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Abstract

This article is about our findings when we tried to derive a modular version
from a whole-program control-flow analysis (CFA). Deriving a modular version
from a whole-program kCFA makes the resulting analysis polyvariant at module-
level. Hence the correctness of its modularized version cannot be proven in general
with respect to the original kCFA. A convenient stepping-stone to prove the cor-
rectness of a modularized version is a whole-program kCFA that is polyvariant at
module-level.

Because CFA is a basis of almost all analyses for higher-order programs, our
result can be seen as a general hint of using the module-variant whole-program
analysis in order to ease the correctness proof for a modularized version. Our
work can also be seen as a formal investigation, for CFA, of the folklore that
modularization improves the analysis accuracy.

1 Introduction

Modular analyses, which analyze incomplete programs such as modules, are practical
alternatives to whole-program analysis for large-scale realistic programs. A whole-
program analysis needs the entire program text as its input, and it has to solve a large
set of equations at once. If some parts of the program are modified, it has to re-analyze
the entire program. A modular analysis, on the other hand, does not need the entire
program and re-analyzes only the dependent parts of the modified module.

This article is about our findings when we tried to derive a modular version from
a whole-program control-flow analysis (CFA) [Shi91, NN97], to be used inside a mod-
ularized version of our exception analysis[YR01, YR97, YR98]:

• Deriving a modular version (in the framework of incremental analysis) from a
whole-program kCFA [Shi91, NN97] makes the resulting analysis polyvariant at
module-level.

∗This work is supported by Creative Research Initiatives of the Korean Ministry of Science and
Technology.
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• Hence the correctness of its modularized version cannot be proven in general with
respect to the original kCFA.

• A convenient stepping-stone to prove the correctness of a modularized version
(instead of proving it against the program semantics) is a whole-program kCFA
that is polyvariant at module-level.

Example 1 As an example that modularization improves the accuracy, consider a
CFA of the following two higher-order code-fragments:

id = λx.x
dec = id λy.y-1

and inc = id λz.z+1.

The goal of CFA is to safely estimate which functions flow into each expression. Sup-
pose we analyze the two fragments together. Because of the two calls to id, id’s formal
parameter x is bound to both λy.y-1 and λz.z+1. This information is propagated
back to the call sites that we conclude inc has λy.y-1 (a false-flow) as well as λz.z+1.
On the other hand, analyzing the left fragment in isolation concludes that id has λx.x
and dec has λy.y-1. Analyzing the second fragment with this information concludes
that inc has only λz.z+1.

After we describe the model for our modular analysis in Section 2, we first show
the case for 0CFA. After the definition of 0CFA in Section 3, we present its modular
version 0CFA/m in Section 4, and show in Section 5 that it is not a safe extension of the
original 0CFA. In Section 6 we define a module-variant 0CFA and prove in Section 7
that the modular version is correct for this module-variant 0CFA. In Section 8, we
show that the same holds for kCFA in general: we show that modularized version
kCFA/m is not a safe extension of kCFA yet is a safe extension of the whole-program
module-variant kCFA. We conclude in Section 9.

2 Incremental Model for Modular Analysis

We assume that a modular analysis works inside an incremental compilation environ-
ment [AM94]. A module consists of variable declarations (“x = e”) and a signature
that enlists a subset of the declared variables visible from the other modules. Module
M depends on another module M ′, written M ′ < M , if and only if module M uses
variables of module M ′. We assume that there exists a dependency between modules
and we analyze modules in sequence by their topological order, as in the incremen-
tal compilation system. We do not consider circular dependencies, for which iterative
analysis of involved modules is necessary.

Figure 1 illustrates our incremental model of modular analysis. For each module
in its dependence order, we analyze it and export some of the analysis results that
subsequent modules may need. This exported results will be used by modules that
depend on the current one. For a given module M = (decl, sig), let the analysis phase
be A(M, δ) with

A : Module× Results → Results.
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Figure 1: Incremental model for modular analysis. Module M2 uses names declared in
M1, and M3 uses those of M1 and M2.

The second input δ is the exported results from the modules that M depends on.
Let the result of this analysis be ∆. From ∆, we export only some parts of it that
subsequent modules may need. Let this export phase be E(∆, sig) with

E : Results× Signature → Results.

For a program that consists of modules M1, · · ·, Mn, each module Mi’s analysis result
∆i and its exported set δi (in Figure 1) are defined as ∆i = A

(

Mi,∪Mj<Miδj

)

and
δi = E(∆i, sigi), where sigi is the signature of Mi. The final analysis result Sol(M1,
· · ·, Mn) for the whole-program is ∆1 ∪ · · · ∪∆n.

It is clear that this model has an inherent effect of polyvariant analysis; a module’s
analysis result is separately copied in analyzing subsequent modules. Our point here
is to show how to ease the correctness proof of a modularized version when we move a
whole-program analysis into this modular analysis model.

3 0CFA

The whole-program 0CFA [Shi91], whose modular version we are designing, is shown
in Figure 2. We present 0CFA in the style similar to [HM97]. An input program is
a sequence of declarations, and an expression is either a function, an application, a
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Label l Var x Constant c
Expr e ::= x | λx.el | el el | c
Decl d ::= x = el

Program ℘ ::= d∗

Node n ::= x | l | λx.el

Edge g ::= n → n

x = el ∈ ℘
x → l

(el1
1 el2

2 )l ∈ ℘ l1 → λx.el0

l → l0 x → l2

xl ∈ ℘
l → x

n → m m → λx.el

n → λx.el

(λx.el0)l ∈ ℘

l → λx.el0

Figure 2: The language and its 0CFA.

variable, or a non-function constant. The analysis computes edge “n → m” between
two nodes n and m. Nodes are syntactic objects: the variables or sub-expressions of
the input program. All variables and labels are assumed distinct. Edge “n → m”
indicates that n may have the values of m (or, values of m may flow into n.). Applying
the rules of Figure 2, we collect such edges until no more additions are possible. This
process terminates because the number of nodes are finite for a given program. Edge
“n → λx.el” in the final result indicates that n may evaluate into (or, is bound to)
function λx.el in the input program. The correctness of 0CFA is known [Shi91, NN97].

4 0CFA/m: A Modularized 0CFA

We present a modular version of 0CFA in Figure 3. Rules in the analysis phase
A(M, δ) are the same as the rules in the whole-program 0CFA except that instead of
examining the whole-program text, they only examine the current module M and the
exported edges δ from the referenced modules. The premise “∈ M or δ” means “is a
sub-expression in either module M or a node of δ.” In the export phase E(∆, sig), we
conservatively export all the edges that can be needed by subsequent modules. The
starting point is the signature. For a variable x in the signature, x’s bindings are
needed to analyze subsequent modules:

x ∈ sig
x ∈ Needed

(Sig).

