
ROPAS

R O P A S
N C R I C 1998-2003
P R L, S C S & E

S N U

ROPAS MEMO
ROPAS-2006-31

July 19, 2006

Experiment on a Modular Program Aanlysis That
Saves Memory

Jaehwang Kim

School of Computer Science and Engineering
Seoul National University

Master thesis
Advisor: Kwangkeun Yi

Abstract

We present a modular fixpoint computation that consumes smaller memory than a global
fixpoint iterations yet with no loss of accuracy. Our motivation comes from designing a
scalable global program analysis. Program analysis is to compute a fixpoint of a system of
equations. For large-scale global analysis for bug-finding or verification, analysis’ memory
consumption is more decisive factor for its usability than its time consumption. Our method
is to re-arrange the original system of equations into two hierarchies. We partition the
equations into smaller sets, and then we prepare a set of equations that “links” the partitions.
After solving the set of link equations with nested fixpoint iterations, we solve each partition
separately. If the size of link equations set is small, than we can solve each partition and the
set of linker equations with smaller memories. This method is implemented inside a realistic
C analyzer. From our experiment of analyzing 5,000LOC - 20,000LOC GNU programs, we
observed our modular method have 50-71% memory peak saving.

1 Introduction

1.1 Motivation

Termination remains in theory if without scalability. From our experience in developing a
sound program analyzer - Airac[14] for bug-finding in realistic setting, we have found that
economical memory consumption is critical for its scalability. Though Airac was designed
to terminate for any programs, if input programs had over 15,000LOC, Airac in its global
analysis mode started to fail because of out-of-memory.

If we can solve a system of equations with less memory, we can make a more scalable
program analyzer. It’s because a typical program analyzer solves a system of equations which
are derived from a given program. In case of flow-sensitive analysis, unknown variables in
the system of equations correspond to program points of the program. The analyzer usually
solves the system of equations by an iterative fixpoint algorithm. During fixpoint iterations, the
analyzer keeps intermediate values of all unknown variables. Therefore amount of memory
required for programs is determined mostly by programs’ size.

Using Bekić’s theorem[1, 5] we can partition a system of equations into independent
sub systems. For example, two equations x = f (y) and y = 1(x) can be separated to
x = f (lfpλy.1(x)) and y = 1(lfpλx. f (y)). Bekić’s theorem ensures us that the solutions of the
new equations are same with the solutions of the original equations.

But Bekić’s theorem-based partitioning is not enough to guarantee memory saving. For
the solution of the previous example, we compute lfpλx. lfpλy.1(x) and lfpλy. lfpλx.1(y) with

July 19, 2006 ROPAS-ROPAS-2006-31 2

nested fixpoint iterations. To achieve a feasible memory-efficient modular program analysis,
we have to be sure about two things: 1) We must be able to solve each module with less mem-
ory. In case of the previous example, we can compute lfpλx. lfpλy.1(x) and lfpλy. lfpλx.1(y)
separately, but we can’t save memory. Each of lfpλx. lfpλy.1(x) and lfpλy. lfpλx.1(y) requires
memory cells to store x and y. So does solving {x = f (y), y = 1(x)}; 2) There should be
no serious overhead due to modularization. In lfpλx. lfpλy.1(x) and lfpλy. lfpλx.1(y) fix-
point iterations are nested. And the inner iterations always start with ⊥. Therefore there are
redundant computations.

This paper answers a question “Can we achieve a feasible memory-efficient modular
program analysis using Bekić’s theorem?”. To answer the question, we made a modular
program analyzer Kairac using Bekić’s theorem. In the rest of this paper, we present our
modular approach for solving systems of equations, designs of Kairac and experiment results.

1.2 Our Idea

We present our modular fixpoint computation by an example. Let’s consider the following
system E of equations:

E =
{

x1 = f1〈x1, x2〉
x2 = f2〈x2, y1〉

y1 = 11〈y1, y2〉
y2 = 12〈y2, y1〉

}

To solve E with an iterative fixpoint algorithm, we need 4 memory cells to store the 4 unknown
variables. Note that no equation uses all 4 variables. And if we divide E into two parts - one
for xi and another for yi, then only y1 is shared by the two parts. We call y1 a link variable,
since the two parts are linked by y1. So if we know y1’s solution, then we can get solutions of
xi and yi separately with less than 4 memory cells. Using y1 as a link variable, we can define
a new system E′ of equations by introducing a new variable z for the link variable:

E′ =
{

x1 = f1〈x1, x2〉
x2 = f2〈x2, z〉

}
∪

{
y1 = 11〈z, y2〉
y2 = 12〈y2, z〉

}
∪

{
z = y1

}

= {x = F〈x, z〉} ∪ {y = G〈y, z〉} ∪ {z = y.1}
x = 〈x1, x2〉, y = 〈y1, y2〉 and v.n is the n-th component of vector v. F〈x, z〉 = 〈 f1x, f2〈x.2, z〉〉
and G〈y, z〉 = 〈11〈z, y.2〉, 12〈y.2, z〉〉. To get the solutions of x and y separately, we have to solve
the new equation z = y.1 first. For the solution of z, we define a link equation which consists
of just link variables. By Bekić’s theorem, we can replace y by lfpλy.G〈y, z〉 without loss of
accuracy. Therefore we have the following equation and its solution:

z = Hz (equation)
z M= lfpH (solution)

where H = λz.(lfp(G′z)).1 and G′ = λz.λy.G〈y, z〉. Now note that we can solve the link
equation by computing lfpH with 3 memory cells. At each iteration step for lfpH, lfp(G′z)
uses 1 memory cell for z and 2 memory cells for y. With lfpH, we can get the solutions of x
and y by solving {x = F〈x, z〉, z = lfpH} and {y = G〈y, z〉, z = lfpH} respectively. We can solve
these two systems of equations with 3 memory cells separately.

