
A Generalization of Hybrid Let-Polymorphic Type Inference
Algorithms∗

Oukseh Lee and Kwangkeun Yi

{cookcu;kwang}@ropas.kaist.ac.kr
Research On Program Analysis System (ROPAS)†

Korea Advanced Institute of Science and Technology (KAIST)

Abstract

We present a generalized let-polymorphic type inference algorithm, prove that any of its
instances is sound and complete with respect to the Hindley/Milner let-polymorphic type
system, and find a condition on two instance algorithms so that one algorithm should find
type errors earlier than the other.

By instantiating the generalized algorithm with different parameters, we can achieve not
only the two opposite algorithms (the bottom-up standard algorithm W and the top-down
algorithm M) but also other hybrid algorithms which are used in real compilers. Such in-
stances’ soundness and completeness follow automatically, and their relative earliness in de-
tecting type-errors are determined by checking a simple condition. The set of instances of
the generalized algorithm is a superset of those used in the two most popular ML compilers:
SML/NJ and OCaml.

1 Introduction

1.1 This Work

When we implement the Hindley/Milner let-polymorphic type system [14] in realistic compilers, its
two opposite algorithms (W [5, 14] and M [9]) are hardly appealing. In order to generate helpful
type-error messages we need to balance between their two opposite behaviors in type-checking:
the bottom-up algorithm W is context-insensitive, finding type errors too late, while the top-down
algorithm M is as much context-sensitive as possible, finding type errors too early. Because of
these behaviors, the Standard ML of New Jersey (SML/NJ) [18] and Objective Caml (OCaml) [11]
compilers use some combinations of the two algorithms.

As suggested by existing works [2, 3, 6, 7, 13, 17, 22], there exists some room for various type-
checking strategies. In order to systematically explore other type-checking algorithms, as well
as to justify the existing hybrid ones, we need a framework (1) for integrating the two opposite
algorithms into one algorithm; (2) for assuring that such an integrated algorithm is still sound and
complete; and (3) for measuring, if possible, how any two hybrid algorithms differ in type-checking.

Within the format of recursive function with unification, we present a generalized let-polymor-
phic type inference algorithm, prove that any of its instances is sound and complete with respect to
the Hindley/Milner let-polymorphic type system, and find a condition on two instance algorithms
so that one algorithm should find type errors earlier than the other. By instantiating the general-
ized algorithm with different parameters, we can achieve not only the two opposite algorithms (W
and M) but also other various hybrid algorithms that avoid their extremities in type-checking.
The set of hybrid algorithms that come from the generalized algorithm is a superset of the ex-
isting hybrid algorithms in SML/NJ and OCaml. Within this algorithmic framework, compiler

∗This work is supported by Creative Research Initiatives of the Korean Ministry of Science and Technology.
†Web: http://ropas.kaist.ac.kr.

1

Abstract Syntax
Expr e ::= () constant

| x variable
| λx.e function
| e e application
| let x=e in e
| fix f λx.e

Type τ ::= ι constant type
| α type variable
| τ → τ function type

TypeScheme σ ::= τ | ∀~α.σ

TypeEnv Γ ∈ Var
fin→ TypeScheme type environment

(CON) Γ ` () : ι

(VAR)
Γ(x) Â τ

Γ ` x: τ

(FN)
Γ + x: τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

(APP)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

(LET)
Γ ` e1 : τ1 Γ + x:ClosΓ(τ1) ` e2 : τ2

Γ ` let x=e1 in e2 : τ2

(FIX)
Γ + f : τ ` λx.e : τ

Γ ` fix f λx.e : τ

Figure 1: Language and its let-polymorphic type system

developers can freely experiment with various combinations without the burden of proving their
correctness every time.

