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Abstract. We present a static analysis that estimates reusable memory
cells and a source-level transformation that adds explicit memory-reuse
commands into the program text. For benchmark ML programs, our
analysis and transformation achieves the memory reuse ratio from 5.2%
to 91.3%. The small-ratio cases are for programs that have too prevalent
sharings among memory cells. For other cases, our experimental results
are encouraging in terms of accuracy and cost. Major features of our
analysis are: (1) poly-variant analysis of functions by parameterization
for the argument heap cells; (2) use of multiset formulas in expressing the
sharings and partitionings of heap cells; (3) deallocations conditioned by
dynamic flags that are passed as extra arguments to functions; (4) indi-
vidual heap cell as the granularity of explicit memory-free. Our analysis
and transformation is fully automatic.

1 Overview

Our goal is to automatically insert explicit memory-reuse commands into ML-
like programs so that they should not blindly request memory when constructing
data.
We present a static analysis and a source-level transformation that adds

explicit memory-reuse commands into the program text. The explicit memory-
reuse is by inserting explicit memory-free commands right before data-construc-
tion expressions. Because the unit of both memory-free and allocation is an
individual cell, such memory-free and allocation sequences can be implemented
as memory reuses.1

Example 1. Function call “insert i l” returns a new list where integer i is
inserted into its position in the sorted list l.

fun insert i l = case l of [] => i::[] (1)

| h::t => if i<h then i::l (2)

else h::(insert i t) (3)

� This work is supported by Creative Research Initiatives of the Korean Ministry of
Science and Technology.

1 This approach’s drawback might be that the memory reuse “bandwidth” is limited
by the data-construction expressions in the program text. But our experimental
results show that such a drawback is imaginary.
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Let’s assume that the argument list l is not used after a call to insert. If we
program in C, we can destructively add one node for i into l so that the insert
procedure should consume only one cons-cell. Meanwhile, the ML program’s line
(3) will allocate as many new cons-cells as that of the recursive calls. Knowing
that list l is not used anymore, we can reuse the cons-cells from l:

fun insert i l = case l of [] => i::[]

| h::t => if i<h then i::l

else let z = insert i t

in (free l; h::z) (4)

In line (4), “free l” will deallocate the single cons-cell pointed to by l. The
very next expression’s data construction “::” will reuse the freed cons-cell. ��

1.1 Related Works

The type systems [25,24,2] based on linear logic fail to achieve Example 1 case
because variable l is used twice. Kobayashi [10], and Aspinall and Hofmann [1]
overcome this shortcoming by using more fine-grained usage aspects, but their
systems still reject Example 1 because variable l and t are aliased at line (2)–
(3). They cannot properly handle aliasing: for “let x=y in e” where y points
to a list, this list cannot in general be reused at e in their systems. Moreover,
Aspinall and Hofmann did not consider an automatic transformation for reuse.
Kobayashi provides an automatic transformation, but he requires the memory
system to bookkeep a reference counter for every heap cell.
Deductive systems like the separation logic [9,16,17] and the alias-type sys-

tem [18,26] are powerful enough to reason about shared mutable data structures,
but they cannot be used for our goal; they are not automatic. They need the
programmer’s help about memory invariants for loops or recursive functions.
The region-based memory managements [22,23,4,5,7] use a fixed partitioning

strategy for recursive data structures, which is either implied by the program-
mer’s region declarations or hard-wired inside the region-inference engine [20,21].
Since every heap cell in a single region has the same lifetime, this “pre-determined”
partitioning can be too coarse; for example, transformations like the one in Ex-
ample 1 are impossible.
Blanchet’s escape analysis [3] and ours are both relational, covering the same

class of relations (inclusion and sharing) among memory objects. The difference
is the relation’s targets and deallocation’s granularity. His relation is between
memory objects linked from program variables and their binding expression’s
results. Ours is between memory objects linked from any two program variables.
His deallocation is at the end of a let or function body. Transformations like the
one in Example 1 are impossible in his system. Harrison’s [8] and Mohnen’s [14]
escape analyses have similar limitation: the deallocations is at the end of function
body.

1.2 Our Solution

The features of our analysis and transformation are:
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– In analyzing functions, parameterized abstract sharing-information between
heap cells is maintained. The parameter in a function’s analysis result is for
the function’s argument heap cells. A function’s analysis result consists of
terms called “multiset formula.” A multiset formula symbolically manifests
an abstract sharing relation between heap cells.

– The parameterized multiset formula is instantiated at each function call, in
order to finalize the sharing and/or disjointness properties for the function’s
input and output. This polyvariant analysis is not done by re-analyzing a
function body multiple times.

– Partitioning of heap cells in a multiset formula is pivoted by two axes: one
by structures (e.g. heads and tails for lists, roots and subtrees for trees, etc.)
and the other by set exclusions (e.g. cells A excluding B). This double-axed
partitioning is expressive enough to isolate proper reusable cells from others.

– Individual heap cell for each data constructor is the granularity of inserted
memory-free commands.

– Dynamic flags are inserted to functions in order to condition their free com-
mands on their call sites. Dynamic flags are simple boolean expressions com-
posed of ∧,∨,and ¬.
Our contribution is a cost-effective automatic analysis and transformation

for fine-grained memory reuses for recursive/algebraic data structures in ML-like
programs. Our experimental results show that for small to large ML benchmark
programs the memory reuse ratio ranges from 5.2% to 91.3%. The small-ratio
cases expose that our analysis and transformation is weak for programs that
have too prevalent sharings among memory cells. Other than those “torturing”
cases, our experimental results are encouraging in terms of accuracy and cost.
The analysis cost ranges from about 400 to 4500 lines per second. The limitation
is that we only consider ML-like immutable recursive data.
Section 1.3 intuitively presents the features of our method for an example

program. Section 2 defines the core of the target language, which consists of
the source language plus explicit memory reuse commands. Section 3 presents
the key abstract domain (memory-types) for our analysis. Section 4 shows, for
the same example as in Section 1.3, a more detailed explanation on how our
analysis and transformation works. Section 5 shows our experimental results
and concludes.

