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Abstract. We present an extension of access-based localization tech-
nique to mitigate a substantial inefficiency in handling procedure calls.
Recently, access-based localization was proposed as an effective way of
tightly localizing abstract memories. However, it has a limitation in han-
dling procedure calls: the localized input memory for a procedure con-
tains not only memory locations accessed by the procedure but also those
accessed by transitively called procedures. The weakness is especially
exacerbated in the presence of recursive call cycles, which is common
in analysis of realistic programs. In this paper, we present a technique,
called bypassing, that mitigates the problem. Our technique localizes
input memory states only with memory locations that the procedure di-
rectly accesses. Those parts not involved in analysis of the procedure
are bypassed to transitively called procedures. In experiments with an
industrial-strength global C static analyzer, the technique reduces the
average analysis time by 42%. In particular, the technique is especially
effective for programs that extensively use recursion: it saves analysis
time by 77% on average.

1 Introduction

Memory localization is vital for reducing global analysis cost [12,14,3,23,22]. The
performance problem of flow-sensitive global analysis is that code blocks such
as procedure bodies are repeatedly analyzed (often needlessly) with different
input memory states. Localization of input abstract memories, which removes the
irrelevant memory entries that will not be used inside called procedure bodies,
alleviates the problem by increasing the chance of reusing previously computed
analysis results. For example, consider a code x=0;f();x=1;f(); and assume
that x is not used inside f. Without localization, f is analyzed twice because the
input state to f is changed at the second call. If x is removed from input states
(localization), the analysis result for the first call can be reused at the second
call without re-analyzing the procedure body.

Access-based technique provides an effective way of realizing memory local-
ization [14]. Because localization must be done before analyzing a procedure, it
is impossible to exactly compute to-be-used parts of input memory. Thus, some
approximation must be involved, so that the localized state can contain some
spurious entries that will not be actually used by the procedure. The conventional
approximation methods are reachability-based techniques: from input memory,
only the abstract locations reachable from actual parameters and global loca-
tions are collected. However, the technique is too conservative in practice because
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only few reachable locations are actually accessed [14]. Access-based technique,
on the other hand, trims input memory states more aggressively: locations that
are reachable but may not be accessed are additionally removed. The access in-
formation is computed by a conservative pre-analysis. Thus, access-based local-
ization more effectively reduces global analysis cost than the reachability-based
technique does [14].

However, the localization has a source of inefficiency in handling procedure
calls. In access-based localization1, the localized input state for a procedure
involves not only the abstract locations that are accessed by the called procedure
but also those locations that are accessed by transitively called procedures. For
instance, when procedure f calls g, the localized state for f contains abstract
locations that are accessed by g as well as abstract locations accessed by f .
Those locations that are exclusively accessed by g are, however, irrelevant to the
analysis of f because they are not used in analyzing f . Even so, those locations
are involved in the localized state (for f), which sometimes leads to unnecessary
computational cost (due to re-analyses of procedure body).

Such inefficiency is especially exacerbated with recursive call cycles. Consider
a recursive call cycle f → g → h → f → · · · . Because of the cyclic dependence
among procedures, every procedure receives input memories that contain all
abstract locations accessed by the whole cycle. That is, access-based localization
does not help any more inside call cycles. Moreover, recursive cycles (even large
ones) are common in real C programs. For example, in GNU open source code,
we noticed that a number of programs have large recursive cycles and a single
cycle sometimes contains more than 40 procedures. This is the main performance
bottleneck of access-based localization in practice (Section 4.2).

In this paper, we extend access-based localization technique so that the afore-
mentioned inefficiency can be relieved. With our technique, localized states for a
procedure contains only the abstract locations that are accessed by the procedure
and does not contain other locations that are exclusively accessed by transitively
called procedures. Those excluded abstract locations are “bypassed” to the tran-
sitively called procedures, instead of passing through the called procedure. In this
way, analysis of a procedure involves only the memory parts that the procedure
directly accesses (even inside recursive cycles), which results in more tight lo-
calization and hence reduces analysis cost more than access-based localization
does. The following example illustrates how our technique saves cost.

Example 1. Consider the following code.