1.2 Notation

We use the same conventional notation as used in [9]. Vector ~α is a shorthand for {α1, · · · , αn},
and ∀~α.τ is for ∀α1 · · ·αn.τ . Equality of type schemes is up to renaming of bound variables.
For a type scheme σ = ∀~α.τ , the set ftv(σ) of free type variables in σ is ftv(τ) \ ~α, where ftv(τ)
is the set of type variables in type τ . For a type environment Γ, ftv(Γ) =

⋃
x∈dom(Γ) ftv(Γ(x)).

A substitution {τi/αi | 1 ≤ i ≤ n} substitutes type τi for type variable αi. We write {~τ/~α} as a
shorthand for a substitution {τi/αi | 1 ≤ i ≤ n}, where ~α and ~τ have the same length n and R~α for
{Rα1, · · · , Rαn}. For a substitution S, the support supp(S) is {α | Sα 6= α}, and the set itv(S) of
involved type variables is {α|β ∈ supp(S), α ∈ {β}∪ftv(Sβ)}. For a substitution S and a type τ , Sτ
is the type resulting from applying every substitution component τi/αi in S to τ . Hence, {}τ = τ .
For a substitution S and a type scheme σ, Sσ = ∀~β.S{~β/~α}τ , where ~β ∩ (itv(S) ∪ ftv(σ)) = ∅.
For a substitution S and a type environment Γ, SΓ = {x 7→ Sσ | x 7→ σ ∈ Γ}. The composition of
substitutions S followed by R is written as RS, which is {R(Sα)/α | α ∈ supp(S)} ∪ {Rα/α | α ∈
supp(R) \ supp(S)}. Two substitutions S and R are equal if and only if Sα = Rα for every
α ∈ supp(S) ∪ supp(R). For a substitution P and a set of type variables V , we write P |-V for
{τ/α ∈ P | α 6∈ V }. The notation ∀~α.τ ′ Â τ means that there exists a substitution S such that
Sτ ′ = τ and supp(S) ⊆ ~α. We write Γ + x:σ to mean {y 7→ σ′ | x 6= y, y 7→ σ′ ∈ Γ} ∪ {x 7→ σ}.
ClosΓ(τ) is the same as Gen(Γ,τ) in [5], i.e., ∀~α.τ , where ~α = ftv(τ) \ ftv(Γ).

W:TypEnv× Expr → Subst× Type

W(Γ, ()) = (id, ι)

W(Γ, x) = (id, {~β/~α}τ) where Γ(x) = ∀~α.τ, new ~β
W(Γ, λx.e) = let (S1, τ1) = W(Γ + x: β, e), new β

in (S1, S1β → τ1)
W(Γ, e1 e2) = let (S1, τ1) = W(Γ, e1)

(S2, τ2) = W(S1Γ, e2)
S3 = U(S2τ1, τ2 → β), new β

in (S3S2S1, S3β)
W(Γ, let x=e1 in e2) =

let (S1, τ1) = W(Γ, e1)
(S2, τ2) = W(S1Γ + x:ClosS1Γ(τ1), e2)

in (S2S1, τ2)
W(Γ, fix f λx.e) = let (S1, τ1) = W(Γ + f : β, λx.e), new β

S2 = U(S1β, τ1)
in (S2S1, S2τ1)

M:TypEnv× Expr× Type → Subst

M(Γ, (), ρ) = U(ρ, ι)

M(Γ, x, ρ) = U(ρ, {~β/~α}τ) where Γ(x) = ∀~α.τ, new ~β
M(Γ, λx.e, ρ) = let S1 = U(ρ, β1 → β2), new β1, β2

S2 = M(S1Γ + x: S1β1, e, S1β2)
in S2S1

M(Γ, e1 e2, ρ) = let S1 = M(Γ, e1, β → ρ), new β
S2 = M(S1Γ, e2, S1β)

in S2S1

M(Γ, let x=e1 in e2, ρ) =
let S1 = M(Γ, e1, β), new β

S2 = M(S1Γ + x:ClosS1Γ(S1β), e2, S1ρ)
in S2S1

M(Γ, fix f λx.e, ρ) = M(Γ + f : ρ, λx.e, ρ)

Figure 2: Algorithm W and M. Note that every new type variable is distinct from each other,
and the set New of new type variables introduced at each recursive call to W(Γ, e) (respectively,
M(Γ, e, ρ)) satisfies New ∩ ftv(Γ) = ∅ (respectively, New ∩ (ftv(Γ) ∪ ftv(ρ)) = ∅.)