Our modular fixpoint computation can save memory but it has redundancy in solving link
equations. Fixpoint iterations for link equations are nested. So the inner fixpoint computation
does redundant computations comparing flat fixpoint iterations. At each iteration step for
lfpH, we have to compute values for y from ⊥. But, in flat fixpoint iterations, values of
unknown variables never decrease. If this overhead of the nested iterations is too big, then
our memory saving method is not appropriate for practical purposes.

In our experiment, memory saving was big enough not only to compensate the overhead
but also to save running time. We made a new program analyzer Kairac by applying our

July 19, 2006 ROPAS-ROPAS-2006-31 3

method to Airac. Given a program P, Airac solves a system of equations for all program
points in P. For the program P, Kairac solves the same system of equations using entry and
exit points of procedures as link variables. In our experiment comparing Airac and Kairac,
memory peak of Kairac was 29-50% of Airac’s memory peak for GNU programs with 5,000-
20,000LOC. For the same programs, in spite of the nested iterations, Kairac could save 32-34%
of running time due to reduced size of memory.

From here, every domain is a cpo and every function is continuous, if we do not state
otherwise. ⊥ is used to represent the least elements for any domains without subscripts.

1.3 Our Contributions

• We made a memory-efficient method for fixpoint computation. Given a system of
equations, we derive link equations using Bekić’s theorem. Solutions of link equations
can be used to solve the original problem in parts. Therefore we can solve each small
problem with less memory.

• We found that redundancy of nested fixpoint iterations is not serious. We implemented a
modular program analyzer Kairac. In our experiment, Kairac achieved memory saving
and time saving together. Since the redundancy of the nested iterations is evident, we
don’t say that our method can save time for all cases. But we are sure that the overhead
is not too big to make our memory-efficient fixpoint method infeasible.

2 Modular Fixpoint Computation

Our method for memory-efficient fixpoint computation is to solve problems in parts with the
most accurate global information. Suppose that we divide a system of equations into two
parts. Then there are variables which are defined in one part and used in the other part.
Through those variables the two parts are linked. So if we have the solutions of the link
variables, we can solve each part separately. For the solutions of link variables, we derive link
equations that consist of just link variables using Bekić’s theorem.

Using Bekić’s theorem, we can partition a system of equations in an arbitrary manner.
Suppose that we have a system E of equation E = {x = f 〈x, y〉, y = 1〈x, y〉}. We can derive
two new equations x = f 〈x, lfpλy.1〈x, y〉〉 and y = 1〈lfpλx. f 〈x, y〉, y〉 from the system of
equation. And we can solve these equations separately. But we can’t save memory, because f
and 1 need x and y simultaneously as E does.

To achieve memory saving, we must be able to solve each module with less memory
than what is required to solve the original problem. For the system E of equations, our
modularization makes a new system E′ of equations of equations:

E′ = {x = f ′〈x, z〉, y = 1′〈y, z〉, z = h〈x, y〉}

where z is a vector for link variables. We can solve E′ with less memory, if E′ satisfies the
followings:

C1(separation) h〈x, y〉 = h1xt h2y

From z = h〈x, y〉 we derive a link equation z = h〈lfpλx. f ′〈x, z〉, lfpλy.1′〈y, z〉〉. The
least solution of the link equation is same with the least z that satisfies an inequation
z w h〈lfpλx. f ′〈x, z〉, lfpλy.1′〈y, z〉〉. Therefore if h〈x, y〉 = h1x t h2y, then, instead of
solving z = h〈x, y〉, we can find the least z that satisfies an inequation system {z w
h1 lfpλx. f ′〈x, z〉, z w h2 lfpλy.1′〈y, z〉}. Since we can evaluate h1 and h2 separately during
fixpoint iterations, same memory cells can be shared between x and y.

July 19, 2006 ROPAS-ROPAS-2006-31 4

C2(sparseness) |z|+ max(|x|, |y|) < |x|+ |y|
Computations for z w h1 lfpλx. f ′〈x, z〉 and z w h2 lfpλy.1′〈y, z〉 need |z|+ |x| and |z|+ |y|
memory cells respectively. With the solution of the link equation, we can solve x =
f ′〈x, z〉 and y = 1′〈y, z〉 with |z| + |x| and |z| + |y| memory cells respectively. Since
memory cells for x and y can be shared, it requires |z|+ max(|x|, |y|) memory cells to find
the least solution of E′. And since fixpoint iterations for E use |x|+ |y| memory cells, to
save memory, above condition must be satisfied.

In the following sections, we show that we can derive a link equation that satisfies C1 from
any systems of equations and, in case of program analyses, C2 is apt to be satisfied.

2.1 Modularizing Systems of Equations

Our modularization has two steps - dividing systems of equations and setting up link equa-
tions. Suppose that we have a system E of equations:

E = {xi = ei}i∈U (1)

We divide E into two disjoint parts {xi = ei}i∈I and {xi = ei}i∈J where U = I ∪ J and I ∩ J = ∅.
From the two parts, we find variables that are defined in one part but used in the other part.
Such variables are link variables. We can define a set of link variables K as follows:

K = ({i | xi ∈
⋃

i∈I
FV(ei)} − I)∪ ({i | xi ∈

⋃

i∈J

FV(ei)} − J)

where FV(e) is a set of free variables in e. With K we can define a new system E′ of equations
by introducing new variables for the link variables:

E′ = E1 ∪ E2 ∪ E3
E1 = {xi = ei[x′j/x j | j ∈ K]}i∈I
E2 = {xi = ei[x′j/x j | j ∈ K]}i∈J

E3 = {x′i = xi}i∈K
where e[x′/x] is e in which all occurrences of x are replaced with x′. It is easy to show that E′ is
actually same with E by eliminations. E3 is a system of link equations of E since we can solve
E1 and E2 separately with the solution of E3. Let x = 〈xi〉i∈I, y = 〈xi〉i∈J and z = 〈x′i 〉i∈K. Then
we can rewrite E′ as follows:

E′ = {x = f 〈x, z〉, y = 1〈y, z〉, z = h〈x, y〉} (2)

With x, y and z, we can trivially define f , 1 and h. For further explanation, we show the
definition of h from E3:

h〈x, y〉 = σK(x)t σK(y)

σK(v) selects components of v corresponding link variables. Using Bekić’s theorem we can
get rid of the dependency between z and x, y:

z = σK(lfpλx. f 〈x, z〉)t σK(lfpλy.1〈y, z〉) (3)

As we intended the equation for link variables is defined by join of two fixpoint computations
for modules.

