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Let ( F’l, Pz, . . . . Pm) be a network of n finite state machines, communicating with each other

asynchronously using typed messages over unbounded FIFO channels, In this paper we present

a data flow approach to analyzing these communicating machines for nonprogress properties

(deadlock and unspecified reception). We set up flow equations to compute the set of pending

messages in the queues at any given state of such a network, The central technical contribution

of this paper is an algorithm to compute approximations to solutions for the ensuing equations

We then show how these approximate solutions can be used to check that interactions between

the processes are free of nonprogress errors. We conclude with a number of example protocols

that our algorithm certifies to be free of nonprog-ess errors. Included in the examples is a

specification of X25 call establishment/clear protocol,
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1. INTRODUCTION

A communicating finite state machine is a very useful abstract model for

specifying, verifying, and synthesizing communication protocols [4, 8]. In this

model processes are expressed as finite state machines that communicate
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over (potentially) unbounded buffers by sending and receiving typed

messages asynchronously. The buffer models the communication medium

and is used to store messages that have been sent but have not yet been

received.

A central issue in this model is whether a network of communicating finite

state machines is free of progress errors. Three widely addressed progress

properties are absence of unspecified receptions, absence of deadlocks, and

absence of unbounded communication. The problem of checking for non-

progress in communicating finite state machines is known to be undecidable

[4, 91. ln this paper we take a new approach to coping with this undecidable

problem; we show how data flow analysis of communicating finite state

machines can be carried out to obtain sufficient conditions under which they

are free of unspecified receptions and deadlocks. A novel feature of this

analysis is its ability to handle networks whose communication demands

unbounded buffers.

Let N = (Pl, Pz, . . . . P.) be a network of n communicating processes. In

general, the reachability set of a network can be unbounded; in fact, the class

of all reachability sets is recursively enumerable. Given a network ~, we

compute a superset of the reachability set of ~, which is regular. By

constructing a finite representation of this superset, we are able to handle

both bounded and unbounded buffers with equal ease. This is in contrast to

the traditional state exploration techniques in which a reachability graph,

similar to the coverability graph of Petri nets, is constructed; for the kinds of

networks under consideration, such a reachability graph can be constructed

only if the buffers are bounded. In Section 3 we set up the necessary

formalism, in Section 4 we show how to set up the necessary data flow

equations, and in Section 5 we present an algorithm to solve these equations

for a class of networks called strict FIFO networks. We extend these algo-

rithms to the entire class of all communicating finite state machines in

Section 6.

Though we concentrate on unspecified reception and deadlock analysis in

this paper, the algorithms that we develop can equally well be applied to the
reachability and boundedness problems. In Section 7 we present a number of

example protocols from the literature, which our algorithm certifies to be free

of nonpro~ess errors. Included in the examples is a specification of an X.25

call establishment/clear protocol as found in the literature [3, 81.

The techniques proposed here suffer from the state explosion problem

found in analyzing concurrent systems. But, apart from its ability to handle

an unbounded number of states, the worst-case time and space requirements

are less than or comparable to those found in the analysis of networks of

communicating finite state machines with bounded buffers.

The model of communicating finite state machines has also been used

elsewhere. For instance, given a program containing two communicating

processes, if we wish to analyze the communication part of the processes

then we can safely abstract out the conditions and assignment statements

from the program. The result of the abstraction captures the control

structure and the communication part of the program, yielding a set of
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communicating finite state machines [14]. Such an abstraction introduces

internal nondeterminism that can be easily handled. We discuss these issues

in Section 8. We conclude in Section 9 with a discussion of future work.

2. PREVIOUS WORK AND MOTIVATION

Previous research on checking for freedom from deadlock and other related

path problems has been presented in [91, [131, [181, [201, and [211. In a series of

papers, Gouda et al. [9, 24] investigated the deadlock and unboundedness

problem for networks of communicating systems containing two processes. In

[181 We investigated the deadlock and unspecified reception problem for
two-party protocols under the assumption that the receive commands do not

respect their message types.

Reif and Smolka consider the problem of reachability in a network of

processes that communicate over unbounded buffers using messages of a

single type. With static communication, wherein queue names are statically

known, they show that reachability in Petri nets is reducible to reachability

in their model. With dynamic communication, they show that reachability is

undecidable [20]. They also offer a tractable approximation algorithm that is

complete for communicating systems wherein messages cannot be deleted

from the queues holding pending messages [21].

The analysis problem (reachability, deadlock, etc.) for synchronous commu-

nication has been considered in [13] and [23]. Taylor [23] shows that the

analysis problem, though decidable, is intractable. Kanellakis and Smolka

[131 consider the nonprogress problem under various assumptions, such as (1)

the interconnection of processes is a tree and (2) the processes are acyclic.

Note that communicating systems that have asynchronous communication

over bounded buffers can be expressed as a system of processes communicant-

ing synchronously. As the deadlock and reachability problems for such

systems are decidable, most of the work done on state exploration of bounded

buffer asynchronous communication have dealt with reducing the complexity

of the state space search. These include, for instance, the empty medium

abstraction of Bochmann [3] and the combination of hashing, to manage

states that have been visited, and probabilistic search by Holzmann [101.

To put things in perspective, we wish to deal with communicating finite

state systems with both bounded buffers and potentially unbounded buffers

in a uniform way. Given a specification of a network we do not a priori know

if the buffers are being used in a finite way. By being able to deal with

unbounded buffers, any errors we may find as a result of our analysis would

only have to be due to mismatches in the way messages are sent by one

process and received by another process. Put differently, we are able to

distinguish between errors caused by mismatches and errors caused by a

need for unbounded buffer sizes.

3. DEFINITIONS AND NOTATIONS

In this section we present definitions and notations that are used in the rest

of this paper.
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3.1 Communicating Finite State Machines

Informally, a communicating finite state machine (CFSM) is a labeled di-

rected graph with a distinguished initial state, where each edge is labeled by

an event. The events of a CFSM are send and receive commands over a

finite set of message types X. The communication between CFSMS is as-

sumed to be asynchronous (i. e., nonblocking sends and blocking receives).

Consequently, an infinite FIFO buffer between each pair of machines, to

store pending messages, is assumed.

Let 1 = {1, . . . . n}, where n >2 is some constant (number of machines in a

network). Formally, we have the following definition:

Definition 3.1. (CFSM). A CFSM P, is a four-tuple (S,, (X,, J),CI U (XJ, ,),=1,

6,, pot), where

–S, is the set of local states.

–Y_,, ~ is the set of message types that P, can send to machine PI, and XJ, , is

the set of message types that PZ can receive from machine PJ. It is assumed

that z,,, = ~, since P, cannot directly send messages to or receive mes-

sages from itself.

–Let –x,, J = {-ml mcz,,J} and +1,,, = {+mlme ZJ,,}. 6, is a partial

mapping, ~,: S, x (( Z,, J)J=Z U ( + Zj,,)Jez) xl+ 2SC. 8,(P, – mz,.j) is the set
of new states that machine P, can possibly enter after sending message of

type m to machine PJ, and 8,( p, + m, j) is the set of new states that

machine P, can possibly enter after receiving message of type m from

machine PI.

