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Abstract

The garbage collection is a safe and efficient method for managing the heap. However
it is not efficient for temporary storages that are allocated often and deallocated quickly.
Reusing temporary storages without collecting garbages can be a remedy for such inef-
ficiency. We present an effect system for checking whether every explicit memory reuse
is safe. We abstract the heap by using symbolic locations, kinds of cells, and two-level
abstract domains. Based on this abstraction, we perform both alias and liveness analyses.
The combined result precisely tells us whether every memory reuse is safe.

1 Introduction

1.1 Motivation

The garbage collection [7] is a safe and efficient method for managing the heap. In comparison
with manual heap management, managing the heap with garbage collection does not make
dangling pointers; the safety of the programs for accessing the heap is guarranted. Moreover,
it was proved that the allocation and deallocation overhead of the garbage collection is cheaper
than that of manual memory management [1]. Thus modern programming languages such
SML [10] or Java [4] employ the garbage collection for their heap management.

One drawback of the garbage collection is that reusing heap cells always needs the garbage
collection. Programs usually need heap cells for temporary values and those heap cells are
discarded quickly. Because heap cells can be reused only by the garbage collection, frequent
temporary heap allocations induce frequent garbage collections, which induce long execution
time of programs.

Example 1 To illustrate temporary allocations induce frequent garbage collections, consider
the following program:
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let fun incr x =
case x of [] => []

| h::t => (h+1)::(incr t)
in incr (incr (incr z))
end

Assume that the number of heap cells for z (integer list) is k and the heap size is greater
than k. The above example allocates 3k heap cells because incr introduces a new list whose
size is k. Thus if the heap size is less than 4k then the garbage collection occurs. Assume
that only the result of the example will be accessed later. Then in function incr, without
allocating new heap cells, we can just update an increased integer (h+1) into the cell for h.
No new allocation means no garbage collection.

As illustrated in Example 1, explicit memory reuse can be a remedy for such unexpected
runtime overheads of the garbage collection. We believe that explicit memory reuse has
lower runtime overhead than other compile-time garbage collection methods such as garbage
marking and explicit deallocation [5].

1.2 Related Works

Many works have tried to help the garbage collection by program analyses however a cost-
effective solution was not found yet.

The linear type systems [17, 8] are not accurate enough to help the garbage collection. The
linear type system and its variants were attacking linear heap cells which can be deallocated
after being used once. They are inaccurate for aliases and they are not practical because it
needs extra runtime overhead for managing linear heap cells [6]. The alias type [12, 18] are
more accurate than ordinary linear type, but it does not seem to be inferred automatically.

The region-based type system [15, 16] safely manages the heap by using regions which
are collections of heap cells whose lifetimes are similar. Its accuracy and efficiency depends
on how we partition heap cells into regions by region inference algorithms [13], however we
cannot expect good partitioning for ordinary programs. Only region-friendly programs or
programs with region annotated by programmers can run fast [14, 2, 3]. Moreover, regions
are not adequate for recursive data structures such as lists or trees.

Shape aliases [11] are quite helpful for analyzing the memory reuse. Even though they
focus on the heap structure and aliases, because their abstractions of the heap are quite
sophisticated, they can be applied to the problem to help the garbage collection.

1.3 Our Work

We present a type system, combining alias and liveness analyses, for checking whether every
memory reuse is safe. We abstract the heap by using symbolic locations, kinds of cells, and
two-level abstract domains. Symbolic locations enables us to accurately analyze the heap even
if heap cells are shared. The kind of cells is a generalization of the concept of the spine and
elements in analyzing lists. Two-level abstract domains are for analyzing the heap structure
in detail if necessary. By these facilities, we can estimate which heap cells are reachable
from variables. Based on this abstraction, we perform both alias and liveness analyses. The
combined result precisely tells us whether every memory reuse is safe.
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2 Language