1.3 Algorithms W and M
The source language and its Hindley/Milner style let-polymorphic type system are shown in Fig-
ure 1 and its two opposite algorithms (W and M) are shown in Figure 2.

Algorithm W is context-insensitive. It fails only at an application expression. It infers types
of two sub-expressions independently and checks later by unification whether those types conflict.
Because of this, an erroneous expression is often successfully type-checked (context-insensitively)
long before its consequence collides. On the other hand, algorithm M is as much context-sensitive
as possible. It carries a type constraint (or an expected type) implied by the context of an
expression down to its sub-or-sibling expressions. It fails when the current expression’s type
cannot satisfy the carried type constraint. For example, for an application expression “e1 e2” with
a type constraint, say of int, the type constraint for e1 is α → int and the constraint for e2 is the
type that the α becomes after the type inference of e1. For a constant or a variable expression,
its type must satisfy the type constraint that the algorithm has carried to that point.

Example 1 As an example to show the difference between W and M, consider an application
expression

1 2.

W fails at the application expression after having successfully type-checked the two sub-expressions,
while M fails at the left expression 1 because its type int conflicts with a function type expected
from the context (an application).

2 The Generalized Algorithm G
2.1 Overview

Our generalized algorithm is based on the top-down, context-sensitive algorithm M. Key observa-
tion is that we can vary the type-checking strategy by changing two factors in M: the information
amount of the type constraints and the places of the unification. Algorithm M carries as much
information as possible at its type constraints and applies a unification at every value (constant,
variable, and lambda) expression. Algorithm W, on the other hand, carries no information at
its type constraints and applies a unification at every application expression. By tuning the two
factors, other type-checking strategies are also possible:

Example 2 Consider an application expression

(IsOne 2):bool

where IsOne has type int → bool. As we impose less and less constraints in type-checking
sub-expressions yet apply more and more checks later, we achieve the following type-checking
variations:

• We type-check IsOne with constraint β → bool, which is the strongest expectation. After
its success, we type-check 2 with the function’s domain type int as its constraint. (M)

• We type-check IsOne with a weaker constraint, β1 → β2 with β1 and β2 being new type
variables. The constraint enforces that IsOne’s type be just a function, whatever its domain
and range types are. After its success, we check whether the function’s range type is bool.
Then we type-check 2 with the function’s domain type int as its constraint.

• We type-check IsOne with no constraint. After its success, we check whether the result type
is a function type to bool. Then we type-check 2 with the function’s domain type int as
its constraint. (OCaml’s type inference algorithm)

• We type-check IsOne with no constraint. After its success, we check whether the result type
is just a function type, whatever its domain and range types are. Then we type-check 2 with
the function’s domain type int as its constraint. After its success, we check whether the
function’s range type is bool.

• We type-check IsOne with no constraint. After its success, we check, as before, whether the
result type is just a function type. Then we type-check 2, but with no constraint. After its
success, we check whether the function’s type is int→ bool.

• We type-check IsOne with no constraint. After its success, we don’t check anything but
continue type-checking the second expression 2 with no constraint. After its success, we
check everything at once: we check whether IsOne’s type is a function type from int to
bool. (W)

Every type-checking variation in the above example exposes a common property: it loosens
the type constraints for sub-expressions then checks afterward whether the results from loosened
constraints agree with the contexts implied from the original, unloosened constraints.