July 19, 2006 ROPAS-ROPAS-2006-31 5

2.2 Nested Fixpoint Iteration

We solve equation (3) with nested fixpoint iterations. The solution of equation (3) is given as
lfpR:

R = λz.h1zt h2z (4)

where h1 = λz.σK(lfpλx. f 〈x, z〉) and h2 = λz.σK(lfpλy.1〈y, z〉). Inner iterations for lfpλx. f 〈x, z〉
and lfpλy.1〈y, z〉 are local iterations and outer iteration for lfpR is global iterations.

Since lfpR and the least z satisfying a system of inequations {z w h1z, z w h2z} are same,
we define a chain {Zk}k≥0 for lfpR:

Z0 = ⊥
Zk = hs(k)Zk−1 tZk−1 (k > 0)

where ∀k > 0.s(k) ∈ {1, 2} and ∀k > 0.∃k′ > k.{s(k′′) | k < k′′ ≤ k′} = {1, 2}. Since only one
of h1 and h2 is evaluated for each Zk, we can recycle memory between evaluations of h1 and
h2. Memory cells for z should be maintained during global iterations. Therefore memory
required for solving (3) is |z|+ max(|x|, |y|).

Having lfpR =
⊔

k≥0 Zk as a solution of equation (3), we can get solutions for x and y
by computing the least fixpoints of Rx = λx. f 〈x, lfpR〉 and Ry = λy.1〈y, lfpR〉 respectively.
lfpRx costs memory of which size is |z|+ |x| and lfpRy costs memory of which size is |z|+ |y|.
Therefore if we compute lfpRx and lfpRy separately, required memory space is |z|+ max(|x|, |y|)
too.

If the number of the link variables is small enough, then we can save memory required. If
the condition (5) is satisfied, then we can save memory by solving E′ instead of E.

|z|+ max(|x|, |y|) < |〈xi〉i∈U | (5)

Systems of equations in flow-sensitive program analyses are apt to satisfy (5), if we divide the
systems of equations by procedure. Suppose that we have a program which consists of two
procedures f and g. The system E′ of equations in (2) can correspond to the program as the
following manner: f is derived from the procedure f and x represents the program points of
f; in the same manner 1 and y correspond to the procedure g and the program points of g
respectively; z represents entry and exit points of procedures. Since the number of procedures
is much smaller than the number of program points, (5) is satisfied by the program analyses
for most cases.

For practical memory-efficiency redundancy of nested fixpoint iteration should not be
serious. During global iterations, values for x and y are computed from ⊥ by local iterator.
This redundancy is inevitable cost since we don’t remember values for x and y. If we can
acquire satisfactory memory efficiency at affordable cost of such redundant computations,
then our modular approach is worth trying for fixpoint computation.

2.3 Correctness

Correctness of our modular fixpoint computation is proved as a corollary of Bekić’s theorem[1,
5]. Let’s see Bekić’s theorem first.

Theorem 1 (Bekić’s Elimination of Simultaneous Recursion). Suppose that there are two systems
equations S and S′:

S
{

x = f 〈x, y〉
y = 1〈x, y〉 S′

{
x = L(y)
y = R(y)

where L = λy. lfp(λx. f 〈x, y〉) and R = λy.1〈L(y), y〉. Then S and S′ have the same least solution.

July 19, 2006 ROPAS-ROPAS-2006-31 6

Corollary 1 (Correctness of Modular Fixpoint Computation). Suppose that there are two systems
equations S and S′′:

S
{

x = f 〈x, y〉
y = 1〈x, y〉 S′′

{
x = f 〈x, lfpR〉
y = R(y)

where L = λy. lfp(λx. f 〈x, y〉) and R = λy.1〈L(y), y〉. Then S and S′′ have the same solution.

proof. By solving each equation of S′′ separately, we can have that 〈lfpλx. f 〈x, lfpR〉, lfpR〉 is
the least solution of S′′. And, by Theorem 1, we also have that 〈lfpλx. f 〈x, lfpR〉, lfpR〉 =
〈L(lfpR), lfpR〉 is the least solution of S. �

By Corollary 1, we can say our modular fixpoint computation can solve systems of equa-
tions without loss of accuracy.

2.4 Upper Approximation of Infinite Chains

To cope with domains which have infinite chains, we use widening[8] and narrowing[8].
Widening is used to guarantee termination of fixpoint iterations. Since our fixpoint computa-
tion consists of nested fixpoint iterations, we have to be careful to use those operators:

• We have to make the transfer functions for the global iterators extensive. Since widening
and narrowing are not monotone, these operators in the local iterators can make the
global iterators fail to terminate. Therefore R in (4) should be modified to be extensive:

Rext = λz.zt (σK(lfpOMλx. f 〈x, z〉)t σK(lfpOMλy.1〈y, z〉))

where lfpOM is a fixpoint operator with widening(O) and narrowing(M).

• We don’t apply narrowing to global iterator because extensive functions can’t make
decreasing chains:

lfpORext

When we compute a upper bound for a chain defined with widening and narrowing,
computation order can change the result of the upper approximation. It’s because widening
and narrowing are not monotone. If we apply widening more lately, then we can get more
accurate results. In our experiment we used chaotic iteration with worklist and we got different
analysis results from Airac and Kairac. In Section 4 there are tables that show such results of
the two analyzers.