We use a monomorphic higher-order language:

v ::= x | i | λx.e variable, integer, function
e ::= v value

| κ ~v | case v m · · ·m data construction and case-expression
| let x = e in e let-expression
| v v application
| κ ~v at x memory reuse

m ::= κ ~x ⇒ e case branches

A vector denotes a sequence; that is, ~v denotes (v1, ..., vn). Values are integers or functions.
We assume that every variable in a program is different from each other. “κ ~v” allocates a
new heap cell and stores its constructor and elements to the heap cell. We assume that every
data constructor has at least one argument and that the sizes for storing abstract data values
are all the same. “case v m · · ·m” looks up the heap cell pointed by v and evaluates match
κ ~x ⇒ e such that κ is equal to the data constructor in the heap cell. “let x = e1 in e2”
binds x to the value that e1 is evaluated to and evaluates e2. “v1 v2” is a function application
that the function is v1 and the argument is v2. “κ ~v at x” is the same as “κ ~v”, but instead
of allocating a new heap cell, it reuses the heap cell pointed by x. In order to simplify our
memory-type system, we assume that functions cannot be stored into the heap. The exact
semantics and the type system are in Appendix A and B, respectively.

3 A Memory-Type System

We abstract the heap using symbolic locations, cell-kinds, and two-level abstractions of the
heap structure, and check whether every reuse is safe by performing both alias and liveness
analyses. We describe those concepts in the memory-type system with the following example:

fun append (x, y) =
case x of
[] => y

| h::t => (h :: append(t, y)) at x

Even though our language has no language constructor for tuples, for intuitive explanations,
we assume that the type of function append is (〈int, int〉 list, 〈int, int〉 list) → 〈int, int〉 list.

3.1 Symbolic Locations

Instead of using real addresses of the heap, we use symbolic locations as an abstraction of a
set of addresses. For example, function append(x,y) takes two lists that start from x and
y. We name the addresses of the list that starts from x (or y) as lx (or ly). Then function
append gives us, as a result, an address that can reach lx, ly and lnew where lnew denotes the
addresses of the heap cells newly allocated in evaluating the function body.

append : (lx, ly) → {lx, ly, lnew} (1)

Locations in a function type are polymorphic; they can be substituted by other locations
when the function is called. For example, when append([1],[2]) is called, the result is
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{l1, l2, l3} where l1 denotes the addresses of [1], l2 denotes the addresses of [2], and l3
denotes the addresses of heap cells newly allocated during append([1],[2]).

append : ∀lx, ly, lnew.(lx, ly) → {lx, ly, lnew} (2)

3.2 Cell-Kinds: Fine-Grained Types for Heap Cells

Dividing a list into its spine and elements seems to be effective for analyzing the heap [14].
For example, the description (2) of function append in Section 3.1 is not enough because it
does not say the result of append includes only a part of lx. An exact description for the
append function is that it takes two lists x and y, gives us a list such that its elements consist
of elements of both x and y, and its spine consists of y’s spine and newly allocated heap cells.

We propose a cell-kind as a generalization of spine and elements:

CellKind k ::= κ | 〈~τ〉

For abstract data values, the data constructors gives us finer classification of their heap cells
than the types do. For tuples, we assume that their kinds are just their types.

By using cell-kinds, we can divide the spine and elements of a list. For example, a list
whose type is 〈int, int〉 list can reach only :: cells and 〈int, int〉 cells with the assumption
that [] is not stored in the heap. The :: cells are the spine and the 〈int, int〉 cells are the
elements. Then we can write the memory-type of function append as:

∀l1, l2, n1, n2, lnew.

({
:: 7→ l1
〈int, int〉 7→ n1

}
,

{
:: 7→ l2
〈int, int〉 7→ n2

})
→

{
:: 7→ {l2, lnew}
〈int, int〉 7→ {n1, n2}

}
.

It means append takes two arguments (both may reach :: cells and 〈int, int〉 cells) and gives
us a result that may reach the elements (〈int, int〉 cells) of the first argument (n1), the spine
and elements of the second argument (l2 and n2), a spine newly allocated during evaluating
function append’s body (lnew).