Our generalized algorithm is one that allows, wherever possible, the loosening of the type
constraints and yet makes sure that posterior unifications compensate for the loosening effects.
The places for loosening the constraints are right before recursive calls for type-checking sub-
expressions. The places for posterior unifications that compensate for the loosened constraints
are after the successful returns from the recursive-calls. Some unifications may only partially

G : TypEnv× Expr× Type → Subst

G(Γ, (), ρ) = U(ρ, ι) (G.1)

G(Γ, x, ρ) = U(ρ, {~β/~α}τ), new ~β, Γ(x) = ∀~α.τ (G.2)
G(Γ, λx.e, ρ) =

let S1 = U(β1 → β2, θ), new β1, new β2, (1) θ ≥ ρ (G.3)
S2 = G(S1Γ + x: S1β1, e, S1β2) (G.4)
S3 = U(S2S1θ, S2S1ρ) (G.5)

in S3S2S1

G(Γ, e1 e2, ρ) =
let S1 = G(Γ, e1, θ1), new β, (2) θ1 ≥ β → ρ (G.6)

S2 = U(S1θ1, θ2), (3) θ2 ≥ S1(β → ρ) (G.7)
S3 = G(S2S1Γ, e2, θ3), (4) θ3 ≥ S2S1β (G.8)
S4 = U(S3S2S1θ1, S3S2S1(β → ρ)) (G.9)
S5 = U(S4S3θ3, S4S3S2S1β) (G.10)

in S5S4S3S2S1

G(Γ, let x=e1 in e2, ρ) =
let S1 = G(Γ, e1, β), new β (G.11)

S2 = G(S1Γ + x:ClosS1Γ(S1β), e2, θ), (5) θ ≥ S1ρ (G.12)
S3 = U(S2θ, S2S1ρ) (G.13)

in S3S2S1

G(Γ, fix f λx.e, ρ) =
let S1 = G(Γ + f : θ1, λx.e, θ2), (6) θ1 ∧ θ2 ≥ ρ (G.14)

S2 = U(S1θ1, S1θ2, S1ρ) (G.15)
in S2S1

Figure 3: Generalized type inference algorithm G. All the type variables in ftv(θ) \ ftv(ρ) (respec-
tively, (ftv(θ1)∪ ftv(θ2)) \ ftv(ρ)) for each θ ≥ ρ (respectively, θ1 ∧ θ2 ≥ ρ) are new, every new type
variable is distinct from each other, and the set New of new type variables introduced at each
recursive call to G(Γ, e, ρ) satisfies New ∩ (ftv(Γ) ∪ ftv(ρ)) = ∅.

compensate for the loosened constraints. Thus, before the original call returns there must be final
unification(s) that completes the compensations. For example, consider type-checking application
expression e1 e2 with initial constraint ρ. It type-checks e1 with a type constraint that can be
less restraining than the strongest possible constraint β → ρ. Right after its return, it applies a
unification that can compensate, not necessarily completely, for the loosened constraint. It then
type-checks the argument expression e2 with a type constraint that can be less restraining than
the type that the β became. After its success, there exists no more sub-expressions to type-check,
hence it’s time to finalize the compensation for the loosened constraints at the two recursive
calls. This is done by two unifications: each one compensates for the loosened constraint used in
type-checking each sub-expression. The unifications check whether the types from the loosened
constraints agree with what the strongest constraint β → ρ implies.

2.2 Algorithm Definition

The generalized algorithm G is shown in Figure 3. As in M, it returns a substitution from three
components: an expression, a type environment, and a type constraint. The inferred type of the
expression is the result from applying the final substitution to the type constraint of the expression.
The type constraints are just types.

By the phrases of the form θ ≥ ρ marked (1) to (6) in the algorithm, the strongest type
constraint ρ is loosened into θ at each recursive call. This less restraining type constraint is the
one that can be instantiated to ρ by a substitution that ranges over the type variables in only θ:

Definition 1 (θ ≥ ρ) Type θ is more general (less restraining) than type ρ, written θ ≥ ρ, if and
only if there exists a substitution G such that Gθ = ρ and supp(G) = ftv(θ)\ftv(ρ). We write

θ1 ∧ θ2 ≥ ρ if and only if there exists a substitution G such that Gθ1 = ρ and Gθ2 = ρ and
supp(G) = (ftv(θ1) ∪ ftv(θ2)) \ ftv(ρ).