If variable x is needed to analyze subsequent modules (x ∈ Needed), then (1) its analysis
result (x → λy.el) is exported and (2) we record (FV(λy.el) ⊆ Needed) that the free



November 2, 2000 ROPAS-2000-9 5

Signature sig ::= {x1, · · · , xn}
Declaration decl ::= d∗

Module M ::= (decl, sig)

Node n ::= x | l | λx.el

Edge g ::= n → n

Analysis phase. A(M, δ) = edge-set ∆ closed from module M and imported edges δ
by the five rules:

x = el ∈ M
x → l

(Dec)

(el1
1 el2

2 )l ∈ M or δ
l1 → λx.el0

l → l0 x → l2
(App)

xl ∈ M or δ
l → x

(Var)

n → m
m → λx.el

n → λx.el
(Tr)

(λx.el0)l ∈ M or δ

l → λx.el0
(Lam)

Export phase. E(∆, sig) = exported-edge-set δ closed by the two rules:

x ∈ sig
x ∈ Needed

(Sig)

x ∈ Needed x → λy.el ∈ ∆
FV(λy.el) ⊆ Needed x → λy.el

(ExportFn)

Figure 3: 0CFA/m: a modularized 0CFA.

variables of the function are needed to analyze subsequent modules:

x ∈ Needed x → λy.el ∈ ∆
FV(λy.el) ⊆ Needed x → λy.el

(ExportFn).

Algorithm for 0CFA/m is the same as for 0CFA: we add edges by applying the rules
until no more additions are possible. Note that we export code-segments in (Ex-
portFn) and re-use them in (Var), (Lam), and (App). For an efficient implementation
of 0CFA/m, we can replace code-segments by equivalent edges using simplification
algorithms [FF99].

5 0CFA/m is Not a Safe Extension of 0CFA

This modular analysis 0CFA/m is more accurate than 0CFA.
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Example 2 Consider the program (consisting of two modules) and its modular anal-
ysis:

(

f = (λx.x2)1

g = (f4 (λy.y6)5)3
, {f,g}

)

and
(

h = (f8 (λz.z10)9)7 , {h}
)

.

If we analyze the whole program by 0CFA, the result includes a false-flow edge h→ λy.y
because

h→ (f λz.z) → x → λz.z↘ λy.y

In presenting analysis results, we will not show transitively-closed edges.
However, if we analyze the two modules by 0CFA/m this false-flow edge is avoided.

Analyzing the first module returns

f→ 1 → λx.x2,
g→ 3 → 2 → x→ 5 → λy.y6,
6 → y,

among which 0CFA/m exports only two edges: f → λx.x2 and g → λy.y6. Note that
x → λy.y6 is not included. With the exported edges from the first module, analyzing
the second module returns

h→ 7 → 2 → x→ 9 → λz.z10.

The false-flow edge h→ λy.y6 is absent.

This situation does not mean that 0CFA/m is incorrect; 0CFA/m is still correct
(with respect to the program semantics), but because modularization makes the re-
sulting analysis polyvariant, 0CFA/m fails to be a safe extension of the original 0CFA.
Because 0CFA/m is more accurate than the whole 0CFA, the correctness relation be-
tween CFAs is

Semantics ⊆ 0CFA (correctness of 0CFA)
0CFA/m ⊆ 0CFA (0CFA/m is not correct w.r.t. 0CFA)

where A ⊆ B means that the result of B includes that of A.
In order to prove the correctness of 0CFA/m, instead of proving with respect to

the program semantics, we suggest a method using a stepping-stone. If there exists an
analysis A such that we can easily prove that A is correct (Semantics⊆ A), and that
A is more accurate than 0CFA/m (A ⊆ 0CFA/m), then A makes it easy to prove the
correctness of 0CFA/m.

It seems that such analysis A must be polyvariant at module-level. In Example 2,
there are two applications whose function part is f: (f λy.y) in M1 and (f λz.z) in
M2. In 0CFA, both application nodes link to x: (f λy.y)→x and (f λz.z)→x. The
former x is bound to λy.y and the latter x to λz.z. These two distinct bindings for x
can be separated (“polyvariant”) if we differentiate the variable x by the two modules
M1 and M2.

We show that such analysis A is a whole-program analysis that is polyvariant at
module-level. We call it module-variant 0CFA. This analysis is a convenient stepping-
stone to proving the correctness of 0CFA/m because:
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Module M
ModEnv σ ∈ Var → Module
Value v ::= (λx.el, σ)
Solution S ∈ (Var + Label)×Module → Value

(var) S |=σ
M xl iff S(x, σ(x)) ⊆ S(l,M)

(fn) S |=σ
M (λx.el0)l

iff (λx.el0 , σ|FV(λx.el0)) ∈ S(l,M)
(app) S |=σ

M (el1
1 el2

2 )l

iff S |=σ
M el1

1 ∧
S |=σ

M el2
2 ∧

∀(λx.el0 , σ′) ∈ S(l1,M) :
S |=σ′[x 7→M ]

M el0 ∧
S(l2,M) ⊆ S(x,M) ∧
S(l0,M) ⊆ S(l, M)

(con) S |=σ
M cl iff true

(let) S |=σ
M (let x = el1 in el2)l

iff S |=σ
M ′ el1 ∧

S |=σ[x 7→M ′]
M el2 ∧

S(l1,M ′) ⊆ S(x,M ′) ∧
S(l2,M) ⊆ S(l, M)
where x = el1 is in module M ′

Figure 4: Module-variant 0CFA.

• the proof is between two static analyses (0CFA/m and module-variant 0CFA)
that have a smaller gap than that between a static analysis (0CFA/m) and the
program semantics, and

• the correctness of module-variant 0CFA is free since it is an instance of the
infinitary CFA of Nielson and Nielson [NN97].

6 Module-Variant 0CFA

6.1 Definition

Module-variant 0CFA distinguishes the same expression label (or variable) by the orig-
inating modules whose evaluations need its values. For example, if λx.x is called from
modules M1 and M2 with actual argument expressions e1 and e2, respectively, then
we distinguish the formal parameter x by M1 and M2, binding e1 to (x,M1) and e2 to
(x,M2). The function’s body expression x also has two instances, indexed by M1 and
M2, whose values are respectively those of e1 and e2.

The exact definition of the module-variant 0CFA is shown in Figure 4. In order to
achieve its correctness freely, we define it as an instance of the infinitary CFA [NN97].
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In order to fit with the program syntax in the infinitary CFA, we assume that a
program is not just a collection of declarations (a collection of modules) but a single
nested let-expression.

Throughout this paper, we say “a program ℘ consists of modules M1, · · · ,Mn” to
imply that the program is a nested let-expression that has exactly the declarations
of the modules in the topological order of their dependencies, and whose innermost
let-body is a dummy constant. For example, a program that consists of two modules
M1 = (x = e1 y = e2, {x}),M2 = (z =x, {z}) is expressed “let x = e1 in let y = e2 in
let z =x in c.” We assume that all the declarations in a merged let-expression have
their associated module names.