1: int a=0, b=0;
2: void g() { b++; }
3: void f() { a++; g(); }
4: int main () {
5: b=1; f(); // first call to f
6: b=2; f(); } // second call to f

1 In fact, any localization techniques suffers from similar problems. In this paper, we
discuss the problem in the context of access-based localization.
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Procedure main calls f, and f calls g. Procedures f and g update the value
of a and b, respectively. Procedure main calls f two times with the value of b
changed.

– With access-based localization: Both f and g are analyzed two times. The
localized input memory for f at the first call (line 5) contains locations a
and b because both are (directly/indirectly) accessed while analyzing f. The
localized state at the second call (line 6) contains the same locations. Because
the value of b is changed, f (as well as g) is re-analyzed at the second call.

– With our technique: f is analyzed only once (though g is analyzed twice).
Localized memories for procedure f contain only the location that f directly
accesses, i.e., a. The value of a is not changed and the body of f is not
re-analyzed at the second call. However, procedure g is re-analyzed because
we propagate the changed value of b to the entry of g.

In experiments with an industrialized abstract interpretation-based static ana-
lyzer, our technique saved 9–79%, on average 42%, in analysis time in compar-
ison with the access-based localization technique for a variety of open-source C
benchmarks (2K–100K). In particular, for those benchmark programs that ex-
tensively use recursion and have large recursive call cycles, our technique is more
effective: it reduces the analysis time for those programs by 77% on average. The
technique does not compromise the analysis precision.

Contributions. This paper makes the following contributions.

– We report on a substantial performance degradation of localization and
present a technique to mitigate the problem. Our technique is meaningful
because real C programs often have complex procedural relationships such
as large recursive cycles that significantly exacerbate the problem. Though
we focus on access-based localization, any localization schemes (including
reachability-based ones) suffer from similar (basically the same) problems.
To the best of our knowledge, these aspects of localization techniques have
not been adequately addressed in the literature.

– We prove the effectiveness of our technique by experiments with an industrial-
strength C static analyzer [8,9,10,13,14,15].

Overview. We illustrate how our technique works with examples. Fig. 1 shows
example call graphs. There are three procedures: f, g and h. Suppose F (re-
spectively, G and H) denotes the set of abstract locations that procedure f
(respectively, g and h) directly accesses. We describe how the problem occurs
and then how to overcome the problem.

Access-based localization has inefficient aspects in analyzing procedure calls.
We first consider the case for non-recursive call chains (Fig. 1(a)). With the
localization, the input memory M to f is localized so that the procedure f
is analyzed only with a subpart M |F∪G∪H (M with projected on locations set
F ∪G∪H) rather than the entire input memory. Similarly, the input memory M1

to g is localized to M |G∪H , and h’s input memory M2 is localized to M2|H . The
inefficiency comes from the fact that not the entire localized memory is accessed
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(a) Non-recursive call chain (b) Recursive call cycle

Fig. 1. Problem of localization. F (respectively, G and H) denotes the set of abstract
locations that procedure f (respectively, g and h) directly accesses. M |F denotes the
memory state M with projected on abstract locations F .
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(a) Non-recursive call chain (b) Recursive call cycle

Fig. 2. Illustration of our technique. With our technique, each procedure is analyzed
with its respective directly accessed locations, and others are bypassed (dashed line)
to the subsequent procedure.

by each procedure. For example, abstract locations G ∪ H are not necessary in
analyzing the body of f .

The problem becomes severe when analyzing recursive call cycles. Consider
Fig. 1(b). As in the previous case, the input memory M to f is localized to
M |F∪G∪H . However, in this case, the input memory M1 to g is also projected on
F ∪G∪H , not on G∪H , because f can be called from g through the recursive
cycle. Similarly, input memory M2 to h is localized to M |F∪G∪H . In summary,
localization does not work any more inside the cycle.