—PO, is the initial local state.

A transition p’ ‘dm p( p’ ‘~m p, resp.) in P is called a send edge (receive

edge, resp. ). A state p in P, is said to be a send (receive, resp. ) state if and

only if (ifl) all of its outgoing edges are send (receive, resp. ) edges. p is said to

be a mixed state iff it has both outgoing send and receive edges. Define

RMsg( p) and SMsg( p) to be the set of message types that can be received

and sent in state p, respectively; that is,

RMsg(p) = {ml~p’~j, p’eb, (p, +m, j)},

SMsg(p) = {m13p’3j, p’=~,(p, - nz, j)}.

By definition, RMsg( p) = @ if p is a send state, and SMsg( p) = ~ if p is a
receive state. The set of receive states m P, WI1l be denoted as S:. The terms

node and state are used synonymously. Since the channels are assumed to be

FIFO, receive states are the only states that may cause communication

errors.

Define the following:

~,= yl(Z>, u ~,,z) messages Process P, has to deal

x= Uxz message types in a network,
Zel
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-z, = u -x,,, send events in process P,,
.@

+x, = u +-XJ,, receive events in process P,,
.@

kz, = –z, u +1, alphabet of events in process

.x . u -~, send events in a network,
Ld

+x = u +ZL receive events in a network,
lGI

f~=+~u–~ set of all events in a network.

P,,

Without loss of generality, we assume that Z,, J n z~, ~ = @if ( i, j) # (k, 1).

In practice, we can always ensure this property by, for instance, appending

the identity of the sender and the receiver as part of every message. Due to

this assumption, for any a e + ~, we can simplify the notation 6,( p, a, j) to

6,( P, @ If 8,( P, CZ) = 0, then We say that event cz is undefined at state P.

Let PI,..., P. be n machines that communicate with each other. Let V~

be the Cartesian product of the sets S’l, . . . . S., that is, VN = S’l x . “ “ x S.,

and let C~ be the Cartesian product of the sets E;, ~, . . . ,

X~,l, Zt,2, Z~,2, . . .. Z~.2, . . .. Z~. ~,. ... Z~_l, ~; that is, CN= x?j,l x “.” x
Z-:,1 xx;,2x” ””xz:,2x”””xx;, n x“””xx:_l, n.

We are now ready to define the semantics of a network of communicating

finite state machines.

Definition 3.2. (Network of Communicating Finite State Machines). A
network of communicating finite state machines (NCFSM) is a tuple IV =

(P,,..., PJ, where each P, (i e 1) is a CFSM.

A global state of N is a tuple [(p,),eI, (c,, J)l, JeI], where p, is a local state of

machine P,, and c, ~ is the sequence of messages in the channel from

machine P] to P,. ‘

Initially, N is in its initial state [(po,),eI, (c,, J),, J, II, where C,~J = & (i # ~).

Let [( P,),eI, (CL,~),,J=I] be a global state. The global state transition function

v x CA’ is a partial function defined asC5N:(VNXCN)X&~~2”

(1) If p: G 6,( P,, – n, j), then [(P&)k~l, (c~, ~)k, ~~~1‘6N([(Pk)k61, (ck, z)k, ~~11)

— m), where

r

{

P; ifk=i

} {

c~,l”m

}

if(k, l) = (j, i) .
and c~,l =

‘k = Pk otherwise ck, l otherwise

{

ifk=ip~ = P;

/ {

m. C&,l if(k, l) = (i, j)
and Ck,l =

Pk otherwise C;, l otherwise }
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We use P, ~ PI to denote the channel CJ,, from P, to PJ. In essence, the

first case in Definition 3.2 denotes the event that P, sends a message m to

P,, which causes the message m to be appended to the end of channel P, + PJ.

The second case represents the event that P, receives a message of type m

sent by PJ, which has the effect of removing the first message (which must be

of type m, or an unspecified reception error would occur) in the channel

PJ ~ P,. In both cases, after the successful completion of the event, P, enters

local state pj, while all other machines remain in the same local states and

the contents of all other channels are unchanged.

The definition given above is in its full generality since it assumes that

there exists a unidirectional channel from each machine P, to every other

machine PJ. We call this network topology fully connected. In practice,

however, fully connected topology is usually unlikely because of various

limitations. If machine P, cannot directly send messages to some other

machine, say, PJ, we can simply set ~ ,J = fl. We define the network topology

graph TG( N) of a network N as a directed graph with the set of sites (finite

state machines) as its node set. A directed edge from P, to PJ is in TG( N) if

there exists a unidirectional channel from P, to Pj.

To simplify the presentation, we use the notation [U, P] to denote a global

state, where, by convention, E = ( p,),, ~ denotes an n tuple and F = (C,,J),,l EI

denotes an n( n – 1) tuple. [uo, co] will be used to denote the initial state. We

use the notation [PI, . , Pn, C1,2, c1,3, . . . , c~,~_l ] whenever we need to refer

to the individual state components p, or to the individual buffers c,, ~. If 5 is

a vector, the notation 0 I , will be used to denote the ith component of U. The

terms than nel, buffer, and queue are used interchangeably throughout this

paper.

The global state transition function d~ can be easily extended to the

following reachability function ti~: ( V~ x C~) x t E* + 2 ‘N’ CV:

(1) 6;([U, El, e) = {[U, El},

(2) 6X([ ti, Z], a. e) = {[v’, 71 I ~[u”, c“] e 6N([ U, 61, a), [J, F] e 6~([F, c“], e)}.

We often write ~~([uo, col, e) as ~fi(e).
We drop the subscripts in d~ and A; if no confusion arises. Furthermore,

as 8*([ U, E], a) = 6([ U, Z], a) for a single event a e ~ ~, we use 6 instead of 6*

from now on. A word e in + I* is called an event sequence. We say that an

event sequence e can lead the network from a global state [~, ~] to another

global state [U, E] if [ 0, 5] e 6([u’, ~], e). Sometimes it is more convenient to be

able to refer to the individual transitions that contribute events in an event
?

sequence. We use the notation ts = [v’, c’] -+ [O, Z] to denote the transition

sequence that leads the network from [u’, ~] to [U, E]. In this case we use

label( ts) to denote the sequence of events that occur on ts. We use the

notation [~, ~] ~ [;, E] to denote the fact that there exists some event

sequence e that can lead the network from [rJ’, ~] to [U, 5].

For an event sequence e, let pref( e) be the set of prefixes of e; that is,

pref(e) = {el I el, eze ~~*&elez = e}. For ae +x, let I el ~ be the number

of occurrences of the event a in e. Define f,, ~ as a homomorphism from + E*
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[

if ae?~,
f,,j(a) = a ~>.1

E otherwise.

For an event sequence e, f,, ~(e) is the subsequence of the events from e that

only affect the channel P, -+ PJ,

An event sequence e is executable if 6(e) is defined; that is, if ~(e) # ~.