3.3 Two-Level Abstractions of Heap Structure

We abstract the heap structure in two levels: a concrete memory-type and a collapsed
memory-type. The concrete memory-type contains the information for the heap structure,
but the collapsed memory-type does not.

CollapsedType µ̄ ∈ CellKind → ℘(Loc)× Sharing
MemType µ ::= 〈L, k, ~µ〉 | µ̄ | · · ·

The concrete memory type 〈L, k, ~µ〉 describes immediately reachable heap cells; L is immedi-
ately reachable locations, k is its cell-kind, and ~µ are the memory-types of its elements. The
collapsed memory type is a map from each cell-kind to reachable locations of that kind. An
additional sharing flag is for concretization which is explained in Section 3.5.

We abstract a concrete memory-type if necessary. We analyze the heap structure as con-
crete as possible, however in some cases, it is impossible to analyze the exact heap structure.
For example, consider the following program:

if x=y then [] else [1].
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The result of this expression can be either [] or a pointer to :: cell. Because the heap
structure of these two results are different, we cannot represent the result as a concrete
memory-type. In this case, collapsing the heap structure, we collect reachable locations
classified by their cell-kinds. The memory-type of [] is ∅ and that of [1] is 〈{l}, ::, (int, ∅)〉
which denotes a heap cell named as l which contains a list whose element is int type and
whose tail is []. Before joining these two memory-types, because their heap structures are
different, we abstract them. The abstraction of ∅ is ∅ and the abstraction of 〈{l}, ::, (int, ∅)〉
is a map {:: 7→ {l}}. Thus the joined memory-type becomes {:: 7→ {l}} which denotes the
result may reach :: cell named as l. In fact, the memory-type (2) of function append is
based on the collapsed memory-type because we do not know the exact heap structure of the
argument lists.

We also concretize a collapsed memory-type if necessary. In function append, we assumed
the arguments have collapsed memory-types. In order to analyze the heap for the case-
expression, we need to reconstruct the heap structure from the collapsed memory-type. We
will explain how to reconstruct the heap structure in the end of Section 3.5.

Now we have an abstraction of the heap using symbolic locations, cell-kinds, and two-
level abstract domains. By this model, we can estimate which heap cells are reachable from
variables. However we cannot determine whether those heap cells can be safely reused yet.

3.4 Safe Reuse by Liveness and Aliases Analyses

Collecting used locations and reused locations enables us to check whether reused locations
will not be used nor reused later. Used locations are the locations that is read or written by
case-expressions or data constructions. Reused locations are the locations that are recycled
by explicit memory reuse “at x.” When e2 are evaluated after evaluating e1, we collect
used and reused locations during evaluating e1 and e2. Then we can check whether the
reused locations during evaluating e1 is not used nor reused during evaluating e2. In order to
estimate used and reused locations for function calls, for each function memory-type, we have
to keep the used and reused locations during evaluating the function body. Then function
append’s memory type becomes:

∀l1, l2, n1, n2, lnew.

({
:: 7→ l1
〈int, int〉 7→ n1

}
,

{
:: 7→ l2
〈int, int〉 7→ n2

})
{l1},{l1}→

{
:: 7→ {l2, lnew}
〈int, int〉 7→ {n1, n2}

}
.

It means that function append uses the spine ({l1}) of the first argument and reuses that
spine ({l1}).

The above liveness check is not enough for the memory safety because locations are not
sound abstraction of real addresses. If two different locations denote the same addresses (two
locations are aliased), it is fragile to check based on locations. For example, consider two
locations l1 and l2. We conclude it is safe to use l1 after reusing l2 because they are different.
However, it spoils the memory safety if two locations are aliased.