Fig. 2 illustrates how our technique works. We first consider non-recursive
call case (Fig. 2(a)). Instead of restricting f ’s input memory to F ∪ G ∪ H , we
localize it with respect to only the directly accessed locations, i.e., F . Thus,
f is analyzed with M |F . The non-localized memory part (M |F C ) is directly
bypassed (dashed line) to g. Then, the output memory M1 from f and the
bypassed memory M |F C are joined to prepare input memory M1 � M |F C for
procedure g. The input memory is localized to (M1�M |F C )|G and g is analyzed
with the localized memory. Again, the non-localized parts (MF C � M1)|GC ) are
bypassed to the subsequent procedure h. In this way, each procedure is analyzed
only with abstract locations that the procedure directly accesses.

The technique is naturally applicable to recursive cycles (Fig. 2(b)). With
our technique, even procedures inside recursive call cycles are analyzed with
memory parts that are directly accessed by each procedure. Hence, in Fig. 2(b),
the localized memory for f (resp., g and h) only contains locations F (resp., G
and H).
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2 Setting: Analysis Framework

We describe our analysis framework. The analysis basically performs flow-
sensitive and context-insensitive global analysis, and an abstract memory state
is represented by a map from abstract locations to abstract values. In Section
3, we present our technique on top of this framework. Section 2.1 shows the
intermediate representation of programs, and Section 2.2 defines the analysis in
terms of abstract domain and semantics.

2.1 Graph Representation of Programs

We assume that a program is represented by a supergraph [17]. A supergraph
consists of control flow graphs of procedures with interprocedural edges connect-
ing each call-site to its callee and callees to the corresponding return-sites. Each
node n ∈ Node in the control flow graph has one of the four types :

entry | exit | call(fx, e) | return | set(lv , e)

Each control flow graph has entry and exit nodes. A call-site in a program
is represented by a call node and its corresponding return node. A call node
call(fx, e) indicates that it invokes a procedure f , its formal parameter is x, and
the actual parameter is e. For simplicity, we assume that there are no function
pointers in the program and consider only one parameter. Node type return indi-
cates a return node of a call node. set(lv , e) represents an assignment statement
that assigns the value of e into the location that l-value expression lv denotes.
In this paper, we do not restrict expression (e) and l-value expression (lv ) to
specific ones. We assume that edges in flow graphs are assembled by function
succof ∈ Node → 2Node, which maps each node to its successors.

2.2 Static Analysis

We consider static analyses, in which the set of (possibly infinite) concrete mem-
ory states are represented by an abstract memory state:

ˆMem = ˆAddr → V̂al

That is, ˆMem is a map from abstract locations ( ˆAddr) to the abstract values
(V̂al). We assume that ˆAddr is a finite set and V̂al is an arbitrary cpo (com-
plete partial order). We assume further that abstract values and locations are
computed by two functions V̂ and L̂, respectively. Given an expression e and an
abstract memory state m̂, V̂(∈ e → ˆMem → V̂al) evaluates the abstract value
that e denotes under m̂. Similarly, L̂(∈ lv → ˆMem → 2 ˆAddr ) evaluates the set
of abstract locations of lv under m̂.

With V̂ and L̂, we define semantic function f̂ : Node → ˆMem → ˆMem . Given
a node n and an input memory state m, f̂(n)(m) computes the effect of the
command in node n on the input state :
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f̂(n)(m̂) =

⎧
⎨

⎩

m̂{V̂(e)(m̂)//L̂(x)(m̂)} if n = call(fx, e)
m̂{V̂(e)(m̂)//L̂(lv)(m̂)} if n = set(lv , e)
m̂ otherwise

where, m̂{v//{l1, . . . , lk}} means m̂{l1 �→ (m̂(l1) � v)} · · · {lk �→ (m̂(lk) � v)}.
The effect of node set(lv , e) is just to (weakly) assign the abstract value of e into
the locations in L̂(lv )(m̂).2 The call node command call(fx, e) binds the formal
parameter x to the value of actual parameter e. Please note that the output of the
call node is the memory state that flows into the body of the called procedure, not
the memory state returned from the call.

Then, the analysis is to compute a fixpoint table T ∈ Node → ˆMem that
maps each node in the program to its (input) abstract memory state. The map
is defined by the least fixpoint of the following function F̂ :

F̂ : (Node → ˆMem) → (Node → ˆMem)
F̂ (T ) = λn.