3 Design of Modular Program Analysis

In this section we present how our modular fixpoint computation works with static program
analyses. We describe a typical flow-sensitive program analysis A which approximates pos-
sible states at program points. And then we will show another analysisAK which is made by
integrating modular fixpoint computation andA. We implemented two analyzers Airac and
Kairac usingA andAK respectively. For fixpoint iterations, we used chaotic iteration[4] with
worklist. Our analyses are based on abstract interpretation[6, 7].

For a given program A makes a table which maps each program point to an abstract
memory. An abstract memory at a program point approximates possible run-time states at
the program point. The table is computed as a solution of a system of semantic equations
derived from the program. Unknown variables of the system of equations correspond to

July 19, 2006 ROPAS-ROPAS-2006-31 7

Figure 1: A snippet of program P in flow graph representation

the program points of the program. For the snippet of program P in Figure 1 A solves the
following semantic equations:

EP =

X2 = X1
X3 = C[[c]](X2 tOp)
Ip = X1{x 7→ V[[e]]X1}

...

∪

Y1 = Ip t I′p
Y2 = C[[c′]]Y1
Op = Y2

∪

I′p = . . .

...

∪ · · ·

where x is the formal parameter of procedure p. Xi and Yi are abstract memories at bodies of
procedures. Ip and I′p are abstract memories for input states of procedure p at call sites. Op is an
abstract memories for output states of procedure p. C[[c]] returns an abstract memory created
by executing the command c with an input abstract memory. V[[e]] evaluates the expression e
with an input abstract memory.
AK divides a system of equations of by procedure and uses entry and exit points of

procedures as link variables. Ip, I′p and Op are link variables of Ep. Since abstract memories at
call sites are always joined at entry nodes, we don’t have to keep individual abstract memories
at call sites. Instead of assigning different auxiliary variables to Ip and I′p, we use just one
auxiliary variable ZIp for Ip t I′p. So Ep is modularized to be E′p byAK:

E′P =

X2 = X1
X3 = C[[c]](X2 tZOp)
Ip = X1{x 7→ V[[e]]X1}

...

∪

Y1 = ZIp

Y2 = C[[c′]]Y1
Op = Y2

∪

I′p = . . .

...

∪ . . .

∪

ZIp = Ip t I′p
ZOp = Op

...

Since the number of procedures is far less than the number of program points in most
programs, AK can save memory. Suppose that a program has n procedures p1, . . . , pn. Then
the number of memory cells that AK uses is 2 ∗ n + maxn

i=1 |pi|. |pi| is the number of program
points in pi. It is hard for most programs not to satisfy 2 ∗ n + maxn

i=1 |pi| < Σn
i=1|pi|.

July 19, 2006 ROPAS-ROPAS-2006-31 8

Pgm 3 pgm → pdec+ main()
pdec → p(x){c∗}

c → i | f
Instr 3 i → x:=e | p(e) | assert(e) | skip

f → if e c∗ c∗ | while e c∗
Expr 3 e → n | x | e+e | e=e | e<e | !e

n ∈ Node = Label× Instr + Pid× {ENTRY, EXIT}
p, q ∈ Pid procedure identifiers
l ∈ Label labels for each node

succof : Node→ 2Node

predof : Node→ 2Node

callers : Pid→ 2Pid

callsitesin : Pid→ 2Node

callsitesof : Pid→ 2Node

Figure 2: Language: Syntax and Graph

3.1 Language and Semantics

3.1.1 Language

Let’s see what kind of language we deal with. Our language is simple but has a procedure
call. We use graph representations for input programs. Procedures are transformed into
flow graphs with special entry and exit nodes. Condition parts of branches and loops are
dissolved into assert instructions. For example, if e c1 c2 is transformed into two instruc-
tion lists assert(e) :: c1 and assert(!e) :: c2. Edges in graphs are compiled into functions:
succof returns successor nodes for the input node; predof returns predecessor nodes for the
input node; callers returns procedure identifiers of procedures which call the input proce-
dure; callsitesin returns all nodes of given procedures whose instructions are procedure calls;
callsitesof returns all call sites of the input procedure. Inter-procedural edges are drawn like
Figure 1.

The following domains and functions are used in the rest of this paper:

Mem = Var→ Val
x ∈ Var set of variables

Val a cpo for value
V[[·]] : Expr→ (Mem→ Val)

istrue : Val→ {true, false}

Mem is a abstract domain for memory. Variables are used as abstract addresses. Val is a
abstract domain for values of expressions and it is a cpo. V[[·]] returns a value for the input
expression and memory. V[[·]] is strict, i.e.,V[[]]⊥ = ⊥. istrue returns true or false according
to the input abstract value.

3.1.2 Semantics for T ∈ Node→Mem

We present semantics for a typical flow-sensitive but context-insensitive program analysisA.
Given a program P, A computes a partial table T ∈ Node → Mem for nodes of P as a fixpoint
of a semantic transfer function. T maps each node to memory which approximates possible

July 19, 2006 ROPAS-ROPAS-2006-31 9

τ : ((Node→Mem)→ (Node→Mem))
→ 2Node × (Node→Mem)→ 2Node × (Node→Mem)

= λF .λ〈W, T〉. m : Mem, n : Node, W′ : 2Node

case W of
∅ ⇒ 〈W, T〉

| {n} ∪W′ ⇒ m := F T n
if m @ T[n]

W′ := W′ ∪ succof(n)
T := T{n 7→ m}

τ F 〈W′, T〉

Figure 3: Fixpoint iterator τ for T ∈ Node→Mem

states created by running an instruction of the node. Program semantics forA is defined with
the following semantic function F :