Judgment “S |=σ
M el” means solution S respects the situation that evaluating ex-

pressions of module M under environment σ needs to evaluate e. Environment σ maps
free variables of e into the modules whose evaluation bind them. This environment
determines the variable’s module indices for the polyvariant effect.

For the input program ℘ that consists of modules M1, · · · ,Mn, its module-variant
0CFA is defined [NN97] as the least S such that S |=∅

ε ℘ where ∅ is the empty module-
context environment and ε is a dummy module index for the whole program.

Let’s consider the rules, case by case.
Case (var). If a variable is necessary (S |=σ

M xl) for evaluating expressions of
module M then the values S(l, M) of its label must include those S(x, σ(x)) of the
variable.

Case (fn). If an immediate function expression is needed (S |=σ
M (λx.el0)l) for

module M then the analysis result S(l, M) at the label must include it.
Case (app). If an application is necessary (S |=σ

M (el1
1 el2

2 )l) for evaluating expres-
sions in module M , we propagate the same module context to its sub-expressions and
to the body of the called function, and we determine value-flows across the call. The
application’s sub-expressions have the same module context: S |=σ

M el1
1 ∧ S |=σ

M el2
2 .

For each function (∀(λx.el0 , σ′) ∈ S(l1,M)) that can be called, (1) its formal param-
eter x and its body el0 have the same module context: S |=σ′[x 7→M ]

M el0 , (2) values of
argument expression el2 flow to the formal parameter x: S(l2,M) ⊆ S(x,M), and (3)
values of body expression el0 flow to the call expression (el1

1 el2
2 )l: S(l0,M) ⊆ S(l,M).

Note that a module-variant effect occurs because the function’s argument and body
have the call expression’s module index.

Case (let). Everything is the same as in the application case, except that because
the let-binding “x=el1” is a declaration in a module, we have to use this module context
for the variable x and its definition el1 .

6.2 Module-Variant 0CFA is Correct

Because the module-variant 0CFA is an instance of the infinitary control flow analy-
sis [NN97], it is correct by Theorem 4.1 of Nielson and Nielson [NN97].

Our module-variant 0CFA is instantiated as the following. For the context domains,
whose elements are used to enable polyvariance, we choose as follows:

̂Mem
4
= Module

̂MC
4
= Module
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Hence the projection is defined as π(M,σ)
4
= M . For the instantiators (of Table 3

[NN97, p.339]) we choose as follows. For application expression, we ensure that the
context of a function body (M0) and the context of its argument (Mx) are the same
as the context of the application (M):

I fn
app(σ,M, σ′,M ′

0, e
l; M0,Mx)

4
= M0 = Mx = M.

For let-expression, we ensure that the context of a declaration (M1) and the context
of its declared variable (Mx) are the same as their associated module (M ′):

Ilet(σ,M, (let x = el1 in el2)l; M1,M2,Mx)
4
= (M = M2) ∧ (Mx = M1 = M ′) where x = el1 ∈ M ′.

For other cases, instantiators does not change the context:

Ifn(σ,M, (λx.el0)l;M0)
4
= M0 = M

Iapp(σ,M, (el1
1 el2

2 )l; M1,M2)
4
= M1 = M2 = M.

7 0CFA/m is a Safe Extension of Module-Variant 0CFA

We prove this by showing that there exists a solution S of the module-variant 0CFA
that is covered by the result of 0CFA/m. Definition 2 defines a solution S that is
covered by the result of 0CFA/m, and Theorem 1 asserts that the S is a solution of the
module-variant 0CFA. We write NeededM to denote the Needed set of the exporting
phase in analyzing module M by 0CFA/m (See Figure 3).

Definition 1 (x reaches M via M ′) Let ∆M be the solved edges in analyzing mod-
ule M by 0CFA/m.

• Variable x reaches Mn via M0 iff M0 = Mn and x ∈ ∆Mn, or there exists a path
M0 < M1 · · · < Mn such that for all 0 ≤ i < n, x ∈ NeededMi.

• Expression el reaches M iff el is in module M or el occurs in the exported edges
from the referenced modules of M .

• Environment σ reaches M iff, for all x in dom(σ), x reaches M via σ(x).

Definition 2 (|Sol0CFA/m(M1, · · · ,Mn)|) Let Sol0CFA/m(M1, · · · , Mn) be the result edges
from analyzing modules M1, · · · ,Mn by 0CFA/m. Its corresponding form |Sol0CFA/m(M1,
· · · ,Mn)| in the solution space for the module-variant 0CFA is defined as:

|Sol0CFA/m(M1, · · · ,Mn)|(n,M) =
{(λx.el, σ) | n → λx.el ∈ ∆M , σ reaches M, dom(σ) = FV(λx.el)}

where ∆M is the 0CFA/m’s solution for module M .

Fact. By definition, |Sol0CFA/m(·)| is “covered by” Sol0CFA/m(·): if (λx.el, ) ∈
|Sol0CFA/m(·)|(n,M) then (n → λx.el) ∈ Sol0CFA/m(·).
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Theorem 1 (Correctness of 0CFA/m) Let program ℘, as a let-expression, consist
of modules M1, · · · ,Mn. |Sol0CFA/m(M1, · · · ,Mn)| |=∅

ε ℘ holds, where ∅ is the empty
module-context environment and ε is a dummy module index for the whole program.

Proof. Let S = |Sol0CFA/m(M1, · · · ,Mn)|. Judgment S |=σ
M el holds if it is included in

the greatest fixed point of the function

F : Judgments → Judgments

derived from Figure 4 [NN97]. F (Q) gives us a set of left-hand side judgments asserted
by the rules of Figure 4 assuming that judgments in Q hold. If we find a set Q
of judgments such that (S |=∅

ε ℘) ∈ Q and Q ⊆ F (Q), then by the co-induction
principle [MT91], Q is included in the greatest fixed point of F and S |=∅

ε ℘ holds.
Therefore, the module-variant 0CFA’s solution, which is defined as the least X such

that X |=∅
ε ℘, is included in the modularized solution Sol0CFA/m(M1, · · · ,Mn).

Appendix A has the co-induction proof.

The correctness relation between CFAs becomes:

Semantics ⊆ module-variant 0CFA ⊆ 0CFA/m ⊆ 0CFA.

Note that the module-variant 0CFA is not a modular analysis. It is a whole-program
analysis, found as facilitating the correctness proof of the modular 0CFA (0CFA/m).

8 Modularizing kCFA

The next question is: what if we modularize already polyvariant CFAs? The answer
is that modularization of an polyvariant CFA can make the result analysis more poly-
variant than the original CFA.

Example 3 As an example that modularization of kCFA [Shi91] improves the accu-
racy, consider 1CFA of the following two higher-order code-fragments:

(

f = (λx.(λz.z) x)
g = f λy.y

, {f,g}
)

and
(

h = f λw.w , {h}
)

.