⊔
p∈predof(n) f̂(n)(T (p))

The fixpoint is computed by a worklist algorithm. The worklist consists of nodes
of the control flow graph of the program whose abstract state has to be re-
computed. When a computed memory state for n is changed, we add successors
of n into the worklist. The algorithm uses widening operation [2] to guarantee
termination. Fig. 4(a) shows the algorithm.

3 Access-Based Localization with Bypassing

In this section, we describe our technique on top of the analysis framework
(Section 2). Our technique is an extension of the access-based localization. In
Section 3.1, we describe the access-based localization. Then, we extends the
localization technique to derive our bypassing technique.

3.1 Access-Based Localization: Previous Approach

In access-based localization [14], the entire analysis is staged into two phases: (1)
a pre-analysis conservatively estimates the set of abstract locations that will be
accessed during actual analysis for each procedure; (2) then, the actual analysis
uses the access-set results and, right before analyzing each procedure, filters out
memory entries that will not be accessed inside the procedure’s body.

The pre-analysis is a further abstraction of the original analysis. The pre-
analysis must be safe in that the estimated access information should be conser-
vative with respect to the actual access set that would be used during the actual
analysis. Moreover, to be useful, the estimation should be efficient enough to
compensate for the extra burden of running pre-analysis once more. In [14],

2 For brevity, we consider only weak updates. Applying strong update is orthogonal to
our technique we present in this paper.
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such a pre-analysis is obtained by applying conservative abstractions (such as
ignoring statement orders, i.e., flow-insensitivity) to the abstract semantics of
original analysis. During the pre-analysis, the access-sets for each program point
are collected. Let A ∈ Node → 2 ˆAddr be the access information. That is, all the
abstract locations that are accessed during the analysis at node n are represented
by A(n).

The actual analysis is the same as the original analysis except for localizing
operation. Because actual analysis additionally performs localizations using the
access-set information, the abstract semantics for call node is changed. Thus,
in actual analysis, non-accessed memory locations are excluded from the input
memories of procedures: given an input memory state m̂ to a call node call(fx, e),
the semantic function f̂ for the call statement call(fx, e) is changed as follows:

f̂ call(fx, e) m̂ = m̂ ′|access(f) where m̂ ′ = m̂{V̂(e)(m̂)//{x}}

That is, after parameter binding (m̂ ′) the memory is restricted on access(f),
where access(f) is defined as follows: (callees(f) denotes the set of procedures,
including f , that are reachable from f via the call-graph and nodesof(f) the set
of nodes in procedure f .)

access(f) =
⋃

g∈callees(f)(
⋃

n∈nodesof(g) A(n))

access ∈ ProcId → 2 ˆAddr maps each procedure to a set of abstract locations
that are possibly accessed during the analysis of callee procedures. Note that we
consider all the transitively called procedures as well, instead of just considering
the directly called procedure.

3.2 Access-Based Localization with Bypassing: Our Approach

Definition 1 (directly/indirectly(transitively) called procedure). When
a procedure f is called from a call-site, we say that f is a directly called procedure
from the call-site, and procedures that are reachable from f via the call-graph are
indirectly (or transitively) called procedures.

Example 2. Consider a call chain f → g → h. When f is called from a call-site,
f is the directly called procedure, and g and h are indirectly called procedures.

Definition 2 (directly/indirectly accessed locations). When a procedure f
is called from a call-site, we say that a location is directly accessed by procedure
f if the location is accessed inside the body of f . We say that the location is
indirectly accessed by f if the location is not accessed inside f ’s body but accessed
by indirectly called procedures.

Example 3. Consider a call chain f → g, and assume that locations l1 is accessed
inside the body of f and l2 is accessed inside the body of g. We say l1 is directly
accessed by f and l2 is indirectly accessed by f (l2 is directly accessed by g).
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Our technique is an extension of access-based localization. Thus, we also separate
the entire analysis into two phases: pre-analysis, and actual analysis.