F : (Node→Mem)→ (Node→Mem)
= λT.λn. m, m′ : Mem

m :=
⊔

n′∈predof(n) T[n′]
case n of
| 〈 , x:=e〉 ⇒ m{x 7→ V[[e]]m}
| 〈 , assert(e)〉 ⇒ if istrue(V[[e]]m) then m else ⊥
| 〈 , skip〉 ⇒ m
| 〈 , q(e)〉 ⇒ m
| 〈p, ENTRY〉 ⇒ m′ := ⊥

foreach 〈l, p(e)〉 ∈ callsitesof(p)
m :=

⊔
n′∈predof〈l,p(e)〉 T[n′]

m′ := m′ tm{x 7→ V[[e]]m} where p(x){ . . . }
m′

| 〈 , EXIT〉 ⇒ m

Assignment updates the input memory using the variable of left-hand side as the abstract
address. Assertion passes the input memory unchanged or bottom memory depending on the
input expression’s value. Procedure call just joins all input memories from local predecessor
nodes and inter-procedural predecessor nodes. Procedure entry joins all memories created by
actual parameter bindings at all call sites since A is context-insensitive. Skip and procedure
exit join all input memories.
A constructs a partial table T for a program P with the semantic function F and the

worklist-based fixpoint iterator τ in Figure 3:

P[[]] : Pgm→ (Node→Mem)
P[[P]] = τ F 〈{〈main, ENTRY〉},⊥〉

τ selects a node n from the worklist W and executes F with node n and partial table T. F T n
returns new memory m and τ compares m with the old memory of n. If m differs from T[n],
then nodes influenced by n are added to the worklist and the table T is updated with the new
memory m. τ runs while the worklist is not empty.

Memory peak ofA is proportional to the number of nodes in programs. It’s because τ have
to keep a table T with entries for all program nodes in system memory while τ is running.

July 19, 2006 ROPAS-ROPAS-2006-31 10

3.2 Modular Program Analysis

We apply modular fixpoint computation to A to make another program analysis AK which
uses less memory than A. AK is a modular program analysis that analyzes each procedure
separately and accumulates global information from those local analyses.

Regarding entry and exit points of procedures as link variables,AK computes a partial table
U ∈ Pid → Mem ×Mem for a given program P. U is an abstract procedure environment[13]
which maps each procedure of P to its input/output memory pair. We need new semantic
functionG for local iterations. Given a procedure environment U, semantic functionG returns
a transfer function for a procedure body:

G : (Pid→Mem×Mem)→
(Node→Mem)→ (Node→Mem)

= λU.λT.λn. m : Mem
m :=

⊔
n′∈predof(n) T[n′]

case n of
〈 , q(e)〉 ⇒ mtU[q].2

| 〈 , x:=e〉 ⇒ m{x 7→ V[[e]]m}
| 〈 , assert(e)〉 ⇒ if istrue(V[[e]]m) then m else ⊥
| 〈 , skip〉 ⇒ m
| 〈q, ENTRY〉 ⇒ U[q].1
| 〈 , EXIT〉 ⇒ m

Unlike F semantics of procedure call and procedure entry are defined to use the procedure
environment U.

We construct a procedure environment U for a given program P with fixpoint iterator
τ′ in Figure 4. τ′ and τ corresponds to global iterator and local iterator of modular fixpoint
computation respectively. τ′ uses two auxiliary functions forward and backward. When a local
iteration for a procedure p is finished, we may need to re-evaluate some procedures which are
called by p or call p. Procedures whose input memories move during local iteration for p are
added into the worklist and U is updated with the new input memories by forward. If output
memory of p move after local iteration for p, then backward puts callers of p into the worklist
and updates U with new output memory of p. τ called by τ′ is the same what is defined in
Figure 3. But succof returns node connected by intra-procedural edges when it is used in the
context ofAK. Inter-procedural propagations are done by global iterator using callsitesin and
callers. Procedure environment U for program P is computed byAK as follows:

P′[[]] ∈ Pgm→ (Pid→Mem×Mem)
P′[[P]] = τ′ G 〈{main},⊥〉

Global iterator τ′ uses memory whose size is proportional to the sum of procedures number
and nodes number of the biggest procedure. Global iterator τ′ keeps memories at entry and
exit nodes of procedures. Memory space occupied by local iterator τ is bounded by the
node number of the biggest procedure of a program and is recycled over local iterations for
procedures. After we have a procedure environment U of a program at the end of global
iteration, we can compute memories at each node of procedure bodies to verify desired
properties. For example, given a procedure environment U and a procedure p, we can construct
a partial table T ∈ Node → Mem for the procedure p by running τ (G U) 〈{〈p, ENTRY〉},⊥〉.
Memory space for this computations is also proportional to sum of procedure p’s size and
procedure environment U’s size.

3.3 Static Garbage Collection

In addition to modular fixpoint computation, we used static garbage collection. Static garbage
collection prunes abstract memories according to variables’ scopes at exit and entry nodes.

July 19, 2006 ROPAS-ROPAS-2006-31 11

τ′ : ((Pid→Mem×Mem)→ (Node→Mem)→ (Node→Mem))
→ 2Pid × (Pid→Mem×Mem)
→ 2Pid × (Pid→Mem×Mem)

= λG.λ〈W, U〉. p : Pid, W′ : 2Pid, T : Node→Mem
case W of
∅ ⇒ 〈∅, U〉

| {p} ∪W′ ⇒
T := τ (G U) {〈p, ENTRY〉} ⊥
〈W′, U′〉 := backward p T (forward p T 〈W′, U〉)
τ′ G 〈W′, U′〉

Figure 4: Fixpoint iterator τ′ for U ∈ Pid→Mem×Mem

forward : Pid→ (Node→Mem)→ (2Pid × (Pid→Mem×Mem))
→ (2Pid × (Pid→Mem×Mem))

