ψ̂ is greater than such threshold, then the alarm should be raised with
100(1 − 2α)% credibility. For example, user can supply rm = 3, rf = 1 if he or she believes
that not alarming for true errors have risk 3 times greater than raising false alarms. Then
the threshold for the probability being true to report becomes 1/4 = 0.25 and whenever the
estimated trueness of an alarm is greater than 0.25, we should report it.

We have done some experiments with our samples of programs and alarms. Some parts
of the Linux kernel and programs that demonstrate classical algorithms were used for the
experiment. For a single experiment, samples were first divided into learning set and testing
set. 50% of the alarms were randomly selected as learning set, and the others for testing
set. Each symptom in the learning set were counted according to whether the alarm was
true or false. With these pre-calculated numbers, ψ̂ for each alarm in the testing set was
estimated using the 90% credible set constructed by Monte Carlo method. Using Equation
(1), we computed 2000 ψj ’s from 2000 p’s and θi’s and ηi’s, all randomly generated from their
distributions. We can view alarms in the testing set as alarms from new programs, since their
symptoms didn’t contribute to the numbers used for the estimation of ψ̂.

The histogram in Figure 2 was constructed from the data generated by repeating the exper-
iment 15 times. Dark bars indicate true alarms and white ones are false. 74.83% (=1504/2010)
of false alarms have trueness less than 0.25, so that they can be sifted out. For users who con-
sider the risk of missing true error is 3 times greater than false alarming, almost three quarters
of false alarms could be sifted out, or preferably just deferred.

For a sound analysis, it is considered much risker to miss a true alarm than to report a
false one, so it is recommended to choose the two risk values rm À rf to keep more soundness.
For the experiment result Figure 2 presents, 31.40% (=146/465) of true alarms had trueness
less than or equal to 0.25, and were also sifted out with false alarms. Although we do not miss
any true alarm by lowering the threshold down to 0.07 (rm/rf ' 13) for this case, it does not

April 26, 2005 ROPAS-2005-25 9

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nu
m

be
r

of
 a

la
rm

s

trueness of alarm

true alarms
false alarms

Figure 2: Frequency of trueness in true and false alarms. False alarms are counted in negative
numbers. 74.83% of false alarms have trueness less than 0.25.

guarantee any kind of soundness in general. However, to obtain a sound analysis result, one
can always set rf = 0, i.e. allowing none of the alarms to be sifted out.

3.4 Ranking False Alarms

We can rank alarms by their trueness to give effective results to user. This ranking can be
used both with and without the previous sifting-out technique. By ordering alarms, we let
the user handle more probable errors first. Although the trueness of true alarms are scattered
over 0 through 1, we can see that most of the false alarms have small trueness. Hence, sorting
by trueness and showing in decreasing order will effectively give true alarms first to the user.
Figure 3 shows the cumulative percentage of observed alarms starting from trueness 1 and
down using the same data in Figure 2. Only 15.17% (=305/2010) of false alarms were mixed
up until the user observes 50% of the true alarms, where the trueness equals 0.3357.

From experiments by varying symptoms, we have seen that both true and false alarms share
quite a few symptoms. We suspect that whether an error may occur at some particular point
does not have tight relation with its syntactic or semantic structure. Although we observe
some promising evidences from the program structure, the fact that the new alarm is true or
not can always be the opposite to the previous knowledge. However, this method can detect
programmers’ mistakes appearing in common programming patterns, or false alarms due to
the weakness of our analyzer in most cases.

4 Related Work

Reducing false alarms has always been a critical problem in static analysis. Existing tools have
addressed the false alarm problem by 1) giving up the soundness of analysis (e.g. SPLINT[14],
ARCHER[13]); 2) depending on user annotations (e.g. CSSV[7], SPLINT[14]); 3) limiting the
target programs(e.g. The ASTRÉE Analyzer[4, 6]); 4) heuristically classifying the alarms into
either true ones or false ones(e.g. z-ranking[10]).

Airac differs from existing tools in that it uses a Bayesian statistical analysis to classify
the alarms by their probabilities being true. Our Bayesian approach can be orthogonally used

April 26, 2005 ROPAS-2005-25 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cu
m

ul
at

iv
e

pe
rc

en
ta

ge
 o

f o
bs

er
ve

d
al

ar
m

s

trueness of alarm

true alarms
false alarms

Figure 3: Cumulative percentage of observed alarms starting from trueness 1 and down.

with the user annotation approach. As of the analysis itself, it is sound, does not rely on user
annotations, covers the full set of ANSI C constructs, and scalable up to several 10K LOC.

CSSV[7] and SPLINT[14] rely on the user annotations to reduce the false alarms. With im-
precise or null user annotation, these tools have rapidly increasing false-alarm rate. ARCHER(ARray
CHeckER)[13] is not sound, having a low detection-rate for bugs. The ASTRÉE Analyzer[4, 6]
is a static program analyzer aiming at verifying the absence of run time errors in a limited
number of avionics controller programs in C. This analyzer report zero or very few false alarm.
It excludes several C features (e.g. union types, dynamic memory allocation, and unbounded
recursive function calls).