For the variable case (G.2), the variable’s type Γ(x) must satisfy the current type constraint
ρ: U(ρ, {~β/~α}τ). Similarly for the constant case (G.1).

For the lambda expression case λx.e with type constraint ρ, we first decide on the type con-
straint for the function’s body expression e. It can be any type that is less restraining than the
range type of ρ. We choose such a type by loosening ρ first, then picking up its range component
by unification:

S1 = U(β1 → β2, θ), new β1, β2, (1) θ ≥ ρ. (G.3)

Then we use the resulting range type S1β2 as the constraint in type-checking the function’s body
expression:

S2 = G(S1Γ + x: S1β1, e, S1β2). (G.4)

For example, if we choose the θ to be a new type variable, then the unification (G.3) has no effect,
hence e’s type is inferred without any constraint. The other extreme is to choose θ to be the ρ.
Then e’s type is inferred with ρ’s range type, if ρ is a function type.

After returning from the recursive call to e, we have to make up for passing less restraining
type constraint. This last step is done by checking whether the loosened constraint θ can agree
with the type that its original ρ becomes:

S3 = U(S2S1θ, S2S1ρ). (G.5)

Consider type-checking application expression e1 e2 with type constraint ρ. First we decide on
the type constraint for the function expression e1. It can be any type that is less restraining than
the most informative constraint β → ρ with β being a new type variable:

S1 = G(Γ, e, θ1), new β, (2) θ1 ≥ β → ρ. (G.6)

After the success of this recursive call and before we continue by type-checking the argument
expression, we can make up, not necessarily completely, for passing less restraining type constraint
θ1. This reparation can be varied by how much we want to expect for the type of e1. We can
check the result type against the strongest constraint β → ρ or we can check against nothing.
This varied degree of reparation is achieved by choosing yet another less restraining type θ2 than
S1(β → ρ) and by unifying it with the type that θ1 becomes:

S2 = U(S1θ1, θ2), (3) θ2 ≥ S1(β → ρ). (G.7)

Next we decide on the type constraint to pass for type-checking the argument expression e2. It
can be any type that is less constraining than the type that β becomes. Hence the next recursive
call is:

S3 = G(S2S1Γ, e2, θ3), (4) θ3 ≥ S2S1β. (G.8)

The finalizing compensation for passing the less restraining type constraints to the two recursive
calls are done by checking whether the first loosened constraint θ1 can agree with the type that
the original type β → ρ becomes:

S4 = U(S3S2S1θ1, S3S2S1(β → ρ)) (G.9)

and by checking whether the other loosened constraint θ3 for the argument expression can agree
with what the original type β becomes:

S5 = U(S4S3θ3, S4S3S2S1β). (G.10)

We don’t have to check for θ2 because of its unification with θ1 at line (G.7).
Consider inferring the type of let-expression let x=e1 in e2 with type constraint ρ. Because

there is no context information about the type of the first expression e1, there is no room for
varying its type constraint:

S1 = G(Γ, e1, β), new β. (G.11)

Next we decide on the type constraint for the body expression e2. It can be any type that is less
restraining than the given constraint ρ:

S2 = G(S1Γ + x:ClosS1Γ(S1β), e2, θ), (5) θ ≥ S1ρ. (G.12)

Finally, we have to check whether the loosened constraint agrees with the type that the original
constraint becomes:

S3 = U(S2θ, S2S1ρ). (G.13)

The case for recursive function fix f λx.e is similar. We decide on what is expected for the
type of λx.e and what is carried for the type of f . Both can be less restraining than ρ:

S1 = G(Γ + f : θ1, λx.e, θ2), (6) θ1 ∧ θ2 ≥ ρ. (G.14)

Then we check whether the loosened type agrees with the type that the original constraint becomes:

S2 = U(S1θ1, S1θ2, S1ρ). (G.15)

2.3 Instances

By determining the loosened constraints θ’s in G, we obtain various type-inference algorithms,
including the standard algorithm W, the top-down algorithm M, and the combinations of the two
algorithms used in the SML/NJ [18] and OCaml [11] compiler systems.