Whenever aliases are induced, we conservatively check whether the aliases spoil the mem-
ory safety. Instead of carrying aliases information, we analyze each expression with the
assumption that different locations are not aliased. When aliases are induced by parameter
passing, we check whether the function is robust against the aliases; we check whether every
reuse in the function does not spoil the memory safety even under those aliases.
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3.5 Typing Rules

The memory-type system is shown in Figure 1. A memory-type is an integer type, a concrete
type, a collapsed type, or a function type. A concrete type consists of its possible locations,
its cell-kind, and the memory-types of its elements. A collapsed type is a map from cell-kinds
to possible reachable locations. For a collapsed type µ̄, µ̄(κ) = ∅1 if κ 6∈ dom(µ̄). Note that
cell-kinds are only data constuctors because the language has no constructor for tuples. Each
set of locations has a flag which denotes whether the locations have an shared structure (ω)
or not (1). This sharing flag will be used only by concretization. A function type keeps used
locations (U) and reused locations (R) during evaluating the function body. A (simultaneous)
substitution S substitute locations by sets of locations. A symmetric alias relation A denotes
whether two locations are aliased. typeof(κ) denotes the ordinary type of κ and typeof(x)
denotes the type of x during typing it in the ordinary type system. kind(τ) denotes possible
cell-kinds immediately reachable from a variable whose type is τ , and kinds(τ) denotes possible
cell-kinds reachable from a variable whose type is τ .

A judgment “∆ ` v : µ” denotes value v has memory-type µ under memory-type environ-
ment ∆. An integer value has the integer type and a variable has the memory-type given by
the memory-type environment.

∆ ` i : int (int) ∆ ` x : ∆(x) (var)

A function has a generalized function memory-type whose argument and result is adequate
for the function body. The generalization is closing all the locations occurs in the function
type except for free locations in ∆.

∆ ∪ {x 7→ µ1} ` e : µ2, U,R

∆ ` λx.e : Gen∆

(
µ1

U,R→ µ2

) (fun)

A judgment “∆ ` e : µ,U,R” denotes that expression e has memory-type µ under memory-
type environment ∆ and that during evaluating e, the locations in U are used (read or written)
and the locations in R are reused. A value expression does not use nor reuse anything.

∆ ` v : µ

∆ ` v : µ, ∅, ∅ (value)

A data construction “κ~v” allocates a new heap cell and stores its constructor and elements
to that cell. We name the new heap cell as l. The kind of the heap cell is κ, and its elements
are the memory-type of vi’s. During constructing the data value, we use the heap cell ({l}).

∀i.∆ ` vi : µi

∆ ` κ ~v : 〈{l}, κ, ~µ〉 , {l}, ∅ (data)

A data construction “κ~v at x” stores its constructor and elements to the heap cell pointed
by x. We first looks up the memory-type of x. If it is a concrete memory-type, then we
rename the heap cell (L) pointed by x as l, because we consider a reuse as a sequence of the
deallocation of L and the allocation of l. Thus during this reuse, l is used and L is reused.

∆(x) = 〈L, κ′, ~µ′〉 ∀i.∆ ` vi : µi

∆ ` κ ~v at x : 〈{l}, κ, ~µ〉 , {l}, L (reuse)
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Loc l
L, U,R ∈ ℘(Loc)

Sharing π ::= 1 | ω
DataConst κ

CollapsedType µ̄ ∈ DataConst → ℘(Loc)× Sharing

MemType µ ::= int | 〈L, κ, ~µ〉 | µ̄ | ∀~l.µ | µ
U,R→ µ

MemTypeEnv ∆ ∈ Var → MemType
Subst S ∈ Loc → ℘(Loc)× Sharing
Alias A ∈ ℘(Loc× Loc)

∆ ` v : µ
∆ ` x : ∆(x) (var)

∆ ` i : int (int)

∆ ∪ {x 7→ µ1} ` e : µ2, U,R

∆ ` λx.e : Gen∆

(
µ1

U,R→ µ2

) (fun)

∆ ` e : µ,U,R

∆ ` v : µ

∆ ` v : µ, ∅, ∅ (value)
∆(x) = 〈L, κ′, ~µ′〉 ∀i.∆ ` vi : µi

∆ ` κ ~v at x : 〈{l}, κ, ~µ〉 , {l}, L (reuse)