Most directly related to our Bayesian approach is the Z-ranking[10]. It ranks alarms by
heuristics. It first partitions successes (e.g. safe buffer accesses) and failures (e.g. buffer overrun
alarms) into groups. In each group, using a three heuristics, it computes “z-score” for each
alarm being true. Alarms in the decreasing order of the z-scores are presented to the user. This
approach has two drawbacks. The heuristics are only about the relative numbers of successes
and failures in each group and there is no systematic method on how to partition the alarms.
Thus if the partitioning happen to group alarms about which the heuristics fail to reflect the
reality, the z-ranking can be ineffective. In comparison, our statistical approach is more robust.
Our method has no arbitrary parameter like the “partitioning” in the z-ranking method; it’s
competence does not rely on a particular factor of the method because the set of symptoms,
which correspond to our method’s heuristics, are extensive covering both the analyzer’s internal
behaviors and the input programs syntactic characteristics; and lastly, thanks to the Bayesian
framework’s learning capability, our method’s competence will improve as the analysis results
are accumulated.

5 Conclusion and Discussion

We present that combining, in a realistic setting, a domain-unaware static analyzer with a
Bayesian analysis can be a viable approach to handle false alarms. Our analyzer Airac, which
collects all the true buffer-overrun points in ANSI C programs, is sound and its cost-accuracy
improvement is achieved by techniques that static analysis community has long accumulated.
For still inevitable false alarms we design a Bayesian post analysis. The statistical analysis,

April 26, 2005 ROPAS-2005-25 11

given the analysis results (alarms), estimates the probability of each alarm being true. The
probabilities are used to sift out probable false alarms and prioritize true alarms. Only the
alarms that have trueness higher than a threshold are reported to the user, and the alarms are
sorted by the probability before reporting, so that the user can check highly probable errors
first. In our experiments with Linux kernel sources and some textbook programs, if the user
set the risk of missing true error is about 3 times greater than false alarming, 74.83% of false
alarms could be filtered; and only 15.17% of false alarms were mixed up until the user observes
50% of the true alarms.

The Bayesian analysis’ competence heavily depends on how we define symptoms. Since the
inference framework is known to work well, better symptoms and feasible size of pre-classified
alarms is the key of this approach. We think promising symptoms are tightly coupled with
analysis’ weakness and/or its preciseness, and some fair insight into the analysis is required to
define them. However, since general symptoms, such as syntactic ones, are tend to reflect the
programming style, and such patterns are well practiced within organizations, we believe local
construction and use of the knowledge base of such simple symptoms will still be effective.
Furthermore, we see this approach easily adaptable to possibly any kind of static analysis.

Another approach to handling false alarms is to equip the analyzer with all possible tech-
niques for accuracy improvement and let the user choose a right combination of the techniques
for her/his programs to analyze. The library of techniques must be extensive enough to spe-
cialize the analyzer for as wide spectrum of the input programs as possible. This approach
lets the user decide how to control false alarms, while our Bayesian approach lets the analysis
designer decide by choosing the symptoms based on the knowledge about the weakness and
strength of his/her analyzer. We see no reason we cannot combine the two approaches.

Acknowledgements We thank Jaeyong Lee for helping us design our Bayesian analysis. We
thank Hakjoo Oh and Yikwon Hwang for their hard work in collecting and identifying false
alarm cases.

References

[1] bugtraq. www.securityfocus.com.

[2] CERT/CC advisories. www.cert.org/advisories.

[3] James O. Berger. Statistical Decision Theory and Bayesian Analysis, 2nd Edition.
Springer, 1985.

[4] Bruno Blanchet, Patric Cousot, Radhia Cousot, Jerome Feret, Laurent Mauborgne, An-
tonie Mine, David Monnizux, and Xavier Rival. A static analyzer for large safety-critical
software. In Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation, pages 196–207, June 2003.

[5] Patrick Cousot and Radhia Cousot. Comparing the galois connection and widen-
ing/narrowing approaches to abstract interpretation. In PLILP ’92: Proceedings of the
4th International Symposium on Programming Language Implementation and Logic Pro-
gramming, pages 269–295. Springer-Verlag, 1992.

[6] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. The astrée analyzer. In M. Sagiv, editor, European Sym-
posium on Programming (ESOP’05), volume 3444 of Lecture Notes in Computer Science,
pages 21–30. Springer-Verlag, 2005.

[7] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cssv: towards a realistic tool for statically
detecting all buffer overflows in c. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003

April 26, 2005 ROPAS-2005-25 12

conference on Programming language design and implementation, pages 155–167. ACM
Press, 2003.

[8] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data
Analysis. Text in Statistical Science. Chapman & Hall/CRC, second edition edition, 2004.

[9] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106,
2004.

[10] Ted Kremenek and Dawson Engler. Z-ranking: Using statistical analysis to counter the
impact of static analysis approximations. In Radhia Cousot, editor, SAS ’03: Proceedings
of the 10th Annual International Static Analysis Symposium, volume 2694 of Lecture Notes
in Computer Science, pages 295–315. Springer, 2003.

[11] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation based
static analyzers. In M. Sagiv, editor, European Symposium on Programming (ESOP’05),
volume 3444 of Lecture Notes in Computer Science, pages 5–20. Springer-Verlag, 2005.

[12] N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American Statistical
Association, 44(247):335–341, September 1949.

[13] Yichen Xie, Andy Chou, and Dawson Engler. Archer: using symbolic, path-sensitive
analysis to detect memory access errors. In ESEC/FSE-11: Proceedings of the 9th Euro-
pean software engineering conference held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 327–336. ACM Press, 2003.

[14] Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis tools using ex-
ploitable buffer overflows from open source code. In SIGSOFT ’04/FSE-12: Proceedings
of the 12th ACM SIGSOFT twelfth international symposium on Foundations of software
engineering, pages 97–106. ACM Press, 2004.