First consider the 1CFA for the whole program consisting of three declarations. Be-
cause 1CFA distinguishes the same variable by the call sites which bind the variable,
it cannot distinguish the two dynamic calls to λz.z inside f, which occurred for g and
h. That is, the two instances of z are not distinguished. Hence, it concludes that h
can evaluate to both λw.w and λy.y. However, analyzing modules separately, we can
export from the first module f→ (λx.(λz.z) x) and g→ λy.y, and conclude that h
can evaluate to only λw.w. For any k in kCFA, we can show similar counter-example
where its modular version is more accurate than kCFA.

Example 4 As an example that modularizing the polymorphic-splitting CFA [WJ98]
improves the accuracy, consider the following two higher-order code-fragments:







f = λx.x
g = λy.(f y)
h = g λz.z

, {g,h}





 and
(

i = g λw.w , {i}
)
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Analyzing these four declarations together, the polymorphic-splitting CFA concludes
that i can be evaluated to both λz.z and λw.w, because it cannot distinguish the two
calls to f inside g, which occurred for h and i. However, analyzing modules separately,
we can export, from the first module, f → λx.x, g → λy.(f y) and h → λz.z, and
conclude that i can be evaluated to only λw.w.

Hence the correctness of modularized versions of kCFA and the polymorphic-
splitting CFA cannot be proven in general with respect to the original ones. We can
prove the correctness of their modularized versions, as in 0CFA, using their module-
variant versions. The module-variant versions are achieved simply by coupling the
original versions with the module-variant 0CFA.

In the following sections we will present kCFA, its modular version kCFA/m, a
module-variant kCFA, and the proof that kCFA/m is a safe extension of the module-
variant kCFA. Although we will not show the case of the polymorphic-splitting CFA,
it is similar to that of kCFA.

8.1 kCFA

Figure 5 is kCFA, whose modular version will be presented in the next section. The
rules are basically the same as in 0CFA, except that the nodes in the resulting control
flow graph are indexed by the active-call sequence. An active-call sequence C is a
sequence of call-sites that are currently active. For kCFA, the sequence’s length is at
most k; we keep only the most recent k call-sites. We write ε for the empty call-site
sequence. The context information of the current active-call sequence is propagated
by the relation “C, σ ` el,” which indicates that expression e can be executed when
the active-call sequence is C and the call environment is σ. A call environment maps
variables to their active-call sequences at their bindings. Edge “n → m” indicates that
n may have the values of m. A single expression (or variable) in program has distinct
instances in the analysis result, identified by different call-sequence indices.

For example, consider the (Appk) rule:

C, σ ` (ea
1 eb

2)
l aC → (λx.el′ , σ′)

l ⊕ C, σ′[x 7→ l ⊕ C] ` el′

xl⊕C → bC lC → l′l⊕C

(Appk)

For an application expression l at context (C, σ), suppose its function part aC is
(λx.el′ , σ′). The actual parameter bC of the current context C is bound to the for-
mal parameter: xl⊕C → bC . The incremented call-sequence context for x reflects
the new call at l. The return value l′l⊕C from the body becomes the value of the
application: lC → l′l⊕C . The body expression’s context reflects the new call at l:
l ⊕ C, σ′[x 7→ l ⊕ C] ` el′ .

Applying the rules of Figure 5, we collect edges and relations until no more additions
are possible. This process terminate because the number of nodes are finite for a given
program.

kCFA is correct; it is straightforward to show by co-induction that a program’s
kCFA solution is a model for the program’s uniform-kCFA [NN97].
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Label l, a, b ∈ Lab
Context C, ε ∈ Lab≤k

ConEnv σ ∈ Var → Context
Node n ::= xC | lC | (λx.el, σ)
Edge g ::= n → n

x = el ∈ ℘
xε → lε ε, σ ` el

(Deck℘)

where σ ⊇ {y 7→ ε | y ∈ FV(e)}

C, σ ` xl

lC → xσ(x)
(Vark)

C, σ ` (λx.el0)l

lC →
(

λx.el0 , σ|FV(λx.el0)

) (Lamk)

C, σ ` (el1
1 el2

2 )l

C, σ ` el1
1 C, σ ` el2

2

(Appdk)

C, σ ` (ea
1 eb

2)
l aC → (λx.el′ , σ′)

l ⊕ C, σ′[x 7→ l ⊕ C] ` el′

lC → l′l⊕C xl⊕C → bC

(Appk)

where l ⊕ (ln · · · l1) =

{

lln · · · l1 if n < k;
lln · · · l2 if n = k.

nC1 → mC2 mC2 → (λx.el, σ)

nC1 → (λx.el, σ)
(Trk)

Figure 5: kCFA.

8.2 kCFA/m: A Modularized kCFA

Our modularized version kCFA/m is achieved similarly to 0CFA/m. Rules in the
analysis phase A(M, δ) are identical to those in the whole-program kCFA except that
rule (Deck℘) is replaced by rule (Deck) that examines only the current module text. In
the export phase E(∆, sig), we conservatively export all the edges that can be needed
by subsequent modules. The starting point is the signature. For a variable x in the
signature, x’s bindings are needed to analyze subsequent modules because subsequent
modules can directly refer to x, hence:

x ∈ sig
xε ∈ Needed

(Sigk).

Note that every declared variable in modules has no call-site (ε) when it is bound
to values. If the binding of variable xC is needed to analyze subsequent modules
(xC ∈ Needed), then (1) its analysis result (xC → (λy.el, σ)) is exported and (2) the
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Analysis phase. A(M, δ) = edge-set ∆ closed from module M and δ by the identical
rules in kCFA, except that rule (Deck℘) is replaced by rule (Deck):

x = el ∈ M
xε → lε ε, σ ` el

(Deck)

where σ ⊇ {y 7→ ε | y ∈ FV(e)}

Export phase. E(∆, sig) = exported-edge-set δ closed by the two rules:

x ∈ sig
xε ∈ Needed

(Sigk)

xC ∈ Needed xC → (λy.el, σ) ∈ ∆

xC → (λy.el, σ)
{

zσ(z) | z ∈ dom(σ)
}

⊆ Needed

(ExportFnk)

Figure 6: kCFA/m.

bindings of the free variables in the function values are needed to analyze subsequent
modules (

{

zσ(z) | z ∈ dom(σ)
}

⊆ Needed):

xC ∈ Needed xC → (λy.el, σ) ∈ ∆

xC → (λy.el, σ)
{

zσ(z) | z ∈ dom(σ)
}

⊆ Needed

(ExportFnk)

8.3 kCFA/m is Not a Safe Extension of kCFA

The result of kCFA/m does not always include that of kCFA.

Example 5 Let us analyze the two modules in Example 3 by 1CFA/m:

M1 =

(

f = (λx.((λz.z5)3 x4)2)1

g = (f7 (λy.y9)8)6 , {f,g}
)

M2 =
(

h = (f11 (λw.w13)12)10 , {h}
)

Analyzing the first module returns

7ε → fε → 1ε → λx.((λz.z5)3 x4)2,
gε → 6ε → 26 → 52 → z2 → 46 → x6 → 8ε → λy.y9,
36 → (λz.z5)6,

among which 1CFA/m exports only two edges

fε → λx.((λz.z5)3 x4)2 and gε → λy.y9.