∀i.∆ ` vi : µi

∆ ` κ ~v : 〈{l}, κ, ~µ〉 , {l}, ∅ (data)

∆ ` v1 : ∀~l.(µ1
U,R→ µ2) ∆ ` v2 : Sµ1

dom(S) = ~l P̀ S : A A ¤ µ1
U,R→ µ2

∆ ` v1 v2 : Sµ2, SU, SR
(app)

∆ ` y : 〈L, κ, ~µ〉 mj = (κ ~x ⇒ e)
∆ ∪ {xi 7→ µi} ` e : µ,U,R

∆ ` case y m1 · · ·mn : µ,U ∪ L,R
(case)

∆ ` e1 : µ1, U1, R1

∆ ∪ {x 7→ µ1} ` e2 : µ,U2, R2

R1 ∩ (U2 ∪R2) = ∅
∆ ` let x = e1 in e2 : µ,U1 ∪ U2, R1 ∪R2

(let)

∀κ ∈ kind(typeof(x)).
(µ′κ, Sκ) = γ(µ̄, k)
∆ ∪ {x 7→ µ′κ} ` e : µκ, Uκ, Rκ

C̀ Sκ : Aκ Aκ ¤ Uκ, Rκ Aκ ¤ µκ

∆ ∪ {x 7→ µ̄} ` e :
⊔

Sκµκ,
⋃

SκUκ,
⋃

SκRκ
(conc)

Figure 1: The memory-type system.

Note that if the memory-type of x is not concrete, we concretize it by the (conc) rule prior
to apply the (reuse) rule.

A case-expression “case y m1 · · ·mn” looks up the heap cell pointed by y and evaluates
the match whose constructor is equal to that of the heap cell. We first look up the memory-
type of y. If it is a concrete type, we can find the match whose constructor is equal to that
of y’s memory-type. We infer the memory-type of the body of the match binding each xi to
the elements of y’s memory-type, and we add y’s locations to used locations.

∆ ` y : 〈L, κ, ~µ〉 mj = (κ ~x ⇒ e)
∆ ∪ {xi 7→ µi} ` e : µ,U,R

∆ ` case y m1 · · ·mn : µ,U ∪ L,R
(case)

Similarly, if the memory-type of y is not concrete, we concretize it by the (conc) rule prior to
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P̀ S : A `P S : {l1 ∼ l2 | (l1 7→ Lπ1
1 ) ∈ S, (l2 7→ Lπ2

2 ) ∈ S, L1 ∩ L2 6= ∅} ∪
{l ∼ l′ | (l 7→ Lπ) ∈ S, l′ ∈ L}

C̀ S : A `C S : {l ∼ l′ | (l 7→ Lπ) ∈ S, l′ ∈ L}
A ¤ µ ∀U,R ∈ µ. A ¤ U,R

A ¤ µ
(robust-type)

A ¤ U,R ∀(l1 ∼ l2) ∈ A. l1 ∈ R implies l2 6∈ U ∪R

A ¤ U,R
(robust-UR)

Figure 2: Definitions related to aliases.

apply the (case) rule.
In the case of let-expression, we check the condition that reused locations must not be

used (nor reused). First we infer the memory-types of expressions e1 and e2. Because we
evaluate e2 after evaluating e1, the locations reused during evaluating e1 must not be used
(nor reused) during evaluating e2 (R1 ∩ (U2 ∪R2) = ∅).

∆ ` e1 : µ1, U1, R1

∆ ∪ {x 7→ µ1} ` e2 : µ,U2, R2

R1 ∩ (U2 ∪R2) = ∅
∆ ` let x = e1 in e2 : µ,U1 ∪ U2, R1 ∪R2

(let)

In the case of a function call, we check the aliases induced by the function call spoil the
memory safety. Parameter passing can be represented as a substitution. The domain of the
substitution includes the formal parameters and the range of the substitution includes the
actual parameters. Let S be a substitution that represents the parameter passing (∆ ` v2 :
Sµ1). In order that this function call does not spoil the memory safety, the function memory-

type has to be robust against the aliases (A ¤ µ1
U,R→ µ2) induced by the parameter passing

( P̀ S : A).