Pre-analysis is slightly changed. Pre-analysis is exactly the same with the one
that would be used in access-based localization, except that we use its result
in a different way. In access-based localization, we compute access(f), which
includes abstract locations directly accessed by f as well as locations indirectly
accessed by f . Instead, our technique computes direct ∈ ProcId → 2 ˆAddr that
maps each procedure to a set of abstract locations that are directly accessed by
the procedure, excluding indirectly accessed locations. Given A : Node → 2 ˆAddr

from pre-analysis, the set direct(f) is defined as follows:

direct(f) =
⋃

n∈nodesof(g) A(n)

Major changes are in actual analysis. With access-based localization, actual anal-
ysis performs localization using the access information from pre-analysis. Now,
the actual analysis is changed in two ways: the analysis performs the localiza-
tion in a different way, and it additionally performs another technique, called
bypassing. When analyzing a procedure, we localize the input memory state so
that only the abstract locations directly accessed by the procedure are passed
to the current procedure. The non-localized parts, which contains indirectly ac-
cessed locations, are not passed to the directly called procedure but bypassed to
indirectly called procedures. In this way, every procedure is analyzed with input
memory state that is more tightly localized than access-based localization. In
terms of analysis on control flow graphs, these operations work as follows:

– Localization: Localization is performed at nodes where memory states flow
into the nodes from other procedures. These nodes include entry and return
nodes: when a procedure is called from a call-site, the input memory from
the call-site flows into entry of the called procedure, and when a procedure
returns, the memory state returned from the procedure flows into its caller
via a return node. Hence, the memory states at entry and return nodes of a
procedure are localized so that the procedure is analyzed with the directly
accessed locations. We call such nodes, where localization occurs, bypassing
sources.

Example 4. Consider the Fig. 3. Fig. 3(a) shows a call-graph, where proce-
dure f calls g, and Fig. 3(b) shows the control flow graph for f . Let F and G
be the set of abstract locations that are directly accessed by procedure f and
g, respectively. There are three bypassing sources: entry, node 3, and node 9.
Nodes 3 and 9 are return nodes. At entry, the input memory M is restricted
on F . Hence, node 1 is analyzed with the localized memory M |F . At node 3
and 9, the memory returned from procedure g, M1 and M2 are restricted on
the location set F , and hence, the body of procedure f is always analyzed
with the local memory M |F . By contrast, with access-based localization, f
is analyzed with the localized memory M |F∪G, which is strictly bigger than
M |F .
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M gf
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2 : g()

3 : rtn
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8 : g()
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(a) call-graph (b) control flow graph of f

Fig. 3. Example: (a) a call-graph, where f is called with input memory state M and
g is called from f (b) inside view (control flow graph) of f , where solid lines represent
control flow edges and dashed lines represent bypassing edges

– Bypassing: Bypassing happens between bypassing sources and targets. The
non-localized parts at bypassing sources (entry or return nodes) should be
delivered to nodes where memory states flow into other procedures. These
nodes include procedure exit and call nodes: at procedure exit, the out-
put memory state of the procedure is propagated to the caller, and at call
nodes, memory states flow into called procedures. Thus, after performing
localization at a bypassing source, the non-localized parts are bypassed to
“immediate” call or exit nodes that are reachable without passing through
other call nodes. We call such call and exit nodes as bypassing targets.

Example 5. Consider the Fig. 3(b) again. The solid lines represent control
flow graphs of procedure f and dashed lines shows how bypassing happens.
There are three bypassing sources: entry, 3, and 9. The bypassing target for
entry is the call node 2. Another call node 8 or exit node are not bypassing
target for entry because they are not reachable from entry without passing
through the call node 2. And, bypassing targets for node 3 are 8 and exit.
Similarly, bypassing targets for node 9 are 8 and exit. At entry node, the non-
localized memory parts (M |F C ) are bypassed to entry’s bypassing target,
node 2. Similarly, at nodes 3 and 9, the non-localized memory M1|F C and
M2|F C are bypassed to their bypassing targets, node 8 and exit.