Note that z2 → λy.y9 is not included. Analyzing the second module returns

hε → 10ε → 210 → 52 → z2 → 410 → x10 → 12ε → λw.w13,
310 → λz.z5.
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Thus 1CFA/m concludes that h can evaluate to only λw.w. On the other hand, as
discussed in Example 3, 1CFA for the whole-program concludes that h has λy.y (a
false-flow) as well as λw.w.

8.4 Module-Variant kCFA

kCFA/m is a correct analysis, which can be proven, not with respect to the original
kCFA, but with respect to a module-variant kCFA.

Our module-variant kCFA is a “conjunctive” combination of the original kCFA and
the module-variant 0CFA (in Figure 7). A context of the module-variant kCFA is a pair
containing an active-call sequence of length up to k (as in kCFA) and a module index
(as in module-variant 0CFA). The way to manipulate the call sequence follows that of
kCFA, and the way to manipulate the module index follows that of the module-variant
0CFA. For example, in (app), if the context of a call-site labeled l is a pair containing
a call sequence C and module M , then the context of the called function’s body is
a pair, l ⊕ C (as in kCFA) and M (as in the module-variant 0CFA). This module-
variant kCFA is achieved straightforwardly; a general recipe for combining two CFAs
is illustrated in Appendix C. Because such a combined CFA is also an instance of the
infinitary CFA of Nielson and Nielson [NN97], the module-variant kCFA’s correctness
follows from Theorem 4.1 in [NN97].

For the input program ℘ that consists of modules M1, · · · ,Mn, its module-variant
kCFA is defined [NN97] as the least S such that S |=∅

ε,ε ℘, where ∅ is the empty
environment, ε is the empty context sequence, and ε is a dummy module index for the
whole program.

8.5 kCFA/m is a Safe Extension of Module-Variant kCFA

The proof technique is exactly the same as in the case for 0CFA/m. We prove by
showing that there exists a solution S of the module-variant kCFA that is covered by
the result of kCFA/m. Definition 5 defines a solution S that is covered by the result of
kCFA/m, and Theorem 2 asserts that the S is a solution of the module-variant kCFA.

Definition 3 (xC reaches M via M ′) Let ∆M be the solved edges in analyzing mod-
ule M by kCFA/m.

• Variable xC reaches Mn via M0 if and only if M0 = Mn and xC ∈ ∆Mn, or there
exists a path M0 < M1 < · · · < Mn such that for all 0 ≤ i < n, xC ∈ NeededMi.

• Environment σ reaches M if and only if, for all x 7→ (C, M ′) ∈ σ, xC reaches M
via M ′

Definition 4 (|σ|) For a given environment σ of the module-variant kCFA, the cor-
responding environment |σ| for kCFA/m is {x 7→ C | x 7→ (C, M) ∈ σ}.

Definition 5 (|SolkCFA/m(M1, · · · ,Mn)|) Let SolkCFA/m(M1, · · · ,Mn) be the result edges
from analyzing modules M1, · · · ,Mn by kCFA/m. Its corresponding form |SolkCFA/m(M1,
· · · ,Mn)| in the solution space for the module-variant kCFA is defined as:

|SolkCFA/m(M1, · · · ,Mn)|(n, (C, M)) =
{

(λx.el, σ)
∣

∣

∣ nC → (λx.el, |σ|) ∈ ∆M , σ reaches M, dom(σ) = FV(λx.el)
}
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ContMod (C,M) ∈ Lab≤k ×Module
ContModEnv σ ∈ Var → ContMod

Value v ::= (λx.el, σ)
Solution S ∈ (Var + Label)× ContMod → Value

(var) S |=σ
C,M xl iff S(x, σ(x)) ⊆ S(l, (C, M))

(fn) S |=σ
C,M (λx.el0)l iff (λx.el0 , σ|FV(λx.el0 )) ∈ S(l, (C, M))

(app) S |=σ
C,M (el1

1 el2
2 )l iff S |=σ

C,M el1
1 ∧

S |=σ
C,M el2

2 ∧
∀(λx.el0 , σ′) ∈ S(l1, (C,M)) :

S |=σ′[x7→(l⊕C,M)]
l⊕C,M el0 ∧

S(l2, (C, M)) ⊆ S(x, (l ⊕ C, M)) ∧
S(l0, (l ⊕ C, M)) ⊆ S(l, (C, M))

(con) S |=σ
C,M cl iff true

(let) S |=σ
C,M (let x = el1

1 in el2
2 )l iff S |=σ

C,M ′ el1
1 ∧

S |=σ[x 7→(C,M ′)]
C,M el2

2 ∧
S(l1, (C,M ′)) ⊆ S(x, (C,M ′)) ∧
S(l2, (C,M)) ⊆ S(l, (C,M))
where x = el1 is in module M ′

Figure 7: Module-variant kCFA = kCFA × the module-variant 0CFA.

where ∆M is the kCFA/m’s solution for module M .

Fact. By definition, |SolkCFA/m(·)| is “covered by” SolkCFA/m(·): if (λx.el, σ) ∈
|SolkCFA/m(·)|(n, (C, M)) then nC → (λx.el, |σ|) ∈ SolkCFA/m(·).

Theorem 2 (Correctness of kCFA/m) Let program ℘, as a let-expression, consist
of modules M1, · · · ,Mn. |SolkCFA/m(M1, · · · ,Mn)| |=∅

ε,ε ℘ holds, where ∅ is the empty
environment, ε is the empty context sequence, and ε is a dummy module index for the
whole program.

Proof. Let S = |SolkCFA/m(M1, · · · ,Mn)|. F (Q) gives us a set of left-hand-side judg-
ments asserted by the rules of Figure 7 assuming that judgments in Q hold. If we find a
set Q of judgments such that (S |=∅

ε,ε ℘) ∈ Q and Q ⊆ F (Q), then by the co-induction
principle [MT91], Q is included in the greatest fixed point of F and S |=∅

ε,ε ℘ holds.
Therefore, the module-variant kCFA’s solution, which is defined as the least X

such that X |=∅
ε,ε ℘, is included in the modularized solution SolkCFA/m(M1, · · · ,Mn).

See Appendix B for the co-induction proof.
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9 Conclusion

Modular analyses, which are necessary in practice for analyzing large-scale programs,
are usually designed after whole-program analyses’ cost-accuracy balance is assured by
extensive tests against realistic programs. A cost-effective, practical program analysis
is achieved by first finding an effective whole-program analysis and then modularizing
it. This practice is observed also in literature; only recently have modular versions of
particular flow analyses been reported [CRL99, CmWH00, FF99].