∆ ` v1 : ∀~l.(µ1
U,R→ µ2) ∆ ` v2 : Sµ1

dom(S) = ~l P̀ S : A A ¤ µ1
U,R→ µ2

∆ ` v1 v2 : Sµ2, SU, SR
(app)

Aliases induced by parameter passing are (1) between parameters and (2) between parameters
and free locations of the function. For formal parameters l1 and l2, if their actual parameters
have an intersection, then l1 and l2 are aliased. A formal parameter l and the locations in
its actual parameter L are aliased because the locations in the actual parameter may be free
locations of the function.

`P S : {l1 ∼ l2 | (l1 7→ Lπ1
1 ) ∈ S, (l2 7→ Lπ2

2 ) ∈ S, L1 ∩ L2 6= ∅} ∪
{l ∼ l′ | (l 7→ Lπ) ∈ S, l′ ∈ L}

A memory-type is robust against aliases if every pair of used and reused locations that occurs
in the memory-type is robust against the aliases.

∀U,R ∈ µ. A ¤ U,R

A ¤ µ
(robust-type)
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1 t π = π
ω t π = ω

Lπ1
1 t Lπ2

2 = (L1 ∪ L2)π1tπ2

int t int = int
〈L1, κ, ~µ〉 t 〈L2, κ, ~µ′〉 = 〈L1 ∪ L2, κ, (µ1 t µ′1, · · · , µn t µ′n)〉

〈L1, κ1, ~µ〉 t 〈L2, κ2, ~µ
′〉 = α(〈L1, κ1, ~µ〉) t α(〈L2, κ2, ~µ

′〉) if κ1 6= κ2

〈L, κ, ~µ〉 t µ̄ = α(〈L, κ, ~µ〉) t µ̄
µ̄ t µ̄′ = {κ 7→ µ̄(κ) t µ̄′(κ) | κ ∈ dom(µ̄) ∪ dom(µ̄′)}

∀~l.µ t ∀~l.µ′ = ∀~l.(µ t µ′)

(µ
U1,R1→ µ1) t (µ

U2,R2→ µ2) = µ
U,R→ (µ1 t µ2) where U = U1 ∪ U2 and R = R1 ∪R2

Lπ1
1 ⊕ Lπ2

2 =
{

(L1 ∪ L2)π1tπ2 , if L1 ∩ L2 = ∅
(L1 ∪ L2)ω, if L1 ∩ L2 6= ∅

µ̄⊕ µ̄′ = {κ 7→ µ̄(κ)⊕ µ̄′(κ) | κ ∈ dom(µ̄) ∪ dom(µ̄′)}
α(int) = ∅
α(µ̄) = µ̄

α(〈Lπ, κ, ~µ〉) = {κ 7→ Lπ} ⊕ (⊕α(µi))

γκ′(µ̄) = (〈L0, κ
′, ~µ〉 , {liκ 7→ µ̄(κ)})

where typeof(κ′) = ~τ → t
L0 = {l0κ′} if µ̄(κ′) = L1, or L if µ̄(κ′) = Lω

µi = {κ 7→ {liκ}1 | κ ∈ kinds(τi), µ̄(κ) = L1} ∪
{κ 7→ µ̄(κ) | κ ∈ kinds(τi), µ̄(κ) = Lω}

S(l) =
{ {l}1 if l 6∈ dom(S)

S(l) if l ∈ dom(S)
S(Lπ) = Lπtπ1

1 where Lπ1
1 = ⊕l∈LS(l)

S(L) = L1 where Lπ
1 = ⊕l∈LS(l)

S(int) = int
S(〈L, κ, ~µ〉) = 〈S(L), κ, (Sµ1, · · · , Sµn)〉

S(µ̄) = {κ 7→ S(Lπ) | κ 7→ Lπ ∈ µ̄}
S(∀~l.µ) = ∀~l.Sµ if inv(S) ∩~l = ∅

S(µ1
U,R→ µ2) = Sµ1

SU,SR→ Sµ2

Gen∆(µ) = ∀~l.µ where ~l = free(µ)\free(∆)

Figure 3: Definitions of join, abstraction, concretization, substitution, and generalization.