Fig. 4(b) shows our technique integrated in the worklist-based analysis algo-
rithm. In order to transform access-based localization into our technique, only
shaded lines are inserted; other parts remain the same. Predicate bypass source ∈
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(01) : W ∈ Worklist = 2Node (01) : W ∈ Worklist = 2Node

(02) : T ∈ Table = Node → Mem (02) : T ∈ Table = Node → Mem

(03) : f̂ ∈ Node → Mem → Mem (03) : f̂ ∈ Node → Mem → Mem

(04) : FixpointIterate (W,T ) = (04) : FixpointIterate (W,T ) =
(05) : repeat (05) : repeat
(06) : n := choose(W) (06) : n := choose(W)

(07) : m := f̂(n)(T (n)) (07) : m := f̂(n)(T (n))

(08) : if bypass source(n) then

(09) : (ml, mb) := project(m, procof(n))

(10) : for all t ∈ bypass target(n) do

(11) : if mb �� T (t)

(12) : T (t) := T (t) 	 mb

(13) : W := W ∪ {t}
(14) : m := ml

(15) : for all n′ ∈ succof(n) do (15) : for all n′ ∈ succof(n) do
(16) : if m �� T (n′) (16) : if m �� T (n′)
(17) : W := W ∪ {n′} (17) : W := W ∪ {n′}
(18) : T (n′) := T (n′) 	 m (18) : T (n′) := T (n′) 	 m
(19) : until W = ∅ (19) : until W = ∅

(a) The worklist-based algorithm (b) The algorithm with bypassing

Fig. 4. Comparison of the normal analysis algorithm and our bypassing algorithm: our
technique is a simple addition of the traditional algorithm

Node → bool checks whether a node is a bypass source or not. Function procof ∈
Node → ProcId gives name of the procedure that encloses the given node. Func-
tion project takes a memory state and a procedure and partitions the input
memory into directly accessed and indirectly accessed parts:

project(m, f) = (m|direct(f), m|access(f)\direct(f))

Function bypass target ∈ Node → 2Node maps each bypass source to its bypass
targets. If the current node n is a bypass source (line 8), the memory state m is
divided into a local memory ml and the rest part mb (line 9). The local memory
ml is propagated to the successors of n as in the case of the normal algorithm
(line 14). The non-localized memory (mb) is updated to the input memories of
bypassing targets of n (line 10–13).

3.3 Delivery Points Optimization

Bypassing operation induces additional join operations, one of the most expen-
sive operation in semantic-based static analyses [1,9]. At bypassing targets, the
bypassed memory from the bypassing source should be joined with the memory
propagated along usual control flows. For example, consider Fig. 3. At node 2,
two input memories, one propagated from node 1 and another bypassed from
entry, are joined. Similarly, at the other bypassing targets (node 8 and exit),
additional join operations take place.
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if (cond1) f1 ();

if (cond2) f2 ();

...

if (condk) fk ();

1

2

k − 1

f1()

f2()

fk()

entry

exit

1

2

k − 1 fk()

f2()

f1()entry

exit

Fig. 5. Example of common code patterns that increases bypassing overhead

We noticed that the number of additional joins is sometimes unbearable. For
example, Fig. 5 shows a common programming pattern: the left-hand shows the
code pattern, and the middle shows its control flow graph with bypassing edges
(dashed lines). Procedures f1, f2,· · · ,fk are sequentially called after respective
condition checks (cond1, cond2,· · ·, condk). For this code, bypassing happens
as follows (as dashed lines in Fig. 5 show):

– From entry to f1, f2, f3, . . . , fk, exit
– From f1 to f2, f2, f3, . . . , fk, exit
– · · ·
– From fk to exit

Thus, the total number of bypassing edges for this code fragment is (k + 1)
(k + 2)/2 when k is the number of branches.

We mitigate the overhead by making bypassing pass through some particular
nodes that reduces the total number of bypassing edges. These nodes, we call
them “delivery points”, include some join points and loop heads. For example,
in Fig. 5, we use nodes {1, 2, · · · , k−1} as delivery points and let bypassing drop
by those nodes. As a result, bypassing happens as shown in the rightmost graph
in Fig. 5. Bypassing from entry to call1 takes place as in before, but Instead of
bypassing from entry to {f2, · · · , fk, exit}, we pass through node 1, 2, · · · , k−1,
which reduces the total number of bypassing edges from (k + 1)(k + 2)/2 to 3k.
In order to select such delivery points, we use a simple heuristic that uses join
points or loop heads as delivery points when the selection actually reduces the
total number of bypassing edges.