• W is an instance of G where every θ is a new type variable.

• M is an instance of G where every θ is not loosened: for each case θ ≥ ρ in G, we choose ρ
for θ.

• The OCaml’s type inference algorithm is an instance of G where the θ at (2) (line (G.6)) is
a new type variable and other θ’s are not loosened.

• The SML/NJ’s type inference algorithm is an instance of G where the θ at (1) (line (G.3))
is ρ if the lambda is a recursive function, otherwise, a new type variable, the θ1 and θ2 at
(6) (line (G.14)) are the same new type variable, and other θ’s are new type variables.

• Other variations than the existing algorithms are also possible from G. For example, consider
an instance of G where the θ at (G.6) is a new function type (β1 → β2 for new variables
β1 and β2) and other θ’s are their most restraining constraints. Let’s call this instance
algorithm H.

The θ’s used in the five instances are summarized in Figure 4.

2.4 Every Instance is Sound and Complete

Every instance of G is sound and complete with respect to the Hindley/Milner let-polymorphic
type system.

Theorem 1 (Soundness) Let e be an expression, Γ be a type environment, and ρ be a type. If
G(Γ, e, ρ) succeeds with S, then SΓ ` e : Sρ.

(1) (2) (3) (4) (5) (6)
θ θ1 θ2 θ3 θ θ1, θ2

W β1 β1 β2 β3 β1 β1, β2

SML/NJ’s β1 or ρ β1 β2 β3 β1 β1, β1

OCaml’s ρ β1 S1(β → ρ) S2S1β S1ρ ρ, ρ
H ρ β → β2 S1(β → ρ) S2S1β S1ρ ρ, ρ
M ρ β → ρ S1(β → ρ) S2S1β S1ρ ρ, ρ

Figure 4: Five instances of algorithm G. βi’s are new type variables introduced in the θ’s.

Theorem 2 (Completeness) Let e be an expression, and let Γ be a type environment. If there
exist a type ρ and a substitution P such that PΓ ` e : Pρ, then G(Γ, e, ρ) succeeds with S and there
exists a substitution R such that P |-New = (RS)|-New where New is the set of new type variables
used by G(Γ, e, ρ).

Completeness means that if an expression e has a type τ that satisfies a type constraint ρ (i.e.,
∃P.τ = Pρ), then algorithm G for the expression with the constraint ρ succeeds with substitution
S such that the result type Sρ subsumes τ (i.e., the principality, ∃R.τ = R(Sρ)).

2.5 More Restraining Instance Stops Earlier

The information amount in the type constraints determines how early the algorithm detects type
errors. Carrying less informative (restraining) constraints during type-checking sub-expressions
makes it more probable that the algorithm successfully infers their types with being less sensitive
to the context, hence delays detecting type errors as such.

We say that an instance A of G is more restraining than another instance A′ whenever A always
passes more restraining constraints than A′. The “always” means that the loosening operations
preserve the restraining order between the original constraints: for each pair of corresponding
loosenings θi ≥ ρi in A and θ′i ≥ ρ′i in A′ for the same input, if ρi is more restraining than ρ′i then
so is θi than θ′i.

Definition 2 (A v A′) Let A and A′ be two instances of G. A is more restraining than A′, written
A v A′, if and only if for each pair of corresponding loosenings θi ≥ ρi during A(Γ, e, ρ) and
θ′i ≥ ρ′i during A′(Γ, e, ρ), if ρi = Rρ′i for a substitution R then θi = (R|-supp(P) ∪ P)θ′i for a
substitution P with supp(P) ⊆ ftv(θ′i) \ ftv(ρ′i).

Lemma 1 Mv H v OCaml’s v SML/NJ’s v W.