1.3 Exclusion Among Heap Cells and Dynamic Flags

The accuracy of our algorithm depends on how precisely we can separate the
two sets of heap cells: cells that are safe to deallocate and others that are not.
If the separation is blurred, we hardly find deallocation opportunities.
For a precise separation of such two groups of heap cells, we have found that

the standard partitioning by structures (e.g. heads and tails for lists, roots and
subtrees for trees, etc.) is not enough. We need to refine the partitions by the
notion of exclusion. Consider a function that builds a tree from an input tree.
Let’s assume that the input tree is not used after the call. In building the result
tree, we want to reuse the nodes of the input tree. Can we free every node of the
input? No, if the output tree shares some of its parts with the input tree. In that
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case, we can free only those nodes of the input that are not parts of the output.
A concrete example is the following copyleft function. Both of its input and
output are trees. The output tree’s nodes along its left-most path are separate
copies from the input tree and the rest are shared with the input tree.

fun copyleft t = case t of Leaf => Leaf

| Node (t1,t2) => Node (copyleft t1, t2)

The Leaf and Node are the binary tree constructors. Node needs a heap cell that
contains two fields to store the locations for the left and right subtrees. The
opportunity of memory reuse is in the case-expression’s second branch. When
we construct the node after the recursive call, we can reuse the pattern-matched
node of the input tree, but only when the node is not included in the output
tree. Our analysis maintains such notion of exclusion.
Our transformation inserts free commands that are conditioned on dynamic

flags passed as extra arguments to functions. These dynamic flags make different
call sites to the same function have different deallocation behavior. By our free-
commands insertion, above copyleft function is transformed to:

fun copyleft [β, βns] t =

case t of Leaf => Leaf

| Node (t1,t2) => let p = copyleft [β ∧ βns, βns] t1
in (free t when β; Node (p,t2))

Flag β is true when the argument t to copyleft can be freed inside the func-
tion. Hence the free command is conditioned on it: “free t when β.” By the
recursive calls, all the nodes along the left-most path of the input will be freed.
The analysis with the notion of exclusion informs us that, in order for the free
to be safe, the nodes must be excluded from the output. They are excluded if
they are not reachable from the output. They are not reachable from the output
if the input tree has no sharing between its nodes, because some parts (e.g. t2)
of the input are included in the output. Hence the recursive call’s actual flag for
β is β∧βns, where flag βns is true when there is no sharing inside the input tree.

1.4 Correctness Proof

The correctness of our analysis and transformation has been proved via a type
system for safe memory deallocations [11]. We first proved our memory-type
system sound: every well-typed program in the system does not access any de-
allocated heap cells. Then we proved that programs resulting from our analysis
and transformation are always well-typed in the memory-type system. Since our
transformation only inserts free commands, a transformed program’s computa-
tional behavior modulo the memory-free operations remains intact.
Because of space limitation, we focus on our analysis and transformation in

this paper. The details of our correctness proof are in [11].

2 Language

Figure 1 shows the syntax and semantics of the source language: a typed call-by-
value language with first-order recursive functions, data constructions (memory
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Syntax
Type τ ::= tree | tree → tree

Boolean Expression b ::= β | true | false | b ∨ b | b ∧ b | ¬b
Storable Value a ::= Leaf | l

Value v ::= a | x | fix x [β1, β2] λx.e
Expression e ::= v value

| Node (v, v) allocation
| free v when b deallocation
| case v (Node (x, y) => e1) (Leaf => e2) match
| v [b1, b2] v application
| let x = e in e binding

Operational Semantics

h ∈ Heaps
∆
= Locations

fin→ {(a1, a2) | ai is a storable value}
f ∈ FreedLocations

∆
= ℘(Locations)

k ∈ Continuations
∆
= {(x1, e1) . . . (xn, en) | xi is a variable and ei an expression}

(Node (a1, a2), h, f, k) ❀ (l, h ∪ {l 
→ (a1, a2)}, f, k)
where l does not occur in (Node (a1, a2), h, f, k)

(free l when b, h, f, k) ❀ (Leaf, h, f ∪ {l} , k) if b ⇔ true, l �∈ f, and l ∈ dom(h)
(free l when b, h, f, k) ❀ (Leaf, h, f, k) if b �⇔ true
(case l (Node(x1, x2) => e1) (Leaf => e2), h, f, k) ❀ (e1[a1/x1, a2/x2], h, f, k)

where h(l) = (a1, a2) and l �∈ f
(case Leaf (Node(x1, x2) => e1) (Leaf => e2), h, f, k) ❀ (e2, h, f, k)
((fix y [β1, β2] λx.e) [b1, b2] v, h, f, k) ❀

(e[(fix y [β1, β2] λx.e)/y, b1/β1, b2/β2, v/x], h, f, k)
(let x = e1 in e2, h, f, k) ❀ (e1, h, f, (x, e2) · k)
(v, h, f, (x, e) · k) ❀ (e[v/x], h, f, k)

Fig. 1. The syntax and the semantics

allocations), de-constructions (case matches), and memory deallocations. All ex-
pressions are in the K-normal form [20,10]: every non-value expression is bound
to a variable by let. Each expression’s value is either a tree or a function. A
tree is implemented as linked cells in the heap memory. The heap consists of
binary cells whose fields can store locations or a Leaf value. For instance, a tree
Node (Leaf, Node (Leaf, Leaf)) is implemented in the heap by two binary cells l
and l′ such that l contains Leaf and l′, and l′ contains Leaf and Leaf.