However, deriving a correct modular version from a given whole-program anal-
ysis has received little attention. For example, the abstract interpretation frame-
work [CC77, CC92] does not yet cover the practice of designing modular analyses;
it assumes that the whole-program text is available a priori. Within the type sys-
tem framework, modular analysis is considered free [TJ94, Ban97, PS92, PL99, TJ92].
This is because the type environment, which has the analysis solution for the free
variables (i.e., other modules), are manifest in the typing rules. Also, the notion of
principal types and type polymorphism coincide very well with the modular analysis
model [Ban97]. But the type-based modular analyses are limited to typed languages.

In this article we reported that deriving a modular version from a whole-program
kCFA (for any k in the framework of incremental analysis) makes the resulting analysis
polyvariant at module-level. Hence the correctness of its modularized version cannot be
proven in general with respect to the original kCFA. In order to prove the correctness
of a modularized version, we presented a method using, as a convenient stepping-stone,
a whole-program kCFA that is polyvariant at module-level.

Last question is: how far-reaching is the principle of module-variant analysis? If
CFAs are already polyvariant at module-level (e.g. one in [WJ98, pages 178]), then
their modularizations cannot improve their accuracies, hence no need for module-
variant versions to facilitate the correctness proof. For any analysis in general, we
conjecture the same is true (modularization of an analysis can make it polyvariant at
module-level), because CFA is a basis of almost all analyses for higher-order programs.

Our result can be seen as a general hint of using the module-variant whole-program
analysis in order to ease the correctness proof for a modularized version. Our work
can also be seen as a formal investigation, for CFA, of the folklore that modularization
improves the analysis accuracy.

Appendix

A Proof of Theorem 1

Theorem 1. Let a program ℘, as a let-expression, consists of modules M1, · · · ,Mn.
|Sol0CFA/m(M1, · · · ,Mn)| |=∅

ε ℘ holds, where ∅ is the empty module-context environ-
ment and ε is a dummy module index for the whole program.

Proof. Let S = |Sol0CFA/m(M1, · · · , Mn)|. Judgment S |=σ
M el holds if it is included in

the greatest fixed point of the function

F : Judgments → Judgments



November 2, 2000 ROPAS-2000-9 17

derived from Figure 4 [NN97]. F (Q) gives us a set of left-hand side judgments asserted
by the rules of Figure 4 assuming that judgments in Q hold. If we find a set Q
of judgments such that (S |=∅

ε ℘) ∈ Q and Q ⊆ F (Q), then by the co-induction
principle [MT91], Q is included in the greatest fixed point of F and S |=∅

ε ℘ holds.
Let Q be

{

S |=σ
M cl | constant c

}

∪


















S |=σ
ε (let x = el1

1 in el2
2 )l |

(let x = el1
1 in el2

2 )l ∈ ℘,
σ ⊆ {y 7→ Mi |∃i. y = e ∈ Mi},
dom(σ) ⊇ FV(let x = el1

1 in el2
2 )



















∪

{

S |=σ
M el | el reaches M, σ|FV(e) reaches M,

dom(σ) ⊇ FV(e)

}

.

Obviously, (S |=∅
ε ℘) ∈ Q because FV(℘) = ∅. We need to show Q ⊆ F (Q). We prove

this by case analysis for the judgments in Q.

• case (var): Consider S |=σ
M xl from Q. We need to prove that (S |=σ

M xl) ∈
F (Q). By (var), it is enough to prove that S(x, σ(x)) ⊆ S(l,M). Suppose that
S(x, σ(x)) includes (λy.el0 , σ′). By the definition of S,

x → λy.el0 ∈ ∆σ(x), (1)

σ′ reaches σ(x), and (2)

dom(σ′) = FV(λy.el0). (3)

Because (S |=σ
M xl) ∈ Q, by the definition of Q,

xl reaches M, (4)

σ|FV(x) reaches M , dom(σ) ⊇ FV(x). (5)

(5) implies that x reaches M via σ(x). Thus by (1) and (ExportFn),

x → λy.el0 ∈ ∆M , and (6)

the variables in FV(λy.el0) reaches M via σ(x). Thus by (2) and (3),

σ′ reaches M. (7)

By (Var), (4) implies that

l → x ∈ ∆M . (8)

By (6), (8) and (Tr),

l → λy.el0 ∈ ∆M . (9)

Therefore by the definition of S, (3), (7), and (9) imply S(l,M) includes (λy.el0 , σ′).
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• case (fn): Consider S |=σ
M (λx.el0)l from Q. We need to prove that (S |=σ

M
(λx.el0)l) ∈ F (Q). By (fn), it is enough to prove that (λx.el0 , σ|FV(λx.el0)) ∈
S(l, M). Because (S |=σ

M (λx.el0)l) ∈ Q, by the definition of Q,

σ|FV(λx.el0 ) reaches M, (10)

dom(σ) ⊇ FV(λx.el0), (11)

and (λx.el0)l reaches M . Then by (Lam),

l → λx.el0 ∈ ∆M . (12)

Therefore by the definition of S, (10), (11), and (12) imply (λx.el0 , σ|FV (λx.el0 )) ∈
S(l,M).

• case (app): Consider S |=σ
M (el1

1 el2
2 )l from Q. We need to prove that (S |=σ

M
(el1

1 el2
2 )l) ∈ F (Q). By (app), it is enough to prove that

– (S |=σ
M el1

1 ) ∈ Q, (S |=σ
M el2

2 ) ∈ Q, and

– ∀(λx.el0 , σ′) ∈ S(l1,M): (S |=σ′[x 7→M ]
M el0) ∈ Q, S(l2,M) ⊆ S(x,M), and

S(l0,M) ⊆ S(l, M).

We prove the first sub-case: (S |=σ
M el1

1 ) ∈ Q and (S |=σ
M el2

2 ) ∈ Q. Because
(S |=σ

M (el1
1 el2

2 )l) ∈ Q, by the definition of Q,

(el1
1 el2

2 )l reaches M, (13)

σ|
FV(el1

1 el2
2 )

reaches M, and (14)

dom(σ) ⊇ FV(el1
1 el2

2 ). (15)

(13) implies that el1
1 and el2

2 reach M , (14) implies σ|FV(e1) and σ|FV(e2) reach
M , and (15) implies dom(σ) ⊇ FV(e1) ∪ FV(e2). Therefore by the definition of
Q, (S |=σ

M el1
1 ) ∈ Q and (S |=σ

M el2
2 ) ∈ Q.

Now we prove the second sub-case. Suppose that (λx.el0 , σ′) ∈ S(l1,M). By the
definition of S,

l1 → λx.el0 ∈ ∆M , (16)

dom(σ′) = FV(λx.el0), and σ′ reaches M. (17)

By (13), (16) and (App),

x → l2 ∈ ∆M , and (18)

l → l0 ∈ ∆M . (19)

(16) implies

el0 reaches M. (20)

Because x occurs in ∆M by (18), x reaches M via M by definition. Thus by
(17),

σ′[x 7→ M ] reaches M. (21)



November 2, 2000 ROPAS-2000-9 19

Because FV(e) ⊆ FV(λx.el0) ∪ {x}, by (17),

dom(σ′[x 7→ M ]) ⊇ FV(e). (22)

Then by the definition of Q, (20), (21), and (22) imply (S |=σ′[x 7→M ]
M el0) ∈ Q.