A tuple U = V~ is a receive node if every component state p, of U is a local

receive state. R V( N) denotes the set of all receive nodes in VN.

Two event sequences el and ez are equivalent (el = eJ iff

(1) el and ez are different orderings of the same collection of even(s, and

(2) d(el) = ~(ez).

Fora NCFSM IV= (Pl, . . . . P.), the reachability set RS( N) G V~ x CN is

the set of all reachable global states, namely,

RS(N)={[ti, Ell[i7, F]~8(e), e~t Z*}.

The reachability graph RG(N) = (RS(N), E) for N is a directed labeled

graph with RS(N) as its node set and E = {[U, El ~ [u’, ~1 I [~, ~1 ~

and [~, ~] e 6([ 0, E], a)}.

Example 1. Figure 1 shows a NCFSM and its reachability graph.

that RG( Nl) is an infinite graph.

3.2 Shuffle-Products

[U, d

Note

The concept of shuffle-product is helpful in analyzing NCFSMS since it gives

a finite description of all of the possible interleavings of events in a network.

More importantly, possible contents of the buffer will be represented as paths

in the product graph. We show in Proposition 3.1 that no information is

either gained or lost in setting up these new definitions.

We need the following mappings to encode the contents of all of the buffers

as a single buffer:

h,, j is a homomorphism from Z* to 2;,,:

{
k,,(g) = g

if g~~l,,,

E otherwise.

proj is a function from z“ to

Zj,lxx:,lx”””xx:,lxx;,zx” ““xz;, zx”””xx;, nx”””xx; -l, n .

?z(n-1)

I?or a word z E E*,

proj(z) = (hl,2(z), hl,3(z),. ... hl, ~z),), h~, l(z), (,h~, ~_l(Z))_l(Z)).
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Fig 1. Network NI and its reachability graph RG( Nl). (a) Machine Pl: (b) Machine Ql;
(c) reachability graph of NI = (Pl, Ql)

Definition 3.3. (shuffle-product of NCFSMS). Let IV = ( ~1, . . . . ~n) be a

NCFSM. The shuffle-product of ~, written as S~( IV), is a five-tuple

(VN, 1, T, A, Vo), where

(1) uon [~o~, ~o~, . . . . P~n]GVN.

(2) The finite control part of S~( IV) is the transition function T: V~ x t X +
2 VN defined as

u’e T(ti, cz),

where

aef~, iff U’IJ =filJ (~G1&~ # i) and ~l,eb,(fil,, a).
z
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(3) A global state in SP(N) is of the form [u, z], where z e V~, and z e Z* is

the content of the single buffer of the shuffle-product. In particular, [vO, El

is the initial global state of SP( N).

(4) The semantics of the shuffle-product is ca~tured by the semantic transi-

tion function A: (VN x Z*) x ix+ 2VNXZ . Let [U, z] be a global state.

(a) If ~~ T(ti, – g), then [v’, z’] e A([ti, z], –g), where –ge – ~ and z’ =

z “ g; and

(b) if v’c T(fi, +g), then [u’, z’] e A([fi, z], +g), where ge ~J,,, zl. g. z, = z,

z’ = z~.z~, and hl, j(z) = g.h,, J(z2) (i. e., ZI does not contain any

messages from EJ, ,).

In Definition 3.3 send events are still nonblocking. However, to receive a

message g E XJ,, in the single channel of the shuffle-product, the first mes-

sage of z that belongs to XJ,, must be g. In Section 4 networks where the

single buffer of the shuffle-product can be treated as a strict FIFO queue are

presented; this is in contrast to how the buffer z is being used in part (4b) of

Definition 3.3.

The finite control part of the shuffle-product SP( N) can be viewed as a

(nondeterministic, in general) finite state automaton (FSA) by identifying

some subset F G V as the final state set. Such a FSA is called the shuffle-

product automaton (SPA) and will be denoted as SPA(N, F). Sometimes it is

convenient to view the finite control part of the shuffle-product simply as a

directed labeled graph, which identifies all the transitions (engendered by 7’)

in SP( N) as the set of edges E. We call such a graph the shuffle-product

graph(SPG) and write it as SPG(N) = ( V~, E).

Example 2. Figure 2 shows a network Nz = ( Pz, Qz) and its shuffle-

product.

As in the network case, the semantic transition function A can be extended

to a function from ( V~ x x*) x + X* to 2 ‘N x E*. Hence, A(e) denotes the

set of all global states that a shuffle-product can be led to by the event

sequence e. The concepts of reachability and reachability set of the networks

carry over to the case of shuffle-products. In particular, RS(SP( N)), the

reachability set for SP( N), is the set of all global states reachable from

[~, E],

RS(SP(N)) = {[ti, z]l[~, &] ~[~,z]}.

RS(SP(N)) is closely related to RS( N), the reachability set of the

network. The relationship between the two is expressed by the following

proposition:

PROPOSITION 3.1.

(1) For a word z= Z*, if [pl, . . . . p., z]e RS(SP(N)) then [pl, . . . . p.,

~1,2(z)> ~1,3(z), . ..> %, ~-l(z)l G ~S(~).

(2) If [PI, . . . . Pn, xZ,I, X3,1, . . . . x~-l,~l E RS(N), then there exists
[PI, ...> p., z] e RS(SP(N)) such that proj(z) = (Xz,l, X3,1, . . . . x~_l, J.

ACM Transactions on Programmmg Languages and Systems, Vol. 13, No. 3, July 1991
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+d -1) +d -b -b +ci -b +d

(c)

Fig 2, Network Nz and its shuffle-product SP( N2)

PROOF. Strictly from the definitions. ❑

Proposition 3.1 really says that the two reachability sets, RS( N) and

RS(SP( N)), are equivalent, since we can effectively translate one from the

other.

3.3 Safety Properties of CFSMS

Given a network of CFSMS, we are interested in finding out whether the
network satisfies certain nice safety properties. A number of safety proper-

ties of CFSMS have received broad attention. We list three of them here,

which are of special interest in this paper.
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Let Z be the set of nonnegative integers. For a language L, let IIWT(L)

denote the set of letters that appear as the first letter of some word in L, that

is,

INIT(L) = {czla. zue L}.

Let N be a network of CFSMS and [E, E] e RS(N) be a reachable global

state. Formally, we say that

(1) [V, E] is a deadlock state if the following predicate holds:

(ti, Rv(Iv))&(E=iJ.

Namely, every machine is in a local receive state, and all channels are

empty.

(2) [U, Z] is an unspecified reception state if the following predicate is true:

(3) The communication of N is bounded if the following predicate holds:

Otherwise, we say that the communication of N is unbounded.

For each of the safety properties, there is a corresponding detection prob-

lem:

(1) The deadlock detection problem (DDP) is, given a network N, is N free of

deadlocks?

(2) The unspecified reception detection problem (URDP) is, given a network

N, is N free of unspecified receptions?

(3) The unbounded detection problem (UBDP) is, given a network N, is the

communication of N bounded?