The time of detecting type errors can be formalized by the notion of call string [9]. The
call string of G(Γ, e, ρ) (written [[G(Γ, e, ρ)]]) is constructed by starting with the empty call string
and appending a tuple (Γ1, e1, ρ1)d (respectively, (Γ1, e1, ρ1)u) whenever G(Γ1, e1, ρ1) is called
(respectively, returned). The d or u superscript indicates the downward or upward movement of
the stack pointer when the inference algorithm is recursively called or returned. Note that the call
strings of every instance algorithm of G are always finite, because at most one call to the algorithm
occurs for each sub-expression of the program, and that the order of visiting sub-expressions of
the input program in every instance algorithm’s call string is the same.

For two instance algorithms A and A′ of G, if A is more restraining than A′ then A stops earlier
than A′ if the input program is ill-typed:

Theorem 3 Let A and A′ be instances of G such that A v A′, Γ0 be a type environment, e0

be an expression, and ρ0 be a type. If [[A(Γ0, e0, ρ0)]] has (Γ, e, ρ)d/u, then [[A′(Γ0, e0, ρ0)]] has
(Γ′, e, ρ′)d/u and there exists a substitution R such that RΓ′ Â Γ and Rρ′ = ρ.

Because the order of visiting sub-expressions during the execution of the two instance algorithms
are the same, the above theorem implies that if A is more restraining than A′ then the length (the

number of tuples) |[[A(Γ0, e0, ρ0)]]| of A’s call string is shorter than or equal to that |[[A′(Γ0, e0, ρ0)]]|
of A′’s call string, i.e., A stops earlier than A′.

By Lemma 1 and Theorem 3, the following order holds:

Corollary 1 Let Γ be a type environment, e be an expression and ρ be a type.

|[[M(Γ, e, ρ)]]| ≤ |[[H(Γ, e, ρ)]]| ≤ |[[OCaml’s(Γ, e, ρ)]]| ≤
|[[SML/NJ’s(Γ, e, ρ)]]| ≤ |[[W(Γ, e, ρ)]]|

where |s| is the number of tuples in call string s.

Note that all the proofs of the theorems and the lemma are presented in our technical re-
port [10].

3 Discussion

We presented a generalized let-polymorphic type inference algorithm, from which, by changing its
degree of context-sensitivity, various hybrid algorithms can be instantiated. We proved that any
of G’s instances is sound and complete with respect to the Hindley/Milner let-polymorphic type
system, and showed a condition on two instance algorithms so that one algorithm should find type
errors earlier than the other. The set of instances of G includes the two opposite algorithms (W
and M) and is a superset of those hybrid algorithms used in the SML/NJ [18] and OCaml [11].

Note that the earliness condition cannot be an ultimate criterion to judge the algorithm’s
goodness in detecting the cause of type-errors. For any algorithm there exists an ill-typed program
that falsifies its type-error message. The earliness condition can just be a criterion by which
compiler developers can achieve different type-checking strategies.

It is possible to further generalize G(Γ, e, ρ). We can loosen not only the type constraint ρ but
also the type environment Γ. Note that algorithm G passes as much informative type environment
as possible to sub-or-sibling expressions; it accumulates all substitutions in type environment at its
recursive calls. Contrary to this top-down strategy for type environment, a bottom-up approach [3]
uses completely loosened type environments when it checks sub-or-sibling expressions. In between
these two opposites, some hybrid strategies are also possible [12, 23]. These variations can be
formalized, similarly to G, by type-environment loosening and posterior unification.

In general settings [1, 4, 8, 15, 16, 19, 20, 21] where we view type inference algorithms consist
of two separate stages - deriving constraints and solving them - the parameters in our generalized
algorithm G can be considered a way to control when to solve the constraints within the Hind-
ley/Milner type system. We delay the constraint-solving by passing loosened constraints to recur-
sive calls, and then solve the delayed constraints by applying posterior unifications. Sulzmann’s
general framework [19] in constraint forms is not algorithmic to be directly used in implementation.