4 Experiments

We check the performance of our technique by experiments with Airac, a global
abstract interpretation engine in an industrialized bug-finding analyzer Spar-
row [8,9,10,13,14,15].
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Fig. 6. Comparison of analysis time between access-based localization and bypassing

4.1 Setting Up

Airac is an interval-domain-based abstract interpreter. The analyzer performs
flow-sensitive and context-insensitive global analysis: it computes a map T ∈
Node → ˆMem from program points (Node) to abstract memories ( ˆMem). An
abstract memory is a map ˆMem = ˆAddr → V̂al where ˆAddr denotes abstract
locations that are either program variables or allocation sites, and V̂al denotes
abstract values including interval values, addresses, array blocks, and structure
blocks. The details of abstract domain and semantics are described in [14].

From our baseline analyzer Airac, we have made two analyzers: AiracAccLoc and
AiracBypass that respectively use the access-based localization and our technique.
AiracBypass is exactly the same as AiracAccLoc except that AiracBypass additionally
performs the bypassing operation. Hence, performance differences, if any, be-
tween them, are solely attributed to the bypassing technique. The analyzers are
written in OCaml.

We have analyzed 10 software packages. Fig. 1 shows our benchmark pro-
grams. LOC indicates the number of lines of code before preprocessing. Proc in-
dicates the number of procedures in each program. LRC represents the size of
largest recursive call cycle contained in each program. For example, the program
screen have 589 procedures and, among them, 77 procedures belong to a single
recursive cycle. We analyzed each program globally: the entire program is ana-
lyzed starting from the entry of the main procedure. All experiments were done
on a Linux 2.6 system running on a Pentium4 3.2GHz box with 4 GB of main
memory.

We use two performance measures: (1) time is the CPU time (in seconds) spent
during the analysis; (2) MB is the peak memory consumption (in megabytes)
during the analysis.

4.2 Results

Fig. 6 compares the time of AiracAccLoc and AiracBypass. Table 1 shows the raw
analysis results. Overall, AiracBypass saved 8.9%–78.5%, on average 42.1%, of the
analysis time of AiracAccLoc. There are some noteworthy points.
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Table 1. Program properties and analysis results. Lines of code (LOC) are given
before preprocessing. The number of procedures (Proc) is given after preprocess-
ing. LRC represents the size of largest recursive call cycle contained in each pro-
gram. time shows analysis time in seconds. MB shows peak memory consumption in
megabytes. AiracAccLoc uses access-based localization for procedure calls and AiracBypass

uses our technique. time for AiracAccLoc and AiracBypass are the total time that in-
cludes pre-analysis time. Save shows time savings in percentage of AiracBypass against
AiracAccLoc.

Program LOC Proc LRC AiracAccLoc AiracBypass Save
time(sec) MB time(sec) MB (time)

spell-1.0 2,213 31 0 2.4 10 1.6 10 31.6%
gzip-1.2.4a 7,327 135 2 51.9 65 37.7 64 27.4%
parser 10,900 325 3 571.6 206 319.4 245 44.1%
bc-1.06 13,093 134 1 496.9 131 318.4 165 35.9%
twolf 19,700 192 1 509.5 212 389.9 212 23.5%
tar-1.13 20,258 222 13 2,407.9 294 1,503.2 338 37.6%
less-382 23,822 382 46 14,720.8 490 4,906.4 427 66.7%
make-3.76.1 27,304 191 61 14,681.9 695 5,248.0 549 64.3%
wget-1.9 35,018 434 13 6,717.5 544 4,383.4 552 34.7%
screen-4.0.2 44,734 589 77 310,788.0 2,228 66,920.6 1,875 78.5%
bash-2.05a 105,174 959 4 1,637.6 272 1,492.4 265 8.9%

– Some programs contain large recursive call cycles. One common belief for C
programs is that it does not largely use recursion in practice. However, our
finding from the benchmark programs is that some programs extensively use
recursion and large recursive cycles unexpectedly exist in a number of real
C programs. For example, from Table 1, note that program less, make, and
screen have recursive cycles (scc) that contain more than 40 procedures.