A pair of used and reused locations is robust against an alias l1 ∼ l2 if the fact that l1 is
reused implies l2 is not used nor reused.

∀(l1 ∼ l2) ∈ A. l1 ∈ R implies l2 6∈ U ∪R

A ¤ U,R
(robust-UR)

Note that for an alias l1 ∼ l2, reusing l1 and using l2 do not always spoil the memory safety.
It is safe to reuse l1 after using l2. However because the order of use and reuse is not kept,
we conservatively conclude that reusing l1 and using l2 may spoil the memory safety.

Rule (conc) is for concretizing a collapsed memory-type. When we apply rule (case), if y
does not have a concrete memory-type, then we cannot apply rule (case). After we concretize
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the memory-type of y, we can apply rule (case). The (conc) rule consists of two phases. One
is concretizing the collapsed memory-type and inferring the memory-type of the expression
with the concretized memory-type. The other is checking the result is robust against aliases
induced by the concretization.

∀κ ∈ kind(typeof(x)).
(µ′κ, Sκ) = γκ(µ̄)
∆ ∪ {x 7→ µ′κ} ` e : µκ, Uκ, Rκ

C̀ Sκ : Aκ Aκ ¤ Uκ, Rκ Aκ ¤ µκ

∆ ∪ {x 7→ µ̄} ` e :
⊔

Sκµκ,
⋃

SκUκ,
⋃

SκRκ
(conc)

Concretizing is reconstructing the heap structure from a collapsed memory-type. For
example, consider a list ::(1,::(2,[])). The concrete memory-type is:

〈{l1}, ::, (int, 〈{l2}, ::, (int, {})〉〉

where l1 denotes the first :: cell and l2 denotes the second :: cell. The abstraction of this
concrete type is:

{:: 7→ {l1, l2}1}. (3)

Now let us concretize the collapsed memory-type. A naively concretized one is:

〈{l1, l2}, ::, (int, 〈{l1, l2}, ::, (int, {})〉〉 .

It is a safe concretization because it includes the original concrete type. However, it is an
inaccurate concretization because it became to be invalid to use the second :: cell ({l1, l2})
after reusing the first :: cell ({l1, l2}).

Sharing flags help us to find an accurate concretization. Sharing flags denote whether
locations are shared or not; a location is shared if there is more than one path to reach that
location in a memory-type. If locations are not shared, then we can split them without any
intersection between the partitions. For the above collapsed memory-type (3), the locations
are not shared. Then the following concretization is possible.

〈{l′1}, ::, (int,
〈{l′2}, ::, (int, {})〉〉

where l′1 and l′2 are new locations. With this concretized memory-type, we infer the memory-
type of the expression e. Later we confess that l′1 and l′2 are in fact {l1, l2}; we substitute l′1
and l′2 by {l1, l2}. Then the result type is the same as that of the naive concretization. The
difference is that we can conclude that it is valid to use the second :: cell ({l′2}) after reusing
the first :: cell ({l′1}) because they have no intersection. This concretization is safe only if
locations are not shared. If {l1, l2} has some shared locations, then it is impossible to split it
to two partitions clearly.

Our concretization is defined as the follow:

γκ′(µ̄) = (〈L0, κ
′, ~µ〉 , {liκ 7→ µ̄(κ)})

where typeof(κ′) = ~τ → t
L0 = {l0κ′} if µ̄(κ′) = L1, or L if µ̄(κ′) = Lω

µi = {κ 7→ {liκ}1 | κ ∈ kinds(τi), µ̄(κ) = L1} ∪
{κ 7→ µ̄(κ) | κ ∈ kinds(τi), µ̄(κ) = Lω}
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The definition is sensitive to whether sets of locations are shared or not. If the set of locations
are not shared, we introduce new locations and gives a substitution for restoring new locations
to the original conservative ones. If the set of locations are shared, we do the same as the
naive concretization. This concretization may induce aliases. Because the new locations will
be substituted by the original locations, aliases are possible between new ones and original
ones.