The language has three constructs for the heap: Node(v1, v2) allocates a node
cell in the heap, and sets its contents by v1 and v2; a case-expression reads the
contents of a cell; and free v when b deallocates a cell v if b holds. A function
has two kinds of parameters: one for boolean values and the other for an input
tree. The boolean parameters are only used for the guards for free commands
inside the function.

Throughout the paper, to simplify the presentation, we assume that all func-
tions are closed, and we consider only well-typed programs in the usual monomor-
phic type system, with types being tree or tree→tree. In our implementation, we
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handle higher-order functions, and arbitrary algebraic data types, not just binary
trees. We explain more on this in Section 5.
The algorithm in this paper takes a program that does not have locations,

free commands, or boolean expressions for the guards. Our analysis analyzes
such programs, then automatically inserts the free commands and boolean pa-
rameters into the program.

3 Memory-Types: An Abstract Domain for Heap Objects

Our analysis and transformation uses what we call memory-types to estimate
the heap objects for expressions’ values. Memory-types are defined in terms of
multiset formulas.

3.1 Multiset Formula

Multiset formulas are terms that allow us to abstractly reason about disjointness
and sharing among heap locations. We call “multiset formulas” because formally
speaking, their meanings (concretizations) are multisets of locations, where a
shared location occurs multiple times.
The multiset formulas L express sharing configuration inside heap objects by

the following grammar:

L ::= A | R | X | π.root | π.left | π.right | ∅ | L �̇L | L ⊕̇L | L \̇L

Symbols A’s, R’s, X ’s and π’s are just names for multisets of locations. A’s
symbolically denote the heap cells in the input tree of a function, X ’s the newly
allocated heap cells, R’s the heap cells in the result tree of a function, and π’s for
heap objects whose roots and left/right subtrees are respectively π.root, π.left,
and π.right. ∅ means the empty multiset, and symbol ⊕̇ constructs a term for a
multiset-union. The “maximum” operator symbol �̇ constructs a term for the
join of two multisets: term L �̇L′ means to include two occurrences of a location
just if L or L′ already means to include two occurrences of the same location.
Term L \̇L′ means multiset L excluding the locations included in L′.
Figure 2 shows the formal meaning of L in terms of abstract multisets: a

function from locations to the lattice {0, 1,∞} ordered by 0 � 1 � ∞. Note that
we consider only good instantiations η of name X ’s, A’s, and π’s in Figure 2.
The pre-order for L is:

L1 � L2 iff ∀η. goodEnv(η) =⇒ [[L1]]η � [[L2]]η.

3.2 Memory-Types

Memory-types are in terms of the multiset formulas. We define memory-types
µτ for value-type τ using multiset formulas:

µtree ::= 〈L, µtree, µtree〉 | L
µtree→tree ::= ∀A.A → ∃X.(L, L)
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Semantics of Multiset Formulas

lattice Labels
∆
= {0, 1,∞}, ordered by 0 � 1 � ∞

lattice MultiSets
∆
= Locations → Labels, ordered pointwise

For all η mapping X’s, A’s, R’s, π.root’s, π.left’s, and π.right’s to MultiSets,

[[∅]]η ∆
= ⊥

[[V ]]η
∆
= η(V ) (V is X, A, R, π.root, π.left, or π.right)

[[L1 �̇L2]]η
∆
= [[L1]]η � [[L2]]η

[[L1 ⊕̇L2]]η
∆
= [[L1]]η ⊕ [[L2]]η

[[L1 \̇L2]]η
∆
= [[L1]]η \ [[L2]]η

where
⊕ and \ : MultiSets × MultiSets → MultiSets

S1 ⊕ S2
∆
= λl. if S1(l)=S2(l)=1 then∞ else S1(l) � S2(l)

S1 \ S2
∆
= λl. if S2(l) = 0 then S1(l) else 0

Requirements on Good Environments

goodEnv(η)
∆
= for all different names X and X ′ and all A,

η(X) is a set disjoint from both η(X ′) and η(A); and
for all π,

η(π.root) is a set disjoint from both η(π.left) and η(π.right)

Semantics of Memory-Types for Trees

[[〈L, µ1, µ2〉]]tree η
∆
= {〈l, h〉 |h(l) = (a1, a2) ∧ [[L]]η l � 1 ∧ 〈ai, h〉 ∈ [[µi]]tree η }

[[L]]tree η
∆
=

{
〈l, h〉

∣∣∣∣∣
l ∈ dom(h)
∧ ∀l′. let n = number of different paths from l to l′ in h

in (n ≥ 1⇒ [[L]]η l′ � 1) ∧ (n ≥ 2⇒ [[L]]η l′ =∞)

}

∪ {〈Leaf, h〉 |h is a heap}

Fig. 2. The semantics of multiset formulas and memory-types for trees

A memory-type µtree for a tree-typed value abstracts a set of heap objects.
A heap object is a pair 〈a, h〉 of a storable value a and a heap h that contains
all the reachable cells from a. Intuitively, it represents a tree reachable from
a in h when a is a location; otherwise, it represents Leaf. A memory-type is
either in a structured or collapsed form. A structured memory-type is a triple
〈L, µ1, µ2〉, and its meaning (concretization) is a set of heap objects 〈l, h〉 such
that L, µ1, and µ2 abstract the location l and the left and right subtrees of 〈l, h〉,
respectively. A collapsed memory-type is more abstract than a structured one. It
is simply a multiset formula L, and its meaning (concretization) is a set of heap
objects 〈a, h〉 such that L abstracts every reachable location and its sharing in
〈a, h〉. The formal meaning of memory-types is in Figure 2. The pre-order �tree

for memory-types for trees is:

µ1 �tree µ2 iff ∀η.goodEnv(η) =⇒ [[µ1]]tree η ⊆ [[µ2]]tree η.
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During our analysis, we switch between a structured memory-type and a col-
lapsed memory-type. We can collapse a structured one by the collapse function:

collapse(〈L, µ1, µ2〉) ∆= L �̇ (collapse(µ1) ⊕̇ collapse(µ2))
collapse(µ) ∆= µ (for collapsed µ)

Note that when combining L and collapse(µ1) ⊕̇ collapse(µ2), we use �̇ instead
of ⊕̇ : it is because a root cell abstracted by L cannot be in the left or right
subtree. We can also reconstruct a structured memory-type from a collapsed
one when given splitting name π:

reconstruct(L, π) ∆= ({π �→ L} , 〈π.root, π.left, π.right〉)
reconstruct(µ, π) ∆= (∅, µ) (for structured µ)

The second component of the result of reconstruct is a resulting structured
memory-type and the first one is a record that L is a collection of π.root, π.left,
and π.right. The join of two memory-types is done by operator � that returns
an upper-bound2 of two memory-types. The operator � is defined using function
collapse:

L1 � L2
∆= L1 �̇L2

〈L, µ1, µ2〉 � 〈L′, µ′
1, µ′

2〉 ∆= 〈L �̇L′, µ1 � µ′
1, µ2 � µ′

2〉
L � 〈L′, µ1, µ2〉 ∆= L �̇ collapse(〈L′, µ1, µ2〉)

For a function type tree → tree, a memory-type describes the behavior of
functions. It has the form of ∀A.A → ∃X.(L1, L2), which intuitively says that
when the input tree has the memory type A, the function can only access loca-
tions in L2 and its result must have a memory-type L1. Note that the memory-
type does not keep track of deallocated locations because the input programs for
our analysis are assumed to have no free commands. The name A denotes all
the heap cells reachable from an argument location, and X denotes all the heap
cells newly allocated in a function. Since we assume every function is closed, the
memory-type for functions is always closed. The pre-order for memory-types for
functions is the pointwise order of its result part L1 and L2.

4 The free-Insertion Algorithm

We explain our analysis and transformation using the copyleft example in
Section 1.3:

fun copyleft t = case t of Leaf => Leaf (1)

| Node (t1,t2) => let p = copyleft t1 (2)

in Node (p,t2) (3)

We first analyze the memory-usage of all expressions in the copyleft program;
then, using the analysis result, we insert safe free commands to the program.
2 The domain of memory-types for trees is not a lattice: the least upper-bound of two
memory-types does not exist in general.
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Environment ∆ ∈ {x | x is a variable} fin→ {µ |µ is a memory-type}
Bound B ∈ {V |V is R or π } fin→ {L |L is a multiset formula}

Substitution S ∈ {L/V | V is X or A, and L is a multiset formula}

∆ ✄ e : B, µ, L Given environment ∆ and expression e, we compute e’s memory-type
µ and usage L with a bound B for newly introduced R’s and π’s.

∆ ✄ v1 : µ1 ∆ ✄ v2 : µ2 (fresh X)

∆ ✄ Node (v1, v2) : ∅, 〈X, µ1, µ2〉, ∅
u-node

∆ ✄ v : µ

∆ ✄ v : ∅, µ, ∅ u-value

∆ ✄ e1 : B1, µ1, L1

∆ ∪ {x 
→ µ1} ✄ e2 : B2, µ2, L2

∆ ✄ let x = e1 in e2 : B1 ∪ B2, µ2, L1 �̇L2

u-let

(B, 〈L, µ′
1, µ′

2〉) ∆
= reconstruct(µ, π) (fresh π)

∆ ∪ {x 
→ 〈L, µ′
1, µ′

2〉, x1 
→ µ′
1, x2 
→ µ′

2} ✄ e1 : B1, µ1, L1

∆ ∪ {x 
→ ∅} ✄ e2 : B2, µ2, L2

∆ ∪ {x 
→ µ} ✄ case x (Node (x1, x2) => e1) (Leaf => e2) :
B1 ∪ B2 ∪ B, µ1 � µ2, L1 �̇L2 �̇L

u-case

∆ ✄ v1 : ∀A.A → ∃X.(L1, L2) ∆ ✄ v2 : µ2

S ∆
= [collapse(µ2)/A, X ′/X] (fresh X ′, R)

∆ ✄ v1 v2 : {R 
→ SL1} , R,SL2

u-app

∆ ✄ v : µ Given environment ∆ and value v, we compute v’s memory-type µ.