References

[1] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type inference. In
Proceedings of Functional Programming Languages and Computer Architecture, pages 31–41,
1993.

[2] Mike Beaven and Ryan Stansifer. Explaining type errors in polymorphic languages. ACM
Letters on Programming Languages and Systems, 2:17–30, March-December 1993.

[3] Karen L. Bernstein and Eugene W. Stark. Debugging type errors (full version). Technical
report, State University of New York at Stony Brook, 1995.

[4] Kenta Cho and Kazunori Ueda. Diagnosing non-well-moded concurrent logic programs. In
Joint International Conference on Logic Programming, pages 215–229. MIT Press, 1996.

[5] Luis Damas and Robin Milner. Principal type-scheme for functional programs. In Proceedings
of the 9th Annual ACM Symposium on Principles of Programming Languages, pages 207–212,
New York, 1982. ACM Press.

[6] Dominic Duggan. Correct type explanation. In Proceedings of Workshop on ML, pages 49–58,
1998.

[7] Dominic Duggan and Frederick Bent. Explaining type inference. Science of Computer Pro-
gramming, 27(1):37–83, July 1996.

[8] Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Program-
ming Languages and Systems, 15(2):253–289, April 1993.

[9] Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type inference
algorithm. ACM Transactions on Programming Languages and Systems, 20(4):707–723, July
1998.

[10] Oukseh Lee and Kwangkeun Yi. A generalized let-polymorphic type inference algorithm.
Technical Memorandum ROPAS-2000-5, Research On Program Analysis System, National
Creative Research Center, Korea Advanced Institute of Science and Technology, March 2000.

[11] Xavier Leroy, Didier Rémy, Jérôme Vouillon, and Damien Doligez. The objective caml system
release 2.04. Institut National de Recherche en Informatique et en Automatique, November
1999. http://caml.inria.fr.

[12] Bruce J. McAdam. On the unification of substitutions in type inference. In Kevin Hammond,
Anthony J. T. Davie, and Chris Clack, editors, Proceedings of The International Workshop on
Implementation of Fuctional Languages, volume 1595 of Lecture Notes in Computer Science,
pages 139–154. Springer-Verlag, September 1998.

[13] Bruce J. McAdam. Generalising techniques for type debugging. In Proceedings of 1st Scottish
Functional Programming Workshop, 1999.

[14] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348–375, 1978.

[15] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained types.
Theory and Practice of Object Systems, 5(1), 1999.

[16] Didier Rémy. Extending ML type system with a sorted equational theory. Research Report
1766, Institut National de Recherche en Informatique et Automatisme, Rocquencourt, BP
105, 78 153 Le Chesnay Cedex, France, 1992.

[17] Laurence Rideau and Laurent Théry. Interactive programming environment for ML. Technical
Report 3139, Institut National de Recherche en Informatique et en Automatique, March 1997.

[18] The Standard ML of New Jersey, release 110.0.6. Bell Labs, Lucent Technologies, November
1999. http://cm.bell-labs.com/cm/cs/what/smlnj.

[19] Martin Sulzmann. A general type inference framework for Hindley/Milner style systems.
Technical Report TR2000/15, The University of Melbourne, Department of Computer Science
and Software Engineering, July 2000.

[20] Martin Sulzmann, Martin Müller, and Christoph Zenger. Hindley/Milner style type systems
in constraint form. Technical Report ACRC-99-009, University of South Australia, School of
Computer and Information Science, July 1999.

[21] Satish R. Thatte. Type inference with partial types. Theoretical Computer Science,
124(1):127–148, February 1994.

[22] Mitchell Wand. Finding the source of type errors. In Proceedings of the 13th Annual ACM
Symposium on Principles of Programming Languages, pages 38–43, New York, 1986. ACM
Press.

[23] Jun Yang. Explaining type errors by finding the sources of type conflicts. In Proceedings of
1st Scottish Functional Programming Workshop, pages 387–401, August 1999.