= λp.λT.λ〈W, U〉. m : Mem, n : Node
foreach 〈l, q(e)〉 ∈ callsitesin(p)

m :=
⊔

n∈predof〈l,q(e)〉 T[n]
m := m{x 7→ V[[e]]m} where q(x){ . . . }
if m @ U[q].1

U := U t {q 7→ 〈m,⊥〉}
W := W ∪ {q}

〈W, U〉

backward : Pid→ (Node→Mem)→ (2Pid × (Pid→Mem×Mem)
→ (2Pid × (Pid→Mem×Mem)

= λp.λT.λ〈W, U〉.
if T〈p, EXIT〉 @ U[p].2
〈W ∪ callers(p), U{p 7→ 〈U[p].1, T[〈p, EXIT〉]〉}〉

else
〈W, U〉

Figure 5: Auxiliary functions for τ′

Scopes of variables are determined syntactically by front-end of the analyzers using decla-
rations and address operator(&). Since our abstract semantics has no stack, all variables are
virtually global. So variables which are originally declared as local variables in C can propa-
gate over scopes of procedures. These unnecessary propagations make analyzers keep larger
abstract memories in memory. With static garbage collection, we can reduce size of abstract
memories at program points.

July 19, 2006 ROPAS-ROPAS-2006-31 12

Table 1: Statistics for programs 5,000-20,000LOC. VU is the number of unknown vari-
ables(program points) and VL is the number of link variables(exits and entries of procedures).
sgc means the static garbage collection. oom means out-of-memory.

Program LOC #VU #VL Item A AK A+sgc AK+sgc
bison 1.875 16,127 10,579 978 space(MB) oom 1,843 oom 1,618
(w/o lib) time(sec) 19,758 57,950

#alarm 127 134
tar 1.13 17,220 11,099 446 space(MB) 2,109 1,126 1,823 720

time(sec) 58,475 40,898 67,785 52,989
#alarm 374 372 228 371

sed 4.0.8 6,053 9,388 492 space(MB) 1,618 754 1,034 336
time(sec) 39,093 25,902 31,068 16,535
#alarm 99 101 96 59

grep 2.5.1 9,297 7,248 316 space(MB) 631 312 560 203
time(sec) 9,412 3,831 8,288 5,045
#alarm 368 366 368 368

gzip 1.2.4 7,323 3,684 196 space(MB) 419 200 324 139
time(sec) 5,222 3,446 2,999 2,577
#alarm 273 266 276 270

ratio toA space 100% 50% 78% 29%
(+sgc) (100%) (37%)

time 100% 66% 98% 68%
(+sgc) (100%) (69%)

4 Experiment

To compareA andAK, we implemented Airac and Kairac forA andAK respectively. Actually
Airac was created by author’s previous work [14]. Kairac was made by applying modular
fixpoint computation to Airac. Airac is a buffer overrun analyzer for C programs and it
has 2 phases internally: 1) Airac approximates a program’s runtime behavior by computing
a table which maps program points of the program to abstract memories; 2) Airac verifies
every buffer access expressions in the program with the table. Kairac approximates program’s
runtime behavior by computing a table which maps each procedure to a pair of input/output
memories. To verify buffer access expressions in a procedure, Kairac runs the local iterator to
make a table that maps program points of the procedure’s body to abstract memories.

By AK, we were able to save space and time together. In the experiment, we analyzed
various GNU programs withA andAK. Spaces in Table 1, 2 were peaks of memory occupied
by the analyzers. Times in Table 1, 2 were running time of the analyzers. Times and memories
were measured to cover all required amounts of space and time from fixpoint computations
and verifications. Experiment was done on a Linux system with Pentium4 3GHz CPU and
4GB RAM. Table 1 shows that, for programs bigger than 5,000LOC, average memory peaks
ofAK are 29% and 50% ofA’s peaks. For programs smaller than 5,000LOC, average memory
peaks of AK were 39% and 87% of A’s peaks. Table 1 shows that average running time of
AK is 66% and 68% of A’s running times for 5,000LOC-20,000LOC programs. For programs
smaller than 5,000LOC, AK’s average running times are 14% and 60% of A’s running times.
Contrary to Corollary 1, alarm numbers in Table 1 and Table 2 are different. In the following
sections we discuss about what portions of memory are saved, how the speed of analysis can
increase and why alarm numbers are different.

July 19, 2006 ROPAS-ROPAS-2006-31 13

Table 2: Statistics for programs <5,000LOC. VU is the number of unknown variables(program
points) and VL is the number of link variables(exits and entries of procedures). sgc means the
static garbage collection.

Program LOC #VU #VL Item A AK A+sgc AK+sgc
tar.c of 1,194 830 54 space(MB) 31 32 10 23
tar 1.13 time(sec) 23 42 2 20

#alarm 0 0 0 0
grep.c of 1,742 1,426 26 space(MB) 30 31 32 19
grep 2.5.1 time(sec) 35 53 29 31

#alarm 3 3 3 3
gzip.c of 1,744 1,460 58 space(MB) 32 34 34 24
gzip 1.2.4 time(sec) 41 51 50 20

#alarm 8 9 8 9
sed 4.0.8 4,322 3,182 158 space(MB) 211 169 138 55
(w/o lib) time(sec) 1,228 660 483 118

#alarm 2 7 2 2
ratio toA space 100% 87% 70% 39%

(+sgc) (100%) (55%)
time 100% 60% 42% 14%

(+sgc) (100%) (33%)

Figure 6: Memory usage ofA andAK analyzing the procedure p

4.1 Saved Space

AK recycles memory cells which are used by the local fixpoint iterator. Figure 6 shows data
items manipulated by A and AK. For AK, dashed objects are shared by the local iterator for
procedures. But A keeps all objects in memory throughout fixpoint iterations. Recycling is
done by automatic garbage collection that is provided by nML1 in which Airac and Kairac is
written.