Now we prove that (18) implies S(l2,M) ⊆ S(x,M). Suppose that x → l2 ∈
∆M and (λy.el3

3 , σ3) ∈ S(l2,M). Then by the definition of S, σ3 reaches M ,
dom(σ3) = FV(λy.el3

3 ), and l2 → λy.e3 ∈ ∆M . By (Tr), x → λy.e3 ∈ ∆M . Then
by the definition of S, (λy.el3

3 , σ3) ∈ S(x,M). We can prove similarly that (19)
implies S(l, M) ⊆ S(l0,M).

• case (const): Consider S |=σ
M cl ∈ Q. By (const), it always holds thus it is

included in F (Q).

• case (let): Consider S |=σ
ε (let x = el1

1 in el2
2 )l from Q. We need to prove that

(S |=σ
ε (let x = el1

1 in el2
2 )l) ∈ F (Q). By (let), it is enough to prove that (S |=σ

M

el1
1 ) ∈ Q, (S |=σ[x 7→M ]

ε el2
2 ) ∈ Q, S(l1,M) ⊆ S(x, M), and S(l2, ε) ⊆ S(l, ε) where

x = el1
1 ∈ M . Because x = el1

1 ∈ M ,

el1
1 reaches M. (23)

By the definition of Q,

σ ⊆ {y 7→ Mi | ∃i.y = e ∈ Mi } and (24)

dom(σ) ⊇ FV(let x = el1
1 in el2

2 ). (25)

Because FV(let x = el1
1 in el2

2 ) ⊇ FV(e1), (25) implies

dom(σ) ⊇ FV(e1). (26)

Because e1 is a top-level expression in module M , FV(e1) only consists of names
declared in modules. Hence (24) implies

σ|FV(e1) reaches M. (27)

Then by the definition of Q, (23), (26) and (27) imply (S |=σ
M el1

1 ) ∈ Q.

el2
2 is a let-expression or a constant. If el2

2 is a constant, by the definition of Q,
(S |=σ[x 7→M ]

ε el2
2 ) ∈ Q. If el2

2 is a let-expression, because (24) implies σ[x 7→ M ] ⊆
{y 7→ Mi | ∃i.y = e ∈ Mi } and (25) implies FV(e2) ⊆ FV(let x = el1

1 in el2
2 ) ∪

{x} ⊆ dom(σ[x 7→ M ]), by the definition of Q, (S |=σ[x 7→M ]
ε el2

2 ) ∈ Q.

Because x = el1
1 ∈ M , by (Dec), x → l1 ∈ ∆M , from which, similarly to the last

part of the (app) case, we can prove S(l1,M) ⊆ S(x,M). Because l and l2 are
not used in 0CFA/m, S(l, ε) = S(l2, ε) = ∅.
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B Proof of Theorem 2

Theorem 2. Let a program ℘, as a let-expression, consists of modules M1, · · · ,Mn.
|SolkCFA/m(M1, · · · ,Mn)| |=∅

ε,ε ℘ holds, where ∅ is the empty environment, ε is the
empty context sequence, and ε is a dummy module index for the whole program.

Proof. Let S = |SolkCFA/m(M1, · · · , Mn)|. F (Q) gives us a set of left-hand-side judg-
ments asserted by the rules of Figure 7 assuming that judgments in Q hold. If we find a
set Q of judgments such that (S |=∅

ε,ε ℘) ∈ Q and Q ⊆ F (Q), then by the co-induction
principle [MT91], Q is included in the greatest fixed point of F and S |=∅

ε,ε ℘ holds.
Let Q be

{

S |=σ
C,M cl | constant c

}

∪


















S |=σ
ε,ε (let x = el1

1 in el2
2 )l |

(let x = el1
1 in el2

2 )l ∈ ℘,
σ ⊆ {y 7→ (ε,Mi) |∃i. y = e ∈ Mi},
dom(σ) ⊇ FV(let x = el1

1 in el2
2 )



















∪

{

S |=σ
C,M el | (C, |σ| ` el) ∈ ∆M , σ|FV(e) reaches M,

dom(σ) ⊇ FV(e)

}

.

Obviously, (S |=∅
ε,ε ℘) ∈ Q because FV(℘) = ∅. We need to show Q ⊆ F (Q). We prove

this by case analysis for the judgments in Q.

• case (var): Consider S |=σ
C,M xl from Q. We need to prove that (S |=σ

C,M xl) ∈
F (Q). By (var), it is enough to prove that S(x, σ(x)) ⊆ S(l, (C,M)). Let σ(x)
be (C ′,M ′). Suppose that S(x, σ(x)) includes (λy.el0 , σ′). Then by the definition
of S,

xC′ → (λy.el0 , |σ′|) ∈ ∆M ′ , (28)

σ′ reaches M ′, and (29)

dom(σ′) = FV(λy.el0). (30)

Because (S |=σ
C,M xl) ∈ Q, by the definition of Q,

(C, |σ| ` xl) ∈ ∆M , (31)

σ|FV(x) reaches M, and dom(σ) ⊇ FV(x). (32)

Because (32) implies that xC′ reaches M via M ′, by (28) and (ExportFnk),

xC′ → (λy.el0 , |σ′|) ∈ ∆M (33)

and for all z ∈ dom(σ′), z|σ′|(z) reaches M via M ′. Thus by (29) and (30),

σ′ reaches M. (34)

By (31), (Vark), and |σ|(x) = C ′, lC → xC′ ∈ ∆M . Then by (33) and (Trk),

lC → (λy.el0 , |σ′|) ∈ ∆M . (35)

Then by the definition of S, (30), (34), and (35) imply (λy.el0 , σ′) ∈ S(l, (C,M)).
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• case (fn): Consider S |=σ
C,M (λx.el0)l from Q. We need to prove that (S |=σ

C,M

(λx.el0)l) ∈ F (Q). By (fn), it is enough to prove that (λx.el0 , σ|FV(λx.el0 )) ∈
S(l, (C, M)). Because (S |=σ

C,M (λx.el0)l) ∈ Q, by the definition of Q,

σ|FV(λx.el0) reaches M, (36)

dom(σ) ⊇ FV(λx.el0), and (37)

(C, |σ| ` (λx.el0)l) ∈ ∆M . (38)

By (Lamk), (38) implies

lC → (λx.el0 , (|σ|)|FV(λx.el0 )) ∈ ∆M . (39)

Therefore by the definition of S, (36), (37), and (39) imply (λx.el0 , σ|FV (λx.el0 )) ∈
S(l, (C, M)).