x ∈ dom(∆)
∆ ✄ x : ∆(x)

u-var
∆ ✄ Leaf : ∅ u-leaf

µlfp
∆
= fix

(
λµ. ∀A.A → ∃X.(widenB(collapse(µ′)), widenB(L))

where {f 
→ µ, x 
→ A} ✄ e : B, µ′, L

)
∆ ✄ fix f λx.e : µlfp

u-fun

Fig. 3. Step one: The memory-Usage analysis

4.1 Step One: The Memory-Usage Analysis

Our memory-usage analysis (shown in Figure 3) computes memory-types for
all expressions in copyleft. In particular, it gives the memory-type ∀A.A →
∃X.(A �̇X, A) to copyleft itself. Intuitively, this memory-type says that when
A denotes all the cells in the argument tree t, the application “copyleft t” may
create new cells, named X in the memory-type, and returns a tree consisting of
cells in A or X ; but it uses only the cells in A.
This memory-type is obtained by a fixpoint iteration (u-fun). We start from

the least memory-type ∀A.A → ∃X.(∅, ∅) for a function. Each iteration assumes
that the recursive function itself has the memory-type obtained in the previous
step, and the argument to the function has the (fixed) memory-type A. Under
this assumption, we calculate the memory-type and the used cells for the function
body. To guarantee the termination, the resulting memory-type and the used
cells are approximated by “widening” after each iteration.
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We focus on the last iteration step. This analysis step proceeds with five
parameters A, X2, X3, X , and R, and with a splitting name π: A denotes the
cells in the input tree t, X2 and X3 the newly allocated cells at lines (2) and
(3), respectively, X the set of all the newly allocated cells in copyleft, and
R the cells in the returned tree from the recursive call “copyleft t1” at line
(2); the splitting name π is used for partitioning the input tree t to its root,
left subtree, and right subtree. With these parameters, we analyze the copyleft
function once more, and its result becomes stable, equal to the previous result
∀A.A → ∃X.(A �̇X, A):

– Line (1): The memory-type for Leaf is ∅, which says that the result tree is
empty. (u-leaf)

– Line (2): The Node-branch is executed only when t is a non-empty tree.
We exploit this fact to refine the memory-type A of t. We partition A
into three parts: the root cell named π.root, the left subtree named π.left,
and the right subtree named π.right, and record that their collection is A:
π.root �̇ (π.left ⊕̇π.right) = A. Then t1 and t2 have π.left and π.right, re-
spectively. (u-case)
The next step is to compute a memory-type of the recursive call “copyleft
t1.” In the previous iteration’s memory-type ∀A. A → ∃X.(A �̇X, A) of
copyleft, we instantiate A by the memory-type π.left of the argument t1,
and X by the name X2 for the newly allocated cells at line (2). The instan-
tiated memory-type π.left → (π.left �̇X2, π.left) says that when applied to
the left subtree t1 of t, the function returns a tree consisting of new cells
or the cells already in the left subtree t1, but uses only the cells in the left
subtree t1. So, the function call’s result has the memory-type π.left �̇X2,
and uses the cells in π.left. However, we use name R for the result of the
function call, and record that R is included in π.left �̇X2. (u-app)

– Line (3): While analyzing line (2), we have computed the memory-types
of p and t2, that is, R and π.right, respectively. Therefore, “Node (p,t2)”
has the memory-type 〈X3, R, π.right〉 where X3 is a name for the newly
allocated root cell at line (3), R for the left subtree, and π.right for the right
subtree. (u-node)

After analyzing the branches separately, we join the results from the branches.
The memory-type for the Leaf-branch is ∅, and the memory-type for the Node-
branch is 〈X3, R, π.right〉. We join these two memory-types by first collapsing
〈X3, R, π.right〉 to get X3 �̇ (R ⊕̇ π.right), and then joining the two collapsed
memory-types X3 �̇ (R ⊕̇π.right) and ∅. So, the function body has the memory-
type X3 �̇ (R ⊕̇π.right).
How about the cells used by copyleft? In the Node-branch of the case-

expression, the root cell π.root of the tree t is pattern-matched, and at the
function call in line (2), the left subtree cells π.left are used. Therefore, we
conclude that copyleft uses the cells in π.root �̇π.left.
The last step of each fixpoint iteration is widening: reducing all the multiset

formulas into simpler yet more approximated ones. We widen the result memory-
type X3 �̇ (R ⊕̇π.right) and the used cells π.root �̇π.left with the records B(R) =
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Reduced Form LR ::= V | V ⊕̇V | ∅ | LR �̇LR (V is A or X)

widenB(L) gives a formula in a reduced form such that the formula only has free
names A and X and is greater than or equal to L when B holds.

widenB(L)
∆
= S(reduceB(L)) (w1)

(S = {X/X ′ |X ′ appears in reduceB(L)} for the fixed X)

where reduceB(L) uses the first available rule in the following:

reduceB(R)
∆
= reduceB(B(R)) (w2)

reduceB(π.o)
∆
= reduceB(B(π)) (w3)

reduceB(L1 �̇L2)
∆
= reduceB(L1) �̇ reduceB(L2) (w4)

reduceB(L1 ⊕̇L2)
∆
= reduceB(L1) �̇ reduceB(L2) (if disjointB(L1, L2)⇔ true) (w5)

(disjoint is defined in Figure 6)

reduceB(R ⊕̇L)
∆
= reduceB(B(R) ⊕̇L) (w6)

reduceB(π.o1 ⊕̇π.o2)
∆
=

{
reduceB(B(π) ⊕̇ B(π)), if o1 = o2

reduceB(B(π)), otherwise
(w7)

reduceB(π.o ⊕̇L)
∆
= reduceB(B(π) ⊕̇L) (w8)

reduceB((L1 �̇L2) ⊕̇L3)
∆
= reduceB(L1 ⊕̇L3) �̇ reduceB(L2 ⊕̇L3) (w9)

reduceB((L1⊕̇L2) ⊕̇L3)
∆
=

reduceB(L1⊕̇L2) �̇ reduceB(L2⊕̇L3) �̇ reduceB(L3⊕̇L1) (w10)

reduceB(L)
∆
= L (for all other L) (w11)

Fig. 4. The widening process

π.left �̇X2 and B(π) = A. In the following, each widening step is annotated by
the rule names of Figure 4:

X3 �̇ (R ⊕̇π.right)
� X3 �̇ ((π.left �̇X2) ⊕̇π.right) (B(R) = π.left �̇X2) (w6)
= X3 �̇ (π.left ⊕̇ π.right) �̇ (X2 ⊕̇ π.right) ( ⊕̇ distributes over �̇ ) (w9)
� X3 �̇A �̇ (X2 ⊕̇π.right) (B(π) = A thus π.left ⊕̇ π.right � A) (w7)
� X3 �̇A �̇ (X2 ⊕̇A) (B(π) = A thus π.right � A) (w8)
= X3 �̇A �̇X2 �̇A (A and X2 are disjoint) (w5)

Finally, by replacing all the newly introduced Xi’s by a fixed name X (w1)
and by removing redundant A and X , we obtain A �̇X . By rules (w4&w3) in
Figure 4, π.root �̇π.left for the used cells is reduced to A.
The widening step ensures the termination of fixpoint iterations. It produces

a memory-type all of whose multiset formulas are in a reduced form and can
only have free names A and X . Note that there are only finitely many such
multiset formulas that do not have a redundant sub-formula, such as A in A �̇A.
Consequently, after the widening step, only finitely many memory-types can be
given to a function.
Although information is lost during the widening step, important properties

of a function still remain. Suppose that the result of a function is given a multiset
formula L after the widening step. If L does not contain the name A for the input
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tree, the result tree of the function cannot overlap with the input.3 The presence
of ⊕̇ andA in L indicates whether the result tree has a shared sub-part. If neither
⊕̇ nor A is present in L, the result tree can not have shared sub-parts, and if
A is present but ⊕̇ is not, the result tree can have a shared sub-part only when
the input has.4

4.2 Step Two: free Commands Insertion

Using the result from the memory-usage analysis, our transformation algorithm
(shown in Figure 5) inserts free commands, and adds boolean parameters β
and βns (called dynamic flags) to each function. The dynamic flag β says that a
cell in the argument tree can be safely deallocated, and βns that no sub-parts of
the argument tree are shared. We have designed the transformation algorithm
based on the following principles:

1. We insert free commands right before allocations because we intend to deal-
locate a heap cell only if it can be reused immediately after the deallocation.

2. We do not deallocate the cells in the result.

Our algorithm transforms the copyleft function as follows:

fun copyleft [β, βns] t =

case t of Leaf => Leaf (1)

| Node (t1,t2) => let p = copyleft [β ∧ βns, βns] t1 (2)

in (free t when β; Node (p,t2)) (3)

Note that “e1; e2” is an abbreviation of “let x = e1 in e2” when x does not
appear in e2.
The algorithm decides to pass β ∧ βns and βns in the recursive call (2). To

find the first parameter, we collect constraints about conditions for which heap
cells we should not free. Then, the candidate heap cells to deallocate must be dis-
joint with the cells to preserve. We derive such disjointness condition, expressed
by a simple boolean expression. A preservation constraint has the conditional
form b ⇒ L: when b holds, we should not free the cells in multiset L because,
for instance, they have already been freed, or will be used later. For the first
parameter, we get two constraints “¬β ⇒ A” and “true ⇒ X3 �̇ (R ⊕̇π.right)”
from the algorithm in Figure 5 (rules i-fun and i-let). The first constraint
means that we should not free the cells in the argument tree t if β is false, and
the second that we should not free the cells in the result tree of the copyleft
function. Now the candidate heap cells to deallocate inside the recursive call’s
body are π.left \̇R (the heap cells for t1 excluding those in the result of the
recursive call). For each constraint b ⇒ L, the algorithm finds a boolean expres-
sion which guarantees that L and π.left \̇R are disjoint if b is true; then, it takes
the conjunction of all the found boolean expressions.
3 This disjointness property of the input and the result is related to the usage aspects
2 and 3 of Aspinall and Hofmann [1].

4 This sharing information is reminiscent of the “polymorphic uniqueness” in the Clean
system [2].
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Preservation Constraints C ⊆ {b ⇒ L | b is a boolean expression }

✄ v
(∆,µ)
1 ⇒ v2

takes v1 annotated with the analysis result (∆, µ), and produces free-
inserted v2.

✄ x ⇒ x
i-var

✄ Leaf ⇒ Leaf
i-leaf

B, {¬β ⇒ A} , true✄ e ⇒ e′ : C
✄ fix f λx.(e(·,B,·,·))
⇒ fix f [β, βns] : λx.e′

i-fun

B, C1, b ✄ e
(∆,B′,µ,L)
1 ⇒ e2 : C2

takes an expression e1 annotated with the analysis
result (∆,B′, µ, L), a bound B for free names, and b

and C1 that prohibit certain cells from being freed: b says that the result of e1 should
not be freed, and each b′ ⇒ L′ in C1 that L′ should not be freed when b′ holds. The
algorithm returns a free-inserted e2 and C2 whose b′ ⇒ L′ expresses that L′ is freed
in e2 when b′ holds.

✄ v ⇒ v′

B, C, b ✄ v ⇒ v′ : ∅ i-value
¬∃x.∆(x) = 〈L, µ1, µ2〉 ✄ v1 ⇒ v′

1 ✄ v2 ⇒ v′
2

B, C, b ✄ (Node (v1, v2))
(∆,·,·,·) ⇒ Node (v′

1, v
′
2) : ∅

i-nof

∃x.∆(x) = 〈L, µ1, µ2〉 ✄ v1 ⇒ v′
1 ✄ v2 ⇒ v′

2

C′ ∆
= C ∪ {b ⇒ collapse(µ)} b′

∆
= freeB,C′(L)

B, C, b ✄ (Node (v1, v2))
(∆,·,µ,·) ⇒ (free x when b′; Node (v′

1, v
′
2)) : {b′ ⇒ L}

i-free

B, C, b ✄ e1 ⇒ e′1 : C1 B, C, b ✄ e2 ⇒ e′2 : C2

B, C, b ✄ case x (Node (x1, x2) => e1) (Leaf => e2)
⇒ case x (Node (x1, x2) => e′1) (Leaf => e′2) : C1 ∪ C2

i-case

B, C ∪ {true⇒ L, b ⇒ collapse(µ)} , false ✄ e1 ⇒ e′1 : C1

B, C ∪ C1, b ✄ e2 ⇒ e′2 : C2

B, C, b ✄ let x = e1 in (e
(·,·,µ,L)
2 )⇒ let x = e′1 in e′2 : C1 ∪ C2

i-let

✄ v ⇒ v′ L
∆
= collapse(µ) b

∆
= freeB,C(L \̇R) bns

∆
= nosharingB(L)

B, C, b′ ✄ (x (v(∆,µ)))(·,·,R,·) ⇒ x [b, bns] v
′ :

{
b ↪→ L \̇R

} i-app

freeB,C(L) calculates a safe condition to free L from the bound B for free names and
the constraint C that says when certain cells should not be freed.

freeB,C(L)
∆
=

∧{
¬b ∨ disjointB(L, L′)

∣∣ (b ⇒ L′) ∈ C
}

Fig. 5. Step two: The algorithm to insert free commands

– For “¬β ⇒ A,” the algorithm in Figure 6 returns false for the condition that
A and π.left \̇R are disjoint:

disjointB(A, π.left \̇R) = disjointB′(A,π.left) (excluding R) (d5)
= disjointB′(A,A) (π.root �̇ (π.left ⊕̇π.right) = A) (d9)
= false (A = A) (d10)

where B = {R �→ π.left �̇X2, π �→ A} and B′ = {R �→ ∅, π �→ A}. We take
¬(¬β) ∨ false, equivalently, β.
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– For “true ⇒ X3 �̇ (R ⊕ π.right),” the algorithm in Figure 6 finds out that
βns ensures the disjointness requirement:

disjointB(X3 �̇ (R ⊕̇π.right), π.left \̇R)
= disjointB′(X3 �̇ (R ⊕̇π.right), π.left) (d5)
= disjointB′(X3, π.left) ∧ disjointB′(R,π.left) ∧ disjointB′(π.right, π.left) (d7&d8)
= disjointB′(X3, A) ∧ disjointB′(∅, π.left) ∧ nosharingB′(A) (d9&d6&d4)
= true ∧ true ∧ βns (d1&d1&d11)

Thus the conjunction β ∧ βns becomes the condition for the recursive call body
to free a cell in its argument t1.

disjointB(L1, L2)
gives a condition that L1 and L2 are disjoint under B. We apply
the first available rule in the followings:

disjointB(A, X)
∆
= true, and disjointB(∅, L) ∆

= true (d1)

disjointB(X1, X2)
∆
= true (when X1 �= X2) (d2)

disjointB(π.root, π.o)
∆
= true (when o = left or right) (d3)

disjointB(π.left, π.right)
∆
= nosharingB(B(π)) (d4)

disjointB∪{R �→L}(L1 \̇R, L2)
∆
= disjointB∪{R �→∅}(L1, L2) (d5)

disjointB(R, L)
∆
= disjointB(B(R), L) (d6)

disjointB(L1 �̇L2, L3)
∆
= disjointB(L1, L3) ∧ disjointB(L2, L3) (d7)

disjointB(L1 ⊕̇L2, L3)
∆
= disjointB(L1, L3) ∧ disjointB(L2, L3) (d8)

disjointB(π.o, L)
∆
= disjointB(B(π), L) (d9)

disjointB(L1, L2)
∆
= false (for other L1 and L2) (d10)

nosharingB(L) gives a condition that L is a set under B:
nosharingB(A)

∆
= βns (d11)

(where βns is the second dynamic flag of the enclosing function)

nosharingB(L)
∆
= true (when L = X, π.root, or ∅) (d12)

nosharingB(π.o)
∆
= nosharingB(B(π)) (when o = left or right) (d13)

nosharingB(R)
∆
= nosharingB(B(R)) (d14)

nosharingB(L1 �̇L2)
∆
= nosharingB(L1) ∧ nosharingB(L2) (d15)

nosharingB(L1 ⊕̇L2)
∆
= nosharingB(L1) ∧ nosharingB(L2) ∧ disjointB(L1, L2) (d16)

nosharingB(L \̇R)
∆
= nosharingB(L) (d17)

Fig. 6. The algorithm to find a condition for the disjointness

For the second boolean flag in the recursive call (2), we find a boolean ex-
pression that ensures no sharing of a sub-part inside the left subtree t1. We
use the memory-type π.left of t1, and find a boolean expression that guar-
antees no sharing inside the multiset π.left; βns becomes such an expression:
nosharingB(π.left) = nosharingB(A) = βns (d13 &d11).
The algorithm inserts a free command right before “Node (p,t2)” at line

(3), which deallocates the root cell of the tree t. But the free command is safe
only in certain circumstances: the cell should not already have been freed by the



Inserting Safe Memory Reuse Commands into ML-Like Programs 185

program lines (1) totala (2) reusea (2)/(1) cost(sb)

sievec 18 161112 131040 81.3% 0.004
quicksortd 24 675925 617412 91.3% 0.007
mergee 30 120012 59997 50.0% 0.007
mergesortd 61 440433 390429 88.7% 0.019
queensf 66 118224 6168 5.2% 0.017
mirageg 141 208914 176214 84.4% 0.114
lifeh 169 84483 8961 10.6% 0.113
kbh 557 2747397 235596 8.6% 0.850
k-evali 645 271591 161607 59.5% 1.564
nucleich 3230 1616487 294067 18.2% 3.893

a
words: the amount of total allocated heap cells and reused heap cells by our transformation

b
seconds: our analysis and transformation is compiled by the Objective Caml 3.04 native com-
piler [12], and executed in Sun Sparc 400Mhz, Solaris 2.7

c
prime number computation by the sieve of Eratosthenes (size = 10000)

d
quick/merge sort of an integer list (size=10000)

e
merging two ordered integer lists to an ordered list (size = 10000)

f
eight queen problem

g
an interpreter for a tiny non-deterministic programming language

h
the benchmark programs from SML/NJ [19] benchmark suite (loop=50)

i
a type-checker and interpreter for a tiny imperative programming language

Fig. 7. Experimental results for inserting safe deallocations

recursive call (2), and the cell is neither freed nor used after the return of the
current call. Our algorithm shows that we can meet all these requirements if the
dynamic flag β is true; so, the algorithm picks β as a guard for the inserted free
command. The process to find β is similar to the one for the first parameter of
the call (2). We first collect constraints about conditions for which heap cells
we should not free:

– we should not free cells that can be freed before (β ∧ βns ⇒ π.left \̇R),
– we should not free the input cells when β is false (¬β ⇒ A), and
– we should not free cells that are included in the function’s result (true ⇒

X3 �̇ (R ⊕̇π.right)).

These three constraints are generated by rules i-app, i-fun and i-free in Fig-
ure 5, respectively. From these constraints, we find a condition that cell π.root
to free is disjoint with those cells we should not free. We use the same process
as used for finding the first dynamic flag of the call (2). The result is β.

Theorem 1 (Correctness). For every well-typed closed expression e, when e
is transformed to e′ by the memory-usage analysis (∅ ✄ e : B, µ, L) and the
free-insertion algorithm (B, ∅, false✄ e(∅,B,µ,L) ⇒ e′ : C), then expression e′ is
well-typed in the sound memory-type system in [11].

The complete proofs are in [11].
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5 Experiments

We experimented the insertion algorithm with ML benchmark programs which
use various data types such as lists, trees, and abstract syntax trees. We first
pre-processed benchmark programs to monomorphic and closure-converted [13]
programs, and then applied the algorithm to the pre-processed programs.
We extended the presented algorithm to analyze and transform programs

with more features. (1) Our implementation supports more data constructors
than just Leaf and Node. It analyzes heap cells with different constructors sepa-
rately, and it inserts twice as many dynamic flags as the number of constructors
for each parameter. (2) For functions with several parameters, we made the dy-
namic flag β also keep the alias information between function parameters so
that if two parameters share some heap cells, both of their dynamic flags β are
turned off. (3) For higher-order cases, we simply assumed the worst memory-
types for the argument functions. For instance, we just assumed that an argu-
ment function, whose type is tree→ tree, has memory-type ∀A.A → ∃X.(L, L)
where L = (A ⊕̇A) �̇ (X ⊕̇X). (4) When we have multiple candidate cells for
deallocation, we chose one whose guard is weaker than the others. For incompa-
rable guards, we arbitrarily chose one.
The experimental results are shown in Figure 7. Our analysis and transfor-

mation achieves the memory reuse ratio (the fifth column) of 5.2% to 91.3%.
For the two cases whose reuse ratio is low (queens and kb), we found that they
have too much sharing. The kb program heavily uses a term-substitution func-
tion that can return a shared structure, where the number of shares depends
on an argument value (e.g. a substitution item e/x has every x in the target
term share e). Other than such cases, our experimental results are encouraging
in terms of accuracy and cost. The graph in Figure 7 indicates that the analysis
and transformation cost can be less than square in the program size in practice
although the worst-case complexity is exponential.

6 Conclusion and Future Work

We have presented a static analysis and a source-level transformation that adds
explicit memory-reuse commands into the program text, and we have shown that
it effectively finds memory-reuse points.
We are currently implementing the analysis and transformation inside our

nML compiler [15] to have it used in daily programming. The main issues in the
implementation are to reduce the runtime overhead of the dynamic flags and to
extend our method to handle polymorphism and mutable data structures. The
runtime overhead of dynamic flags can be substantial because, for instance, if a
function takes n parameters and each parameter’s type has k data constructors,
the function has to take 2×n×k dynamic flags according to the current scheme.
We are considering to reduce this overhead by doing a constant propagation for
dynamic flags; omitting some unnecessary flags; associating a single flag with
several data constructors of the same size; implementing flags by bit-vectors;
and duplicating a function according to the different values of flags.
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To extend our method for polymorphism, we need a sophisticated mechanism
for dynamic flags. For instance, a polymorphic function of type ∀α. α → α can
take a value with two constructors or one with three constructors. So, this poly-
morphic input parameter does not fit in the current method because currently
we insert twice as many dynamic flags as the number of constructors for each
parameter. Our tentative solution is to assign only two flags to the input param-
eter of type α and to take conjunctions of flags in a call site: when a function
is called with an input value with two constructors, instead of passing the four
dynamic flags β, βns, β′, and β′

ns, we pass β ∧ β′ and βns ∧ β′
ns. For mutable

data structures, we plan to take a conservative approach similar to that of Ghe-
orghioiu et al. [6]: heap cells possibly reachable from modifiable cells cannot be
reused.
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