Memory saving of AK does not concur with the ratio of procedures number to program
points number. Less than 10% of program points are entry and exit points in Table 1, 2.
Let’s consider an example where ratio of procedures number to program points number is
1:10. Suppose that we have a program with 5 procedures and each procedure has 20 program
points. Then A keeps a table with 100 entries for fixpoint iterations. But AK keeps a table

1A Korean dialect of ML. http://ropas.snu.ac.kr/n

July 19, 2006 ROPAS-ROPAS-2006-31 14

with 10 entries for global iterations and a table with 20 entries for local iterations. In this
example, we can expect maximum memory saving ofAK to be 70%. Since entries and exits are
less 10% of program points in our experiment, we may expect over 70% memory-saving. But
since A already has mechanisms for memory-efficiency, there is not that much memory can
be saved byAK. As you can see in Figure 6, some objects such as v are shared by references.
Therefore ratio of AK’s memory peak to A’s memory peak(or AK+sgc’s memory peak to
A+sgc’s memory peak) is not same with the ratio of entries and exits number to program
points number.

Table 1, 2 shows that static garbage collection promotesAK’s memory saving. With static
garbage collection, AK saved 21% and 48% memory space more for 5,000-20,000LOC and
under 5,000LOC respectively. It’s because static garbage collection make more memory cells
recyclable forAK. Since x’s scope is the body of the procedure p, the abstract memory at exit
doesn’t have to keep an entry for x. Since the abstract memory at exit doesn’t have an entry
for x, memory space for v′′ is recycled byAK. ThoughA has static garbage collection too, the
value object for v′′ can’t be recycled, sinceA keeps all abstract memories in memory.

4.2 Increased Speed

AK accomplished not only memory saving but also time saving. Local iteration of modular
fixpoint computation has redundancy, because local iterator always starts from ⊥. But, in
experiment,AK’s running time was below 70% ofA’s running time.

We think that since AK deals with smaller objects than A, operators execute faster in
AK than in A. Though, by sharing, logically big objects can occupy small space in physical
memory, operations for the objects require time proportional to the logical size. Furthermore
OS can execute programs that use less memory faster. As we exemplified in Section 4.1, AK
keeps 30% of unknown variables which are kept by A if entries and exits are 10% of total
program points.

Apart from small object size, AK has an iteration strategy named wait-at-backwarded-
procedure to reduce redundant computation. Suppose that procedure p calls procedure q
and procedure r calls procedure p. The entry state of procedure q and the exit state of proce-
dure p can move after local fixpoint iterations for procedure p’s body. ThenAK has to do local
fixpoint iterations for procedure r and q. In this case we choose procedure q before procedure
r because change of procedure q’s exit state can cause re-computations for bodies of procedure
p and procedure r as a chain reaction.

4.3 Incompatible Accuracy

If we use widening and narrowing with different chaotic iteration strategies, then we can get
different results for the same program. It’s because widening and narrowing are not monotone.
We will show you two cases. One is analyzed better by AK and another is analyzed better
byA. Since A and AK do the same interval analysis, we explain the two cases with interval
analysis. Interval analysis approximates numeric expressions of programs to have integer
intervals defined with minimum and maximum values. Widening and narrowing operations
which we used for interval domain is defined in [8, 14].

• CASE 1: more accurately analyzed byAK

July 19, 2006 ROPAS-ROPAS-2006-31 15

void foo(int x){

printint(x); /* [1,+inf] v.s. [1,2] */

}

void main(){

foo(1);

foo(2);

}

AK can make more accurate approximation for the formal parameter x of the procedure
foo in above program. Due to context-insensitivity ofA’s analysis, sequential procedure
calls of the same procedure make a loop at the entry of the procedure foo. Since A’s
iterator traverses flow graph with depth-first strategy at call sites,A updates entry states
of procedures whenever they are called. Therefore, at the second call site in the procedure
main,A applies widening at the entry of the procedure foo. As a result of widening, the
formal parameter x of the procedure foo has [1, +∞]. But sinceAK applies widening at
entry/exit memories after local iterations, the formal parameter x of the procedure foo

already have [1, 2] when widening is applied by the global iterator. So, finally, the formal
parameter x is approximated to have [1, 2] byAK.

• CASE 2: more accurately analyzed byA

void loop(int x){

if(x<10) loop(x+1);

printint(x); /* [10,10] v.s. [10,+inf] */

}

void main(){

loop(1);

}

AK can’t analyze above program as accurate as A. Since the procedure loop of above
program is a recursively defined, loops are created at entry and exit of the procedure
loop. Due to widening, formal parameter x of loop is approximated to have [1, +∞].
Since AK doesn’t use narrowing for global iterations, the formal parameter x of the
procedure loop is finally approximated to have value [1, +∞] by AK. But A applies
narrowing to the entry of loop and recovers the value of the variable x to be [1, 10].

5 Related Work

For set-based analysis there is a nice modular analysis which was presented by Flanagan and
Felleisen in [12]. The process of their analysis are similar to ours. The analysis in [12] simplifies
a constraint system for each module with respect to the module’s external set variables. Ex-
ternal set variables of a module’s constraint system are all set variables except those definitely
have no interaction with outside the module. By combining simplified constraint systems of
modules the analysis constitute a constraint system for the entire program. With the closure
of the constraint system for the entire program the analysis analyzes each module separately.
Comparing to our approach the modular approach of [12] has narrower application areas.

July 19, 2006 ROPAS-ROPAS-2006-31 16

It’s because our modular fixpoint computation is applicable to any equation-based program
analysis.

Duesterwald et al. [9] present algorithms that minimize the size of the system of equations.
The algorithms in [9] divide systems of equations into congruence classes. If two equations
have the same fixpoint, then they are included in the same congruence class. By selecting one
equation from each congruence class the algorithms set up a new equation system. Granularity
of modularization in [9] is determined by the inherent congruence relation of the system of
equations. But our approach can divide the system of equations arbitrarily. Since [9] has no
experiment result, we don’t have any hard evidence of the algorithms’ performance.