`C S : {l ∼ l′ | (l 7→ Lπ) ∈ S, l′ ∈ L}
Thus the result must be robust against the induced aliases. The difference from aliases induced
by parameter passing is that aliases are possible only between original ones and new ones. It
is because locations are newly introduced only if they are not aliased.

3.6 Memory Safety

Similarly to the type soundness [19], we have to prove the memory safety which is expected
for the memory-type system.

Conjecture 1 (Memory Safety) For a program e, if ∅ ` e : τ and ∅ ` e : µ,U,R then e
does not terminate or ({}, ε, e) →∗ (H, ε, v).

Only the memory-type system cannot guarantee a well-typed program does not go wrong
because an ill-typed program in the ordinary type system can be well-typed in the memory
type system. The memory-type system checks only whether every reuse is safe. Thus if a
program is well-typed in both the ordinary type system and the memory-type system, then
it does not go wrong.

4 Discussion

Preliminary experiments encourage our memory-type system. Some benchmark codes pro-
duced by Objective Caml native compiler [9], have 0–51.6% garbage collection overheads.
Especially, the symbolic processing programs have high overheads. To a small benchmark
program sieve, we insert reuse commands which is proved by our memory-type system. The
result code run 28.1% faster than the original code does. It shows the possibility to utilize
our memory-type system.

The memory-type system has to be proved and many extensions are possible. As well as
the memory safety of the memory-type system, we have to prove the effectiveness of memory
reuse. Moreover, in order to embed our memory-type system into real ML compilers, we need
an inference algorithm that automatically inserts safe memory reuse commands to programs.
We need to remove the restriction that functions cannot be stored at the heap. We need
to extend our memory-type system with polymorphic types, reference values, closures, and
continuations.
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Appendix

A Semantics

Addr a
Value u ::= i | a | λx.e
Cell c ::= κ ~u

Heap H ∈ Addr → Cell
Dump D ∈ (Var× Expr)≤k

State : Expr×Heap×Dump

(κ ~u, H, D) → (a, H ∪ {a 7→ κ ~u}, D) where a 6∈ dom(H)
(κ ~u at a, H ∪ {a 7→ c}, D) → (a, H ∪ {a 7→ κ ~u}, D)
(case a m1 · · ·mn, H, D) → (e[ui/xi], H, D) if H(a) = κ ~u and mi = κ ~x ⇒ e
(let x = e1 in e2, H, D) → (e1, H, (x, e2) ·D)
((λx.e) u, H, D) → (e[u/x], H, D)
(u, H, (x, e) ·D) → (e[u/x], H, D)

B Type System

Type τ ::= int | t | ~τ → τ
TypEnv Γ : Var → Type

Γ ` x : Γ(x) Γ ` i : int
Γ + x: τ ′ ` e : τ

Γ ` λx.e : τ ′ → τ

Γ ` v1 : τ ′ → τ Γ ` v2 : τ ′

Γ ` v1 v2 : τ

typeof(κ) = ~τ → t ∀i.Γ ` vi : τi

Γ ` κ ~v : t

Γ(x) = t′ typeof(κ) = ~τ → t ∀i.Γ ` vi : τi

Γ ` κ ~v at x : t

Γ ` v : t ∀i.Γ, t ` mi : τ

Γ ` case v m1 · · ·mn : τ

Γ ` e1 : τ ′ Γ + x: τ ′ ` e2 : τ

Γ ` let x = e1 in e2 : τ

typeof(κ) = ~τ → t Γ + xi: τi ` e : τ

Γ, t ` κ ~x ⇒ e : τ
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