– AiracAccLoc is extremely inefficient for those programs. For other programs
that have small (or no) recursive cycles, the analysis with access-based lo-
calization is quite efficient. For example, analyzing bash (the largest one in
our benchmark) takes 1,637s. However, analyzing those programs that have
large recursive cycles takes much more time: less and make take more than
10,000s and screen takes more than 310,000s to finish the analysis, even
though they are not the largest programs.

– AiracBypass is especially effective for those programs. For programs less,
make, and screen that contain large recursive cycles, our technique reduces
the analysis time by 66.7%, 64.3%, and 78.5%, respectively.

– AiracBypass is also noticeably effective for other programs. For programs,
which have small cycles (consisting of less than 20 procedures), AiracBypass

saved 8.9%–44.1% of the analysis time of AiracAccLoc. For example, in ana-
lyzing parser, AiracAccLoc took 572 seconds but AiracBypass took 319 seconds.

Our technique is also likely to reduce peak memory cost. Because our technique
localizes memory states more aggressively than the access-based localization,
the peak memory consumption must be reduced. However, in the experiments,
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memory cost for analyzing smaller programs (gzip, parser, bc, twolf, tar)
slightly increased. This is because AiracBypass additionally keeps bypassing in-
formation on memory. But, for larger programs (less, make, wget, screen,
bash), the results show that our technique reduces memory costs. For exam-
ple, AiracAccLoc required 2,228MB in analyzing screen but AiracBypass required
1,875MB.

AiracBypass is at least as precise as AiracAccLoc. In principle, more aggressive
localization improves our analysis because unnecessary values are not passed
to procedures and hence avoids needless widening operations. In experiments
(similar to one performed in [13,15], the precision of AiracBypass was the same as
AiracAccLoc.

5 Related Work

In static analysis, localization has been widely used for reducing analysis cost
[23,22,3,18,19,11,7,12,14], but previous localization methods have a common
limitation as described in this paper. Previous localization schemes are clas-
sified into reachability-based and access-based. For example, in shape analysis,
called procedures are only passed with reachable parts of the heap, which im-
proves the scalability of interprocedural shape analysis [18,19,11,3,23,22]. Simi-
lar reachability-based techniques, which removes unreachable bindings, are also
popular in higher-order flow analyses [6,7,12]. Access-based localization [14] re-
fines reachability-based approach so that reachable but non-accessed memory
locations are additionally removed. The technique was successfully applied to
interval-domain-based global static analysis [14]. These localization methods
have a common limitation in handling procedure calls. The inefficient aspect,
however, has not been well addressed in the literature. We believe the reason
is two-folds: (1) because localization itself greatly improves global analysis per-
formance, such ‘small’ inefficiency is often neglected; (2) the inefficiency only
comes to the fore when we analyze programs that have complex procedural
features such as large recursive call cycles. In this paper, we show that the prob-
lem is one key reason for why localization sometimes does not have satisfactory
performance in practice, and propose a solution that extends the access-based
localization technique.

Our technique can be considered as a lightweight sparse analysis. While tra-
ditional flow-sensitive analysis propagates information along control flow paths,
sparse analysis [20,21,16] uses def-use chains and directly propagate data from
definition point to its use points, by which unnecessary computational cost is
reduced. Our technique is similar to sparse analysis in that we sometimes by-
pass data, not propagating them along usual control flow paths. Moreover, the
concept of delivery points in section 3.3 is similar to φ-functions of SSA-based
sparse analysis [4,5] in that both reduces the number of additional join opera-
tions. However, we do not require def-use chains to be computed in both analysis
and computing delivery points, which is the main challenge of sparse analysis in
the presence of pointers [4,5].
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6 Conclusion

We presented a new technique to mitigate a performance problem of access-
based localization technique. Our technique enables access-based localization to
efficiently handle complex procedure calls such as recursive cycles. Our technique
is general in that it is applicable to any analysis problems that use access-based
localization. We proved the effectiveness of our technique by experiments with
a realistic global C static analyzer on a variety of open-source benchmarks.
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