If we are interested in a subset of unknown variables, then we can use the top-down fixpoint
algorithm in [2]. The top-down fixpoint algorithm evaluates equations that are needed by the
unknown variables which we want to know. So we can touch a subset of original set of
equations. But if we need to know all solutions of unknown variables, then the top-down
fixpoint algorithm can’t save memory.
AK can be regarded as one of modular analyses in [3]. Cousot and Cousot introduced

various approaches for modular program analyses in [3]. One approach is to simplifying
modules with pre-analyses. We can regard fixpoint computations for link equations as pre-
global analyses that simplifies modules to be independent from each other.

Speed-up ofAK was not expected but happened. This speed-up comes from reduced size
of objects in memory. There have been some studies [11, 10, 14] that attempt to decrease
time by reduction of strength. Methods in [11, 10, 14] require specially designed operators or
domains since operations are done on differences of values. But, in our case, we just decrease
problem size without re-designs of operators and domains. Our fixpoint method is to makes
small problems from given problems with local fixpoint iterations. So our modular fixpoint
computation can work with other techniques without interferences.

6 Conclusion

6.1 Summary

Our modular fixpoint computation achieved feasible memory-efficiency in spite of redun-
dancy in nested fixpoint iterations. We integrated modular fixpoint computation and A to
makeAK. In our experiment,AK with static garbage collection reduced memory peak to 29%
for 5,000-20,000LOC GNU programs. Memory saving of our method made redundancy of our
method be no problem. Even though we can’t say that our method can save time for all cases,
we are sure that our method doesn’t have serious overhead.

Our modular fixpoint computation can be used with other techniques for efficient fixpoint
computation in orthogonal ways. Our approach can be regarded as just making small problems
from a given problem. So we can use any techniques to solve each small problem more
efficiently.

6.2 Future Work

Even though modular fixpoint computation can save much memory space and time required
to solve systems of equations, for scalability, there are some further work to be done: 1) It is
always possible for any analyzer to exhaust whole system memory when it analyzes really
huge programs. In such cases, secondary storages can play key roles to survive the limit of
the memory; 2) Modular fixpoint iteration can evolve into a distributed fixpoint algorithm.
It is natural to make global fixpoint iterator a coordinator of a distributed fixpoint system.
The distributed fixpoint system can have many homogeneous participants for local fixpoint
iterations.

July 19, 2006 ROPAS-ROPAS-2006-31 17

References

[1] Hans Bekić. Definable operation in general algebras, and the theory of automata and
flowcharts. In Programming Languages and Their Definition - Hans Bekic (1936-1982), pages
30–55, London, UK, 1984. Springer-Verlag.

[2] Baudouin Le Charlier and Pascal Van Hentenryck. A universal top-down fixpoint algo-
rithm. Technical Report CS-92-25, Brown University, Providence, RI 02912, 1992.

[3] P. Cousot and R. Cousot. Compositional separate modular static analysis of programs
by abstract interpretation. In Proceedings of the Second International Conference on Advances
in Infrastructure for E-Business, E-Science and E-Education on the Internet, SSGRR 2001,
Compact disk, L’Aquila, Italy, 6–12 August, 2001 2001. Scuola Superiore G. Reiss Romoli.

[4] Patrick Cousot. Asynchronous iterative methods for solving a fixpoint system of mono-
tone equations. Technical Report IMAG-RR-88, Université Scientifique et Médicale de
Grenoble, 1977.

[5] Patrick Cousot. Abstract interpretation. MIT course 16.399,
http://web.mit.edu/16.399/www/, Feb.–May 2005.

[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of ACM Symposium on Principles of Programming Languages, pages 238–252, January 1977.

[7] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks.
In Proceedings of ACM Symposium on Principles of Programming Languages, pages 269–282,
1979.

[8] Patrick Cousot and Radhia Cousot. Comparing the galois connection and widen-
ing/narrowing approaches to abstract interpretation. In PLILP ’92: Proceedings of the 4th
International Symposium on Programming Language Implementation and Logic Programming,
pages 269–295. Springer-Verlag, 1992.

[9] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Reducing the cost of data flow
analysis by congruence partitioning. In CC ’94: Proceedings of the 5th International Confer-
ence on Compiler Construction, pages 357–373, London, UK, 1994. Springer-Verlag.

[10] Hyunjun Eo and Kwangkeun Yi. An improved differential fixpoint iteration method for
program analysis. In Proc. of the 3rd Asian Workshop on Programming Language and Systems,
Shanghai, Nov 2002.

[11] Christian Fecht and Helmut Seidl. Propagating differences: An efficient new fixpoint
algorithm for distributive constraint systems. In European Symposium on Programming,
volume 1381 of Lecture Notes in Computer Science, pages 90–104. Springer-Verlag, 1998.

[12] Cormac Flanagan and Matthias Felleisen. Componential set-based analysis. In PLDI
’97: Proceedings of the ACM SIGPLAN 1997 conference on Programming language design and
implementation, pages 235–248, New York, NY, USA, 1997. ACM Press.

[13] Neil D. Jones and Alan Mycroft. Data flow analysis of applicative programs using minimal
function graphs. In POPL ’86: Proceedings of the 13th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 296–306, New York, NY, USA, 1986. ACM
Press.

July 19, 2006 ROPAS-ROPAS-2006-31 18

[14] Youngbum Jung, Jaehwang Kim, Jaeho Shin, and Kwangkeun Yi. Taming false alarms
from a domain-unaware c analyzer by a bayesian statistical post analysis. In SAS 2005:
12th Annual International Static Analysis Symposium, volume 3672 of Lecture Notes in Com-
puter Science, pages 203–217. Springer, 2005.