It is well known that, in general, it is undecidable whether a NCFSM is

free of deadlocks or unspecified receptions, or has bounded communication [4,

9]. Intuitively, a system of two CFSMS has the same computational power as

Turing machines since at least two unbounded FIFO queues are employed in

the system. We state this fact in the following theorem:

THEOREM 3.1. DDP, URDP, and UBDP are undecidable.

4. DATA FLOW EQUATIONS

Consider the shuffle-product SP(N) = (V~, E, T, A, UO) of a NCFSM N =

(P,,..., PJ. As in traditional data flow analysis (say, as found in [1, Chap.

101), we will set up a system of data flow equations capturing the set of all

possible contents of the buffer when the machine is in a particular state

u c V~. More formally, for a given state u we want to characterize the set

So = { z I [vO, E] ~ [U, z]}. It is easy to see that all the safety properties

mentioned above can be reformulated using the sets S’v. For example, we can
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say that a network N is free of deadlocks iff

vC~RV(N)~$SU,

Obviously, S5 is not computable. We obtain a conservative approximation

that is a superset of SU. We do so in two stages, first showing how to capture

a superset of So for strict FIFO networks and then extending it to qzmsi-FIFO

networks.

4.1 Quasi- and Strict FIFO Shuffle-Products

Recall that in Section 3 we indicated that, in general, the single buffer of the

shuffle-product need not be a strict FIFO queue. However, there are many

networks whose shuffle-product’s buffers can still be treated as strict FIFO

queues. Let us define the concepts strict and quasi-FIFO shuffle-products:

De@tion 4.1, (Strict and quasi-FIFO shuffle-products). The shuffle-prod-

uct SP( N) of a NCFSM N is strict FIFO if, for every event sequence e that

leads the shuffle-product from the initial state to a global state [E, z] e

RS( SP( N)) and for every event – g e – X,, ~, the following holds:

(z= %gz,&h,,,(z~) = ~, ~ (~e’ e + E*((e’ = e)tk([ti,gzlz,] GA(e’)))).

Otherwise, SP( N) is said to be quczsi-FIFO.

Put differently, this definition essentially says that the shuffle-product

SP( N) of a NCFSM N is strict FIFO if, whenever a global state [0, ZI gzz 1 is

reachable by an event sequence, e, g e x,, ~, and ZI do not contain any

messages from the channel P, + PJ, then the global state [ ti, gzlZ21 is reach-

able by some event sequence e’ such that e’ = e. The advantage of this

characterization is that the single queue used in the shuffle-product can be

treated as a FIFO queue.

We extend the terminology by saying that a NCFSM N is a strict (quasi-,

resp. ) FIFO network if its shuffle-product is strict (quasi-, resp. ) FIFO. We

now define an important class of strict FIFO networks. A network N =

(P,, . . . . Pm) is cyclic if the topology graph Z’G( N) is a simple cycle. Two-

machine networks considered in an earlier version of this paper [19] are

cyclic.

THEOREM 4.1. l~N = (Pl, . . . . PJ is cyclic, then N is a strict FIFO net-

work.

PROOF. Assume that N = (Pl, ., , , P.) is cyclic. We show that for any

event sequence e G & X* and for any i, J“= 1, if [ U, z] = A(e), where ~=

zl.@27g~xi, J) and hJ, ,( Zl) = s, there exists another event sequence e’ = e
such that [0, gzl 221 G A(e’).

As hJ,,(zl) = s and N is cyclic, we can write ZI as gl g2 “ “ “ gh, where

gl e X ,1,Jl and il # i (1 s 1 s k). The event sequence e itself can be written as

wo(–gl)wl(–g2)% ““” (-gk)wk(-g)w,+,>

where – gl(l ~ 1 ~ k) is the send command that placed the message gl

(l<l<k) inthebuffer andwle(+ E)*, Osl=k+l.
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We want to show that all the send and receive events from + E, in wl

(1 <1< k) Can be pushed to a position before –gl. After such a reordering of

e, the event – g can then be pushed to a position before – gl, thus proving

our theorem.

Let us first look at W1. Let w ~ = w; rl w!, where w; contains only send

events and rl is the first receive event on w ~. As the message gl is still in

the buffer at state [0, z], we are ensured that WI does not contain any send

events from – Z,,, ~l. Therefore, all the send events on w ~ can be moved to a

position before the event – gl without affecting the final global state [ii, z]. If

rl @+ Z 11,itcan also be pushed to a position before – gl. Otherwise, let rl be
left in its current position. The same procedure can be recursively applied to

w; until an event sequence UI = u:( – gl) u{ is obtained, where WOU1 =

wo(–gl)wl, u: c((+ Z) – (+ z,,)) *, and u: C(+XY,)*.

Inductively, the above procedure can be apphed to Wz, . . . . w~. When

applied to Wl, the key observation is that wl does not contain any send events

from –XZIU .“” U –Zyl. An event sequence ul = u~(–gl)u{(–gz)u~ . . “

(-gz)u; can be obtained, where WOu~u~ . “ “ .u. ~ul = W. (-&Jl)rJl

““”(–gl)w~, andeach of the &e(+X,lU “.” U + E,,)”, 1 = k’ s 1.
Since N is cyclic, il # i for all 1 s 1 s k. After uh is obtained, we can

safely push the event – g before gl. As every event sequence resulting from

each of the above steps is equivalent to the sequence before the procedure is

applied, we are assured that e’ = e. ❑

4.2 Data Flow Equations for Quasi-FIFO Networks

For a language L G z*, the quasi-derivative of L with respect to a letter (i.e.,

a message in this context) a e z,, ~ c X, notated as uL, is the language

{ z I ~z’ = zlazz e L, z = zlz,& hJ, ,(zJ = s}. Consider a typical state B in the

shuffle-product SP( N), as shown in Figure 3. Observe the following:

(2) If ~ ~g U, then gSZG S,.

Therefore, for each node 3 e SP( N), we create an equation EQC, defined as

The only exception is that for the state ~ the term E is also added to the

right-hand side of the equation. This indicates that the channel is initially

empty. For a shuffle-product SP(N), let EQ(SP( N)) be the system of data

flow equations set up according to above-mentioned rules.

Example 3. For the network Nz shown in Figure 2, the system of data

flow equations .EQ(SP(N2)) is

A A

‘[1,5] = bs[l,8] + ‘s[4,5] + ‘; ‘[1,61 = ‘[1,51C + dS[4,6];

[1,71 = ‘[l,6]d + ‘s[4,7]

.

s ‘[1,8] = ~S[1,71 + dS[4,8];
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Fig 3 A typical node in SP( N)

/
‘[2,5] = bs[2’,8] + ‘[1,5]% ‘[2.6] = ‘[2,5]C + ‘[1,6]U;

s [2.71 = ‘[2,6]~ + S[~,~,CZ;
.

‘[2,81 = as[2,7] + ‘[1,8]%

s [3,51 = ‘s[3,8] + %z,s,~; ‘[3,6] = ‘[3,5]C + ‘[2,6]b;

‘[3,7] = ‘[3,6]d + ‘[2,7]6; ‘[3,8] = 6s[3,7] + ‘[2,8]6;

A
.

‘[4,51 = 6s[4,8] + ‘s[3,5];

.

‘[4,6] = ‘[4,6] = ‘[4,5]C + ‘s[3,6];

.
‘[4,7] = ‘[4,6]d + ‘s[3,7];

. .

‘[4, 8] = ‘s[4, 7] + ‘s[3, 8] .

We can interpret the data flow equations as follows: Each variable S,

represents a language. A term of the form So “ m represents the concatena-

tion of language SD and the letter m. A term of the form gSz represents the

quasi-derivative of language SD with respect to the letter g. The symbol +

represents the union of languages. Intuitively, the equations capture the fact

that the contents of the buffer at a state depend on the contents of the buffer

at its predecessor states. Such relations have been collected into the set of

equations 13Q( SP( IV)).

It is easy to see that .:,+, and quasi-derivative are all continuous functions

over complete lattice (2 - , G). Hence, a unique least fix-point to the data flow

equation 17Q( SP( N)) exists.

4.3 Data Flow Equations for Strict FIFO Networks

The quasi-derivative operation is defined to characterize the receive opera-

tion on the single buffer of the shuffle-product. Strict FIFO networks are of

special interest, since we can replace the quasi-derivative operation in the

data flow equations by the standard derivative operation, For a language
L < E*, the derivative of L with respect to a letter a G E, notated as tiL, is

the language { z I ~z’ = az ~ L} [5].

ACM TransactIons on Programmmg Languages and Systems, Vol 13, No 3, July 1991



Data Flow Analysis of Communicating Finite State Machines . 413

The question is, can we decide whether a given word belongs to the

solution of the data flow equations? Unfortunately, the answer is negative. It

is shown in [17] that the class of possible solutions to these equations is

equivalent to the class of recursively enumerable languages.

4.4 Usefulness of Approximate Solutions

A superset of the least solution gives sufficient conditions to ensure that

something bad (e.g., deadlocks, unspecified receptions) will never happen.

For instance, let { Lf,x(ti) I U e V~} be the least fix-point to the data flow

equations EQ(SP( IV)). Let {L(U) I U e V~} be a system of superset solutions

to the data flow equations, namely,

LfLJq G L(z).

If E # L( U), then we can reason as follows:

If u is a receive state tuple and & # L( V), then we can conclude that [U, ~1 is

not a reachable state.

A natural question is: can we find a system of supersets that is useful

in determining the safety properties of NCFSMS? The term useful implies

several things. First, the membership problem of the superset solutions

should be decidable, as can be seen from the example. Second, it should be

reasonably tight, that is, close to the actual solutions. Any approximation

technique will fail to work under certain circumstances. However, to have

practical value, it should be able to work well for a relatively large number of

practical problems. And, last, but certainly not least, it should be computable

with reasonable costs (time and space).

In the next section, we propose approximation methods to compute superset

solutions to the least fix-point.

5. APPROXIMATE SOLUTIONS FOR STRICT FIFO NETWORKS

Based on the data flow equations set up in the last section, we present our

main results in this section. In Section 5.1, we present a general discussion of

the heuristics used. In Sections 5.2-5.5, we provide an intuitive explanation

of our algorithm. The algorithm itself is presented in Section 5.6. In Sections

5.7 and 5.8, we formally show that our algorithm provides semantically

sound information.

5.1 General Heuristics

A commonly used technique for solving equations like l?Q(SP(N)) is to

iterate through the equations using empty sets as the first approximation. As

we are dealing with lattices of unbounded height, we are not assured of

termination.
Certainly, one needs a bounded lattice to have a terminating flow analysis.

From the definition of deadlock and unspecified reception in Section 3, it can

be seen that given a state [u, .3 = [PI, . . . . Pn, Cl, z,. . . . c., ~_ll it is enough to
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know

— whether c,, ~ is empty; and

—if c, ~, is not empty, the first message in that queue, that is, INIT(c,,,)

This suggests bounding the length of strings in the languages Lo. But, by

doing so, one would be obtaining an analysis based on bounded buffers; a

solution that is not acceptable. In Section 3 we saw a correspondence between

transition sequences and event sequences. In much the same way, one could

talk about a correspondence between transition sequences and sequences of

messages in a buffer. The equations I?Q( SP( N)) could then be framed such

that the identity of the edge sending a message is captured instead of the

message itself. Clearly, the message type can be easily recovered once we

know the identity of an edge. For example, the equation for S,l, ~1could now

be read as

[171 = %1([W ‘d [1771)+ ~%1s

Of course, we would have to redefine what the quasi-derivative operator is.

But, once we have set up such equations, a solution would consist of a set of

sequences of send edges/transitions in the shuffle-product graph/automaton.

The advantage of rephrasing these equations is that we can now bound the

length of the sequence of transitions and, yet, obtain a solution to the

original problem of dealing with unbounded buffers. For instance, by bound-

ing the length of the sequence of edges to one, we would essentially be

computing the set of all edges that contribute the first message to some

buffer in some string of Lc. What follows is an attempt to come up with a

definition of quasi-derivative on sequences of edges in a way that preserves

the semantics. Corresponding to the two pieces of information we need for

deadlock and unspecified reception analysis, we compute the following:

— a Boolean empty[ U] satisfying the property

[U, c] eRS’(SP(N)) = empty[il] = 1;

—a set first[ U] s Es (the set of send edges in the shuffle-product graph) such

that

{ml - m=l~~ez(f~~s~[fi])}2 {INIT(Z) I [u, Z] CRS(SP(N))}.

Furthermore, computation of first[ U] would allow us to encode the possible

contents of the buffer at U (i. e., members of SD) as certain paths between
e ● fznst[ 0] and u in the shuffle-product graph. We develop a solution to the

data flow analysis problem in two stages: First, we consider strict FIFO

networks and make use of the fact that quasi-derivatives can be replaced by

derivatives in the flow equations. We then extend the algorithms for the

strict FIFO networks to the more general quasi-FIFO networks.

The work presented here is also similar to Jones and Muchnick’s work [12]

on analysis of LISP-like programs. Much like their work, we would like to do

away with the differential terms and arrive at equations with just the
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concatenation and union operator. Again, we cannot be completely successful

due to the undecidable nature of the problem. What follows is an attempt to

do away with the receive edges in a shuffle-product graph, replacing them

with appropriate first sets and &-edges (to be defined and explained shortly).

In carrying out this replacement, we want to make sure that the original

reachable global states are preserved.

5.2 Heuristics for Strict FIFO Networks

Strict FIFO networks possess a very nice property, as expressed in the

following lemma:

LEIWMA 5.1. Let [G, .zI gzz 1G SP( N) be a reachable global state, where, for

some i, j~I, g~X,, J, and ZI do not contain any message from 1,, ~. If

[Z, Z1gz21 is reachable by a transition sequence ts, then there exists another
transition sequence ts’ leading to a global state [C, gzl Zz 1. Furthermore, label

(ts) = label(ts’).

PRooF. Directly from Definition 4.1 of strict FIFO networks and the

correspondence between transition sequences and event sequences. ❑

–g —
From Lemma 5.1, whenever U’ -+ U“ can occur in a transition sequence ts

that leads to a global state [~, ZI gzz 1, where g e E,, ~, and whenever ZI does

not contain any message from X,, ~, there always exists another transition

sequence ts’ that leads to [U, gzl Zz 1. As messages are added to the end of the
–g —

queue of a shuffle-product, the edge se: v’ + u” that contributes the message

g in ts’ occurs before the edges that contribute messages in ZI Zz. If we

analyze the states reached in prefixes of the transition sequence ts’, we find

that, in all prefixes that include the event se, the single buffer will never be

empty (the message g will always be in the queue). Furthermore, we would

find that the edge se: ~ ~g ~ is the first send edge whose contribution to the

buffer (g in this case) has not been removed in the sequence ts’. Now, the

transition sequence ts’ leads the system to the node U with the effect that the

transition se contributes the first message in the queue.

Based on this observation, we associate a set first[ U] with each node E,

which is intended to include send edges ~
–g —
- u” with the property that there

exists an execution sequence

such that labels of the transitions in the execution sequence ts: [~, al az “ “”

~ngl ~ [fi,goldz ““” Pm] are a shuffle of the sequence of receive events
(+a1)(+cY2), . . . . (+ a.) and the sequence of send events ( – 61)

(-62),... )6m)m).

5.3 Information Propagation

we call a path r from 0 to u’ in S’P( N) a send path if all the edges in r are

send edges, written as 0 ~ ~; and c-path if all the edges are E edges, written
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If r contains a combination of send, receive, and c-edges, then it is written as
*

~+g.

Consider a path

–l?l — –Z+’2 –gk —
r: VO 4v~+”””+vk

in the shuffle-product graph of Figure 4a, and its corresponding execution

sequence

— —
At each of the states Vl, Uz, . . . . v~, the first message in the queue is of type

–gl —
gl. Since the edge sel: UO + UI is the cause for this first message, we can

infer that sel should be m the ftrst sets of the nodes Ul, Uz, . . ., Uk. This

observation provides us with the initialization step of the algorithm:

Again consider the execution sequence r of Figure 4a. The execution
— +gl _

sequence r can be extended to include the receive edge rel: vk ~ v; to

obtain an execution sequence r’,

By inspecting r’ we can observe that (1) the effect of the receive edge rel has

been to remove the message enqueued by the send edge sel, and (2) the
–A’2 — .

message gz sent as a result of the edge sez: VI + Vz M the first message in

the queue at state [v~, gz “ . “ g~ 1; thus, sez should be in first[v~]. But how can

we infer this without explicit construction of the possible execution se-

quences? The former can be inferred based on the fact that a receive edge re:
–g —

5 ~g ~ matches a send edge se: v’ + v; provided se is in first[ u]. The latter

was inferred based on the fact that there is an execution sequence e contain-

ing send edges sel and sez and a receive edge rel, such that (1) sel appears

before sez, which in turn appears before rel in e; (2) sel and se~ can be

matched; and (3) there are no other send events between sel and sez in e.

Clearly, the problem of finding a send edge sez whose effect is exposed

when we match a send edge sel against a receive edge rel satisfying all the

conditions given above is not decidable. We, therefore, have to settle for

conservative approximations to the set of edges that could possibly be

exposed when a receive edge is matched against a send edge. Zooming in on a

receive edge rel and a send edge sel that are matched, we can see that a send

edge sez that is exposed as a result of the match would lie on a path, of the

shuffle-product graph, starting from the target of the send edge and ending at

the source of the receive edge. Furthermore, sez should be the first send edge
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Fig. 4, Intuitive explanation. U. + VI is matched with v~ + u~.

on this path. Since we do not know the identity of this path, we would have to

consider all possible paths between the target node of sel and source node of

rel, in the shuffle-product graph, for edges that could be exposed as a result of

matching sel and rel. Clearly, any arbitrary path should not be used. A
path, of the shuffle-product graph, should be considered if there is an execu.

tion sequence that includes it. To characterize such paths of a shuffle-product

graph, we use two relations, reach and epsc (read as ~-closure), among nodes
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such that

u’ereach[ti] if tsl: [uO, ~] ~ [u, X] and tsz: [u, x] ~ [u’, Y] ;

u’cepsc[fi] if tsl: [UO,’~ ] : [ti, x], (1)

tsz: [U, x] ~ [~, y] , and ts2 contains no send edges.

Thus, the iterative step of our algorithm is,

–g — +g —
Let sel: UI -+ U2 and rel: v; + u~ match, that is, sel e first[u~].

—m —
a send edge se: c ~ v’ can be added to first[v~] provided U e epsc[vz] and

~e reczch[v’1.

Note that there are only a finite number of edges that can be added to first

sets. Hence, this iterative step is guaranteed to terminate.

5.4 Empty Buffer, Reach Set and epsc Set

We associate a Boolean variable empty[ U] with each node fi, which is in-

tended to record whether the node u will ever be reached with the buffer

being empty. empty[ D] is initialized to O and will be set to 1 when we can

infer that node G could possibly be reached from UOwith an empty buffer.

Consider Figure 4b as an example. Initially, the buffer is empty. At node

u,, O < i < k, the buffer contains gl “ “ “ g,; while at node u;, 1 s i < k, the
–g~ —

buffer contains g,+ ~ “ . . gk. After the send edge U~ ~ + v~ is matched
+g~ _

against the receive edge vi_ ~ + vi, the buffer is empty at node vi. The

problem is that we have no information to infer that v; is reachable with an
— –~k —

empty buffer. Furthermore, the send edge v~ ~ + Vk and the receive edge
+g~ —

u~. l + vj could be very far apart in the shuffle-product. To solve this
–gl —

problem, we add an c-edge Vh ~ vi to the shuffle-product when VO + VI 1s
+g —

matched against Vh + v;. Similarly, an z-edge v: ~ v~+l is added when ~
–gt+l — +gz+l —

+ v,+ ~ is matched against v; + Vj+l, 1 s i < k – 1. Whenever a send
–gL+l — +g, +~ —

edge vi + v~+ ~ is matched with a receive edge v; + v~+l, we test if v;
can be reached from UC + ~ purely through s-edges If so, we can infer that the

buffer could possibly be empty at node v~+ ~, and we can set empty[u~+ ~] to 1.

Note that this is a conservative inference. Even though we might set

empty[v~+ ~] to 1, there might be no actual execution sequence that leads to

the global state [v:+ ~, s]. On the other hand, if there exists an execution

sequence such that [U, s] is reachable, our algorithm would definitely set

empty[ U] to 1.

The s-edges added in this process can be used for fixing reach and epsc

sets. It is easy to see that the following definition of reach and epsc satisfy
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the requirements given in condition (l):

epsc[ U] = {~ Ithere exists an ~-path from u to u’},

reach [ D] = {U’ Ithere exists a path containing only s- and

send edges from ii to ~}.

5.5 Jumping over Nodes

Adding c-edges after a match will cause some false reports; that is, we may

report that some node U can be reached with the buffer being empty,

although the state [U, c] might never be reached. This is one of the reasons

why the method proposed in this paper is approximate. As indicated earlier,

~-edges are needed to propagate information. However, indiscriminately

adding ~-edges would cause some obvious false reports, which can be pre-

vented using some simple heuristics.

Consider the case shown in Figure 5a, where U1 :g ~e first[~l. If we add
—— +g —

an &-edge Vz ~ US when the receive edge U2 -+ V3 is checked against the
–g~—-—

send edge VI ~g ~, the pa~h Va + V2 ~ v~ could be used to claim that

execution can reach state V3 with message gl in front of the buffer. Obvi -

OUSIY, this is a false report. To avoid such undesirable reports, jumping over
–g —

nodes is used. Whenever a send edge VI 4 Vz is matched with a receive edge
+g —

V3 ~ Vh, we test if Va can be reached from Vz purely through ~-edges, that is,

if GE epsc[vzl. If so, we do not add an E-edge v~ ~ ~. Instead, we set empty[u41
–g’ —

to 1 and place the send edge VL ~ v~ into first[ vI, where u is reachable from

V5 purely through send edges. This process is depicted in Figure 5b. For

instance, when the edge ~ ~g ~ is matched with edge & ~g ~ in Figure 5a,
–gl — —

empty [~] is set to 1, and the send edge V3 - V2 is added to first[vzl and

first[vJ. Jumping over nodes more accurately reflects the execution seman-

tics of NCFSMS.

5.6 The Algorithm

We can apply the ideas given above recursively to match each send edge se: VI
–i!! — +g —
~ V2 with a receive edge Vz + V4, where se G first [~], until none of the first

sets can be augmented. During the algorithm, the first sets of some nodes in

SPG(IV) will be augmented, and new ~-edges might be added to the shuffle-

product graph.

We are now ready to describe our approximation algorithm formally.

Algorithm 5.1 takes the shuffle-product graph SPG( N) = ( VN, ~) as input.

It then initializes a new graph G = ( VN, E’), where ~ contains only the
send edges in E.

Besides the arrays first, empty, reach, and epsc, two additional arrays,

send-reach and iepsc, are employed. The send-reachable set (send-reach) for a
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Fig.5. Jumping over nodes

node fi~ V~ is defined as

Notice that send-reach is initialized once by Algorithm 5.1 and is not

changed afterward. The s-closure (epsc) and inverse s-closure ( iepsc) are

initialized as

epsc[ti] = {U},

iepsc[fi] = {U}

and are changed whenever necessary to maintain the invariant:

iepsc[ti] = {v’1~ ~ tieG’}.

The arrays first and reach are initialized as

first[ti] = {uO + Ullul-g ——&esP(Iv)},

}
reach [ti] = {~\ti ~ u’c G’ .

In the algorithm the adjacency lists for SPG( N) and G’ and the variables

epsc, iepsc, reach, and send-reach are globally referenced. The algorithm
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consists of a main program and five procedures: propagation, nodeg”ump,

adjust-eps, adjust-reach, and insert-Q.

Step 1 initializes the relevant variables used in the algorithm in terms of

their definitions. The output graph G initially contains only send edges from

the shuffle-product graph. Q is intended to hold all of nodes ti, the first set of

which has been changed. Initially, a node D will be put into Q if flrst[ U] is

not empty.

Step 2 consists of a while loop from lines 2.1 to 2.5. At the beginning of

each iteration, Line 2.2 picks up a node ~ from Q. The for loop at line 2.3
+g —

picks up a receive edge e: ~ ~ Uz. The for loop at line 2.5 then scans each
–g —

send edge e’: ~ ~ U4 from the set first[~l and invokes the procedure

propagation, with the (four) end state tuples of these two edges as parame-

ters.

Procedure propagation does three things: (1) It calls procedure node-jump

if it is necessary to jump over nodes (lines 2 – 3); (2) it modifies the first sets of

relevant nodes if necessary (lines 1, and 4–9); and (3) it calls relevant

procedures to modify the epsc, iepsc, and reach sets accordingly. It takes four

parameters: ret-start, ret-end, send-start, and send-end, which are, respec-

tively, the starting and ending nodes of the receive edge re and the starting

and ending nodes of the send edge se. At line 1 it first collects all send edges

of the form 0 ‘Y ~, such that there exists an &-path from send-end to E and

there also exists a path from U’ to ret-start, as illustrated in Figure 6, putting

all of these send edges into the variable send-set. Line 2 checks if it is

necessary to jump over nodes; lines 5 – 9 propagate the send edges.

Algorithm 5.1 Compute the first sets and Boolean array empty.
Inputi The shuffle-product graph SPG(N) = ( V~, E), where N is strict FIFO.

Output: A graph G = ( V~, E’). Each node u e V~ has a first edge set fh-st[ 01

and a Boolean variable empty[ O] that satisfy the following
(1) If there is a global state of the form [0, z] where h~, ,(z) = gx, then a

send edge of the form ~ ‘+g Z, where v~I , =
first[ti].

P,andil,=p;,willbein

(2) If the global state [U, e] is reachable, then empty[ U] = 1.
Step 1. /“ initialize relevant variables ‘/

1.1 E’:= @;

1.2 for each send edge e: ~ ~g Kc E do
E’:= E’ U {e};

1.3 Q:= o;
1.4 for each node c E V~ do

begin
empty[ii]:= O;

epsc[ti]:= { 0};

iepsc[O]:= {i7};

reach[ti]:= {~ I U ~ Ze G};

sencl-reaclz[ u]:= {~ I u ~ ~= G’};

first[O]:= {v. 2g ~ I 0 e send-reaclz[vll};
if first[ U] # @then
~n:= g u {q’;
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epsilon path
QSs
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.. . . . . . . . . . . . . . . .
. . . ... . . . . .. . . . . .. . .. . . . .

. ..-
. . . .

send edges’ . . .

to be put into

send-set \

n .........................“ . . . .

. . . . . . *

Ss send-start

SE send-end

RS ret-start

RE ret-end

Fig 6

(5
+g

RE

Send edges to be collected at line 1

Step 2.
2.1 while Q+ @do

begin
2.2 remove the first node VI from Q;

+g —
2.3 for each receive edge VI - vz~Edo

2.4
-g —

foreach send edge U3 + U4E first[ul] do
2.5 propagation(~, ~, v3, u4);

end
procedure adjust eps(rec-start, ret-end);

begin
for each node iletepsc[rec-start]do

espc[ti]:= epsc[ti] U epsc[rec-end];

for each node ~~epsc[rec-end]do

iepsc[ti]:= iepsc[ti] U iepsc[rec-start];

E:=E’U {ret-start ~ ret-end};

end ‘* end of adjust-eps */
procedure propagation(rec-start, ret-end, send-start, send-end);

begin

1. Let send-set = { u ‘~ ~ I u e epsc[ send-end] and ret-start= reach[~]};
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2. if ret-start e epsc[ send-end] then /“ jump over nodes “/
3. node-jump(rec-end);
4. if send-set # O then
5. for each node v, ● send-reach(rec-end)do

6.
–g’ —

for each send edge e’ = c + v’e send-set do
7. if e’ # first[vl] do

begin
8. f%st[ul]:~first[~] U { e’};
9. insert-Q(vl);

end

10. if (ret-start ~ eps[ send-end]) and (ret-start ~ ret-end # E’) then
11. adjust-epsc( ret-start, ret-end);
12. adjust-reach( send-end, ret-start, ret-end);

end /* end of propagation */

procedure node-jump(rec-end)
begin

empty[ ret-end]:= 1;
–g’ —

for each send edge e’ = ~ + v’ such that u e epsc[ ret-end] do
for each node VI such that cc send-reach[~] do

–g’ —
if ij + v’# fh-st[~] then

begin —
insert-Q(vl);
first[~]:= first[~] U {e’};

end;
end; /* end of node-jump *I

procedure insert-Q(U);
begin

if ti#Q then Q:= QU {u};
end /* end of insert-Q */

procedure adjust-reach(send-end, ret-start, ret-end);

begin
for each node c e reach(send-end) do

if ret-start e reach[ U] do
reach[ u]:= reach[ U] U reach( ret-end);

end /+ end of adjust-reach */

Line 5 considers each node UI that is in the send-reach set of the node

ret-end. Lines 6–9 add each send edge e in the send-set to first[~] if e is not

already in it. Line 9 calls procedure insert-Q to insert VI into Q if its first set

is changed. Line 10 tests if an &-edge should be added. If so, line 11 calls

procedure adjust-eps to modify the epsc and iepsc sets. (An explanation for

procedure adjust-eps follows.) Finally, it calls procedure adjust-reach to

modify the reach sets. Procedure nodeg”ump takes one parameter ret-end,

which is the end node of the receive edge re. It first sets empty[ rec-endl to 1

and then performs the necessary actions for jumping over nodes, as explained

in Section 5.5.

Procedure adjust-eps takes two parameters, ret-start and ret-end, which

are, respectively, the start and end nodes of the receive edge re. It is called

only when a new &-edge from ret-start to ret-end can be added into G (lines
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10-11 in procedure propagation. ) Since and &-edge ret-start ~ ret-end is

added, we need to adjust the epsc set for all nodes in iepsc[ ret-start 1 and the

iepsc set of all nodes in epsc[ rec-endl.

Procedure adjust-reach takes three parameters, send-end, ret-start, and

ret-end, which are, respectively, the end node of the send edge, and start and

end nodes of the receive edge e. It is called only whenever a send edge se is

matched with a receive edge re. For each node 6, if

[send-end, x] ~ [u, y] ~ [ret-start, z]

then all nodes in first[ reach-end] are added to reach[ 01.

5.7 Correctness of Algorithm 5.1

The following theorem shows that Algorithm 5.1 always terminates, and

bounds the time and space requirements of the algorithm:

THEOREM 5.1. Algorithm 5.1 terminates. Let N = ( Pl, . . . . PJ be a

NCFSM where machine P, has ml states and ~X ~ = k. Let tl = ml mz “ “ “ m.

andtz=mlmz+ .“” +m.. The algorithm needs time 0( t! t~k4) and space

O(tftzk).

PRooF. Since I E I = k, a state p, in P, can have at most m, k receive

edges. So a state tuple E in SP( N) can have at most t2k receive transitions.

Similarly, a state tuple fi can have at most t2k send transitions. Therefore,

the number of possible edges in SP(N) is bounded by O(tl tz k). From these,

it is clear that Step 1 takes 0( tft2k) time.

The size of a first set for a node ij in SP( N) is bounded by 0( tlt2k). Line 1

and lines 5–9 in procedure propagation each take time 0( t:t2k). An invoca-

tion of procedure node-jump in procedure propagation also takes time

O(t~ tz k). An invocation of procedure adjust-eps or procedure adjust-reach

takes time 0( t?). So a call of procedure propagation at line 2.5 of Step 2

takes time O(t~tz k).
Each iteration of the while loop in Step 2 adds at least one edge into the

first set of some nodes and takes time O(t~ t~k2). So the while loop in Step 2

iterates at most t?t2k times. Therefore, the total time is bounded by

O(t; t;k4).

The adjacency lists for the shuffle-product need space 0( tft2k). The first

sets also take 0( tft2k) space. The variables epsc, iepsc, reach, and send-

reach occupy 0( tf) space. Altogether, the space requirement is bounded by

0(t~t2 k). ❑

We now show the soundness of the algorithm by proving that every

reachable state with a nonempty buffer is characterized by appropriate first

and reach sets.

LEMMA 5.2. Let C be a node in V~. If there is a global state of the form
–gl —

[u, gl . . . gJl, then first[ El contains a send edge of the form ~ + u;.
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PROOF. Assume that [ fi, gl . . . g,] is a reachable global state in S~(~),

that is, that there exists a transition sequence ts = [vO, S1 ~ [Vi, zll ~

[z,221 J [i, .211 ~ [0, z]. Let e = label(ts) = ala2 “”” al. We show by

induction on the number k of receive events in e that the theorem holds.

Basis: k = O; that is, e does not contain any receive events. Then all events

in e are send events. Line 1.3 would put the edge ~ ~ ~ into first[ C].

Obviously, the send path ~ ~ ~ ~ vl ~ E is always in G’. By identifying

a, with – g,, we can see that the conclusion trivially holds.

Induction: Assume that for some k – 1>0, when the global state

[D, g, . . . g,] is reached by no more than k – 1 receive events, the conclusion
holds. Con~ider a global state [0, z] reachable by k receive events. Let ts =

bl _ bk _

[~, El ~ [Ul, 211 + [V2, 221 ~ “ “ “ J [v2&l, z2&ll + [Uzk, Zzkl ~ [U, .21,
where b, (1 s is k) is the ith receive event on ts. The state [v2~_ 1, zzk_ l] is

reached by k – 1 receive events. By the induction hypothesis, there exists a
–gl ~ c“ ~ –gz — .“+ –g, — .* —

path r:v~ + VI ~ V2 + v; + ““” V; + v: + v2h_lin G,suchthat~
–gl — —

+ v;efirst[V2~_l] and gl “ “ “ gJ = z2k_l. Without loss of generality, as-

sume that bk = +ge + XJt,, for some i’, j’ e I; namely P, is trying to receive

a message g sent by PJ. Note that all of the transitions after the state
+

[V~k, z~k 1 on ts are send transitions. Therefore, the send path r’: v2h ~ U,

which corresponds to the portion of the sequence ts from [V2 k, zzh 1 to [D, z], iS

in G’. We distinguish two cases here:

Case 1. z2k = E.
–g—”—

Then r must be of the form vi ~ v: ~ v2