
ROPAS

Research On Program Analysis System

National Creative Research Initiative Center

Korea Advanced Institute of Science and Technology

ROPAS MEMO

1999-2

November 15, 1999

Reconstructing the Types of Stack-Machine Codes

Oukseh Lee and Kwangkeun Yi
{cookcu; kwang}@ropas.kaist.ac.kr

Abstract

It is frequently needed to compile stack-machine codes into register-machine codes.
One important optimization in such compilers is reducing the stack access overhead. But
an effective mapping of stack values into registers is not straightforward. In this article,
we present a formal yet effective technique of inferring the two types of each stack value.
We infer the type of a stack value when it is pushed (push-type) and the type when it is
used (pop-type). These two type information is safely estimated across the basic blocks
by a global data-flow analysis. Using this type information, we can safely use as many
typed registers as possible in storing stack values. We implemented our analysis for a real
compiler and its experiments show that the speed-up is 5% to 24%.

1 Problem and Our Approach

It is frequently needed to compile stack-machine codes into register-machine codes [ATCL+98,
Ert96, TvSKS83]. Stack-machine codes are used widely as intermediate languages, while most
computers are register machines.

One important optimization in such compilers is reducing the stack access overhead. Stack-
machine codes usually access the stack for keeping temporary values. If we naively implement
the stack in the target machine’s main memory, the memory traffic (load and store) easily
becomes the performance bottleneck.

But an effective mapping of stack values into registers is not straightforward. The problem
is that the registers are typed, while the stacks are un-typed. Therefore, in order to utilize
a typed register for a stack value, the value’s type have to be determined. This problem is
complicated when a stack value’s type when it is pushed is different from the type when it is
used. When these two types are the same, we can use a typed register to store the value.

In this article, we present a formal yet effective technique of inferring the two types of each
stack value. We infer the type of a stack value when it is pushed (push-type) and the type when
it is used (pop-type). These two type information is safely estimated across the basic blocks
by a global data-flow analysis. Using this type information, we can safely use as many typed
registers as possible in storing stack values.

As an example of our type analysis and its use for mapping stack values to typed registers,
consider the control flows of four code segments A, B, C, and D:

B: push 2 C: push 1.0

A: push 0
loi

❘

❘

✠

✠

D: add i

0This work is supported by Creative Research Initiatives of the Korean Ministry of Science and Technology.

November 15, 1999 ROPAS-1999-2 2

The possible control-flows are A→B→D and A→C→D. The first value popped by D is pushed as
an integer (2) or a real number (1.0), and the value is popped as an integer because the addi

command is for integer-addition. Thus the common storage that can contain both an integer
and a real number is the stack. The second value popped by D is considered an integer but
was pushed as a typeless word at A. (because A pushes the value from the memory of address
0 (M[0]) by the load-indirect command loi.) Thus the common storage is an integer register.
By these results, we store M[0] to an integer register, and 2 and 1.0 to the stack, and D pops
one value from the integer register and the other from the stack.

We implemented our analysis for a real compiler and its experiments show that the speed-up
is 5% to 24%.

No other works have applied such an extensive data-flow analysis for inferring the types
of stack values. Existing works either exploit the types of stack values only within the ba-
sic blocks [vS84], or use the types across the basic blocks but assume that no ill-typed uses
occur [Ert95, Ert96, Kna93, MCGW98].

2 The Source Language

The source language (stack-machine language) is shown in Figure 1. The language is sim-
plified for presentation brevity. In reality of our implementation, the source language is the
EM [TvSKS83]. The values of the language are one-word integers or one-word real numbers.
Boolean values are treated as integers. The stack is the sequence of typeless words. Inte-
gers and real numbers are used as encoded typeless words in stack operations. Thus ill-typed
programs are possible to work well.

A state-transition semantics of the source language is also shown in Figure 1, which describes
an one-step evaluation. The semantics of a program ℘ is the sequence of the → relations from
the initial state. A state (c,H, σ) consists of the command c pointed to by the current program
counter, a heap H and a stack σ. The initial state is (0:e ∈ ℘, ∅, ε). Command labels are
distinct and consecutive positive integers from 0 and plays a role as a program point. Each
stack value has its push-point that indicates which command in the program pushed it. We
attach an integer index to a push-point because some commands (e.g. dupτ) push more than
one value. We shortly write li for a push-point 〈l, i〉.

3 Push-Type Analysis

We first approximate the push-types of stack values by using the abstract interpretation frame-
work [CC77, CC92]. In this framework, we define an abstract semantics of stack-machine codes,
by which we can finitely approximate at compile-time the types of stack values when they are
pushed at run-time.

The correctness of such an abstract semantics is achieved by establishing a sound relation
between the abstract semantics and a collecting semantics which collects all the possible stack
values that will occur at run-time after each command’s execution.

The collecting semantics is shown in Figure 2. It simply collects all the possible heaps and
stacks for each program point [CC77]. Note that the collecting semantics are not computable
at compile-time. For example, codes with an infinite loop can have infinitely many stack
configurations.

We therefore need to define a finite approximation of the collecting semantics, so that the
execution of the source program based on the finite semantics always terminates and becomes
our compile-time analysis.

November 15, 1999 ROPAS-1999-2 3

l ∈ Label label
τ ::= i | r type is either int or real
vi ∈ Int integer
vr ∈ Real real number

Prog ::= Cmd∗

Cmd ::= l:Instr label and instruction
Instr ::= addτ τ -type addition

| neqτ check inequality
| push vτ

| pop
| loi indirect load
| sti indirect store
| dupτ duplicate
| bcc l conditional branch

a ∈ Address = Int
h ∈ Heap = Address → Word
v ∈ Value = Word+ Int+ Real
li ∈ PushPoint = Label × Int
σ ∈ Stack = (Value × PushPoint)∗

State = Cmd × Heap × Stack

Semantics is defined by state transition relation →.
τ(s) is the value obtained by coercing s into τ type.
(l:addτ , H, ss′σ) → (l+1:e,H, 〈v+u, l1〉σ) where v = τ(s), u = τ(s′)
(l:eqlτ , H, ss′σ) → (l+1:e,H, 〈v=u, l1〉σ) where v = τ(s), u = τ(s′)
(l:push vτ , H, σ) → (l+1:e,H, 〈vτ , l1〉σ)
(l:pop,H, sσ) → (l+1:e,H, σ)
(l:loi,H, sσ) → (l+1:e,H, 〈H(a), l1〉σ) where a = Int(s)
(l:sti,H, ss′σ) → (l+1:e,Ha ∪ {a �→ v}, σ) where a = Int(s), v = Word(s′)

and Ha = H\{(a �→ v) ∈ H}
(l:dupτ , H, sσ) → (l+1:e,H, 〈v, l1〉〈v, l2〉σ) where v = τ(σ)
(l:bcc k, H, sσ) → (l+1:e,H, σ) if Int(s) = 0
(l:bcc k, H, sσ) → (k:e,H, σ) if Int(s) = 0

Figure 1: The source language and its concrete semantics.

We finitely approximate a set of heaps and stacks by a single stack-type. The set D̂ of
stack-types is a lattice whose elements are the objects we compute during our analysis.

Definition 1 (D̂,�). The stack-type σ̂ is defined as

t ∈ Type ::= u | i | n | r
σ̂ ∈ D̂ ::= ⊥ | 〈t, L〉∗�

where L ∈ ℘(PushPoint), and the stack-type has the following order:

⊥ � σ̂ � � for all σ̂ ∈ D̂
〈t, L〉σ̂ � 〈t′, L′〉σ̂′ if t �t t′, L ⊆ L′ and σ̂ � σ̂′

November 15, 1999 ROPAS-1999-2 4

The collecting semantics is the least fix-point of function G:

G : (Cmd → D)→ (Cmd → D) where D = ℘(Heap × Stack)

G E c = F c
(∪c′∈pre(c)E(c′)

)
where

F c X = {(H ′, σ′) | (c,H, σ)→ (c′,H ′, σ′), (H,σ) ∈ X}
pre(l:e) = {l−1:e′ ∈ P} ∪ {k:bcc l ∈ P}

Figure 2: Collecting semantics

where the orders of types are u �t i �t n and u �t r �t n which is represented by:

n

u

i r

Our finite approximation of a set of heaps and stacks is done by the following steps. We
completely approximate the heap as unknown. We approximate each stack value by its type.
Then a stack becomes a sequence of value types. A set of type sequences is then approximated
into a single type sequence by separately joining the types and the push-points in the same-
depth cells of the stacks. The join of two types is defined by the partial order between types.
The orders of types (�t) is determined by the storable values of the storage of a type. An
integer register (i) can store integers or typeless words. A real-type register (r) can store real
numbers or typeless words. The stack (n) can store all values. A memory cell in the heap (u)
stores only typeless words. The set-inclusion order of these storable values is the order of types.
In formal terms, the finite approximation is defined by the abstraction function α from a set of
heaps and stacks to a stack type. The abstraction function α establishes a Galois connection
paired with the concretization function γ:

Definition 2 (D,⊆)−→←−α
γ
(D̂,�) is a Galois connection for

α : D → D̂ such that α(X) =
⊔

(H,σ)∈X
�type(σ)�

γ : D̂ → D such that γ(σ̂) =
{
(H,σ) | �type(σ)� � σ̂, H∈Heap

}
where �type(〈v1, l1〉 · · · 〈vn, ln〉) = 〈type(v1), {l1}〉 · · · 〈type(vn), {ln}〉 and type(v) = i, r,u if v ∈
Int,Real,Word, respectively.

We define an abstract semantics Ĝ of commands over the abstract domain D̂, such that
the abstract single-step transiton operation F̂ c for a command c is equal to α ◦ (F c) ◦ γ. See
Figure 3.

Definition 3 The push-type analysis P̂ush℘ for the source program ℘ is
⊔

i≥0 Ĝi(⊥℘) where ⊥℘

is the finite table from the program points of ℘ to ⊥.

Theorem 1 The push-type analysis is a safe approximation of the collecting semantics, and
the analysis always terminates for all finite input programs.

November 15, 1999 ROPAS-1999-2 5

The abstract semantics is the least fix-point of function Ĝ:

Ĝ : (Cmd → D̂) → (Cmd → D̂)

Ĝ Ê c = F̂ c
(
�c′∈pre(c)Ê(c′)

)
where

F̂ (l:addτ) σ̂ = 〈τ, {l1}〉σ̂[2∼] F̂ (l:push vτ) σ̂ = 〈τ, {l1}〉σ̂
F̂ (l:neqτ) σ̂ = 〈b, {l1}〉σ̂[2∼] F̂ (l:pop) σ̂ = σ̂[1∼]

F̂ (l:loi) σ̂ = 〈u, {l1}〉σ̂[1∼] F̂ (l:dupτ) σ̂ = 〈τ, {l1}〉〈τ, {l2}〉σ̂[1∼]

F̂ (l:sti) σ̂ = σ̂[2∼] F̂ (l:bcc l) σ̂ = σ̂[1∼]

The tail operator σ̂[d∼] (which removes top d types from σ̂) is:
⊥[d∼] = ⊥, σ̂[0∼] = σ̂, �[d∼] = �, and (ŝσ̂)[d∼] = σ̂[d−1∼] if d > 0

Figure 3: Abstract semantics

Proof. The analysis is sound, because collecting domain D and abstract domain D̂ establish
a Galois connection by α and γ, and F̂ c is defined as α ◦ (F c) ◦ γ [CC77]. The termination is
guaranteed because Ĝ is monotone and for a given program ℘, the chain ⊥℘, Ĝ(⊥℘), Ĝ2(⊥℘),
· · · is always finite [CC77]. ✷

4 Pop-Type Analysis

In order to find a single type that subsumes both the types as which a stack value is pushed
and popped, we need to propagate the pop-types of commands up to their push-points.

The propagation rules and axioms are shown in Figure 4. In our rules, “li ⇓ t” means that
a value can be pushed as t-type at li, “kj ⇑ s” means that a vaule can be popped as s-type
at kj , and “li → kj” means that the value pushed at li can be popped at kj . Consider, for
example, the (Anal) rule. If a value can be pushed as t-type at li (li ⇓ t) and the same value
can be popped as s-type at kj (kj ⇑ s and li → kj), then the join t�s of the two types becomes
the type of both push-point li and pop-point kj .

Definition 4 The pop-type analysis P̂op℘ for a program ℘ is obtaining li → kj, li ⇓ t and kj ⇑ s
for all push-point li and pop-point kj of the program ℘, by repeatedly applying the inference
rules of Figure 4 until no more li → kj, li ⇓ t and kj ⇑ s can be added.

Theorem 2 The pop-type analysis is sound and always terminates.

Proof. The axioms asserts obviously safe push-type and pop-type of every command. The
(Push), (Pop), and (Chain) rules generate safe relations that subsume the axioms and/or
our safe push-type analysis results. The (Anal) rule always adds a new push-type (or pop-
type) which subsumes prevously inferenced types. The analysis always terminates because the
number of possible li → kj , li ⇓ t and kj ⇑ t is finite for a given program. ✷

5 Implementation and Conclusion

We implemented the two analyses in a real compiler and found that it improves the generated
code speed by 5–24%. The compilers are EM-to-PowerPC compilers developed by us as versions

November 15, 1999 ROPAS-1999-2 6

Axioms:

addτ ⇑ ττ neqτ ⇑ ττ loi ⇑ i dupτ ⇑ τ bcc l ⇑ i sti ⇑ iu

addτ ⇓ τ neqτ ⇓ i loi ⇓ u dupτ ⇓ ττ push vτ ⇓ τ

ei ⇓ ti if e ⇓ t1 · · · tn, and ei ⇑ ti if e ⇑ t1 · · · tn

Inference rules:
l:e ∈ ℘ ei ⇓ t

li ⇓ t
(Push)

c ∈ pre(k:e) P̂ush℘.j(c)=〈t, L〉 ej ⇑ s

kj ⇑ (t � s)
(Pop)

c ∈ pre(k:e) P̂ush℘.j(c)=〈t, L〉 li ∈ L

li → kj
(Chain)

li → kj li ⇓ t kj ⇑ s

li ⇓ (t � s) kj ⇑ (t � s)
(Anal)

where

P̂ush℘.j(c) =

{
〈tj , Lj〉, if P̂ush℘(c) = 〈t1, L1〉 · · · 〈tj , Lj〉 · · · �
〈n,�L〉, otherwise

where �L is a set of all push-points in program ℘.

Figure 4: Pop-type analysis rules.

with and without the type reconstruction. See Figure 5.
We present a practical analysis problem and design a sound analysis. We found type

information of the stack can improve the quality of target codes. We designed an analysis that
solved the problem, proved its safety, implemented it inside a real compiler, and showed that
the analysis improved the generated code’s speed up to 24%.

References

[ATCL+98] Ali-Reza Adl-Tabatabai, Michal Cierniak, Guei-Yuan Lueh, Vishesh M. Parikh,
and James M. Stichnoth. Fast, effective code generation in a just-in-time java
compiler. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation, pages 280–290, Montreal, Canada, 1998.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In Fourth
Annual ACM Symposium on Principles of Programming Languages, pages 238–
252, Los Angeles, January 1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal
of Logic Computation, 2(4):511–547, 1992. Also as a tech report: Ecole Polytech-
nique, no. LIX/RR/92/10.

[Ert95] Martin Anton Ertl. Stack caching for interpreters. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 315–327, 1995.

November 15, 1999 ROPAS-1999-2 7

EM analyses execution time of codes (sec)a speed
code
size
(KB)

time
(sec)b

generated
without the type

analyses

generated by the
type analyses

improve-
ment
(%)

merge sort 3.2 0.08 241.56 210.38 12.1

129.compressc 139.4 0.71 3848.16 3638.74 5.4

132.ijpegc 610.6 29.43 4896.10 3732.58 23.8

099.goc 1341.3 53.30 6281.24 5647.31 10.0

aPowerPC 604e 166 MHz, AIX 4.2.
bSun Ultra Sparc 296 MHz, Solaris 2.6.
cSPEC95 benchmark programs, compiled by C-to-EM compiler (revision 3.10) of the Amsterdam Com-

piler Kit [TvSKS83].

Figure 5: Experimental result.

[Ert96] Martin Anton Ertl. Implementation of Stack-Based Languages on Register Ma-
chines. PhD thesis, Technische Universitaet Wien, Austria, 1996.

[Kna93] Peter J. Knaggs. Practical and Theoretical Aspects of Fourth Software Develop-
ment. PhD thesis, School of Computing and Mathematics, University of Teesside,
Middlesbrough, Cleveland, UK, March 1993.

[MCGW98] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed
assembly language. In International Workshop on Types in Compilation, 1998.

[TvSKS83] Andrew S. Tanenbaum, Hans van Staveren, Ed G. Kaizer, and Johan W. Steven-
son. Description of a machine architecture for use with block structured languages.
Technical report, Vrije Universiteit, Amsterdam, 1983.

[vS84] Hans van Staveren. The table driven code generator from the amsterdam compiler
kit. Technical report, Vrije Universiteit, Amsterdam, The Netherlands, 1984.