• case (app): Consider S |=σ
C,M (el1

1 el2
2 )l from Q. We need to prove that (S |=σ

C,M

(el1
1 el2

2 )l) ∈ F (Q). By (app), it is enough to prove that

– (S |=σ
C,M el1

1 ) ∈ Q, (S |=σ
C,M el2

2 ) ∈ Q, and

– ∀(λx.el0 , σ′) ∈ S(l1, (C,M)): (S |=σ′[x7→(l⊕C,M)]
l⊕C,M el0) ∈ Q, S(l2, (C,M)) ⊆

S(x, (l ⊕ C, M)), and S(l0, (l ⊕ C, M)) ⊆ S(l, (C,M)).

We prove the first sub-case: (S |=σ
C,M el1

1 ) ∈ Q and (S |=σ
C,M el2

2 ) ∈ Q. Because
(S |=σ

C,M (el1
1 el2

2 )l) ∈ Q, by the definition of Q,

(C, σ ` (el1
1 el2

2 )l) ∈ ∆M , (40)

σ|
FV(el1

1 el2
2 )

reaches M, and (41)

dom(σ) ⊇ FV(el1
1 el2

2 ). (42)

By (Appdk), (40) implies (C, σ ` el1
1 ) ∈ ∆M and (C, σ ` el2

2 ) ∈ ∆M . (41) implies
that σ|FV(e1) and σ|FV(e2) reaches M . (42) implies dom(σ) ⊇ FV(e1) ∪ FV(e2).
Therefore by the definition of Q, (S |=σ

C,M el1
1 ) ∈ Q and (S |=σ

C,M el2
2 ) ∈ Q.

Now we prove the second sub-case. Suppose that (λx.el′ , σ′) ∈ S(l1, (C, M)). By
the definition of S,

l1C → (λx.el′ , |σ′|) ∈ ∆M , (43)

σ′ reaches M, and (44)

dom(σ′) ⊇ FV(λx.el′). (45)

By (40), (43) and (Appk),

(l ⊕ C, |σ′|[x 7→ l ⊕ C] ` el′) ∈ ∆M , (46)

lC → l′l⊕C ∈ ∆M , and (47)

xl⊕C → l2C ∈ ∆M . (48)
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Because xl⊕M is in ∆M by (48), xl⊕M reaches M via M by definition. Thus by
(44),

σ′[x 7→ (l ⊕ C, M)] reaches M. (49)

Because FV(e) ⊆ FV(λx.el0) ∪ {x}, (45) implies

dom(σ′[x 7→ (l ⊕ C, M)]) ⊇ FV(e). (50)

Then by the definition of Q, (46), (49), and (50) imply (S |=σ′[x7→(l⊕C,M)]
l⊕C,M el0) ∈

Q.

Now we prove that (47) implies S(l′, (l ⊕ C, M)) ⊆ S(l, (C,M)). Suppose that
lC → l′l⊕C ∈ ∆M and (λy.el3

3 , σ3) ∈ S(l′, (l ⊕ C, M)). By the definition of
S, σ3 reaches M , dom(σ3) = FV(λy.el3

3 ) and l′l⊕C → (λy.el3
3 , |σ3|)C3 ∈ ∆M .

Then by (Trk), lC → (λy.el3
3 , |σ3|) ∈ ∆M . By the definition of S, (λy.el3

3 , σ3) ∈
S(l, (C, M)). We can prove similarly that (48) implies S(l2, (C, M)) ⊆ S(x, (l ⊕
C, M)).

• case (const): Consider S |=σ
C,M cl from Q. By (const), it always holds, thus it is

included in F (Q).

• case (let): Consider S |=σ
ε,ε (let x = el1

1 in el2
2 )l from Q. We need to prove that

(S |=σ
ε,ε (let x = el1

1 in el2
2 )l) ∈ F (Q). By (let), it is enough to prove that (S |=σ

ε,M

el1
1 ) ∈ Q, (S |=σ[x 7→(ε,M)]

ε,ε el2
2 ) ∈ Q, S(l1, (ε,M)) ⊆ S(x, (ε,M)), and S(l2, (ε, ε)) ⊆

S(l, (ε, ε)) where x = el1
1 ∈ M .

By the definition of Q,

σ ⊆ {y 7→ (ε,Mi) | ∃i.y = e ∈ Mi } , and (51)

dom(σ) ⊇ FV(let x = el1
1 in el2

2 ). (52)

Because FV(let x = el1
1 in el2

2 ) ⊇ FV(e1), (52) implies

dom(σ) ⊇ FV(e1). (53)

Because e1 is a top-level expression in module M , FV(e1) only consists of names
declared in modules. Hence (51) implies

σ|FV(e1) reaches M. (54)

Because x = el1
1 ∈ M , by (51), (53), and (Deck),

(ε, |σ| ` el1
1 ) ∈ ∆M , and (55)

xε → l1ε ∈ ∆M . (56)

By the definition of Q, (53), (54), and (55) imply (S |=σ
ε,M el1

1 ) ∈ Q.

el2
2 is a let-expression or a constant. If el2

2 is a constant, by the definition
of Q, (S |=σ[x7→(ε,M)]

ε,ε el2
2 ) ∈ Q. If el2

2 is a let-expression, because (51) im-
plies σ[x 7→ (ε,M)] ⊆ {y 7→ (ε, Mi) | ∃i.y = e ∈ Mi } and (52) implies FV(e2) ⊆
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FV(let x = el1
1 in el2

2 ) ∪ {x} ⊆ dom(σ[x 7→ (ε,M)]), by the definition of Q,
(S |=σ[x 7→(ε,M)]

ε,ε el2
2 ) ∈ Q.

We can prove that (56) implies S(l1, (ε,M)) ⊆ S(x, (ε,M)) similarly to the last
part of the (app) case. Because l and l2 are not used in kCFA/m, S(l, (ε, ε)) =
S(l2, (ε, ε)) = ∅.

C Coupled CFA

For two CFAs A and B defined as an instance of the infinitary CFA, the coupled CFA
(A×B) of A and B is defined as follows. The context is the pair of the contexts of A
and B, and the label distinguisher is also the pair of those of A and B:

̂Mem
4
= ̂MemA × ̂MemB

̂MEnv
4
= Var → ( ̂MemA × ̂MemB)

̂MC
4
= ̂MCA × ̂MCB.

Then the projection function π is defined by those of A and B:

π(m,σ)]
4
= (πA(mA, σA), πB(mB, σB))

where (m1, m2)A 4
= m1, (m1, m2)B 4

= m2, and

σA 4
=

{

x 7→ mA | x 7→ m ∈ σ
}

σB 4
=

{

x 7→ mB | x 7→ m ∈ σ
}

.

The instantiators have to ensure the conditions of the instantiators of A and B; that
is, an instantiator I(m,σ, el;m′) is defined as:

I(m,σ, el;m′)
4
= IA(mA, σA, el;m′A)

∧ IB(mB, σB, el;m′B).

The coupled CFA is an instance of the infinitary CFA, and is more accurate than
both A and B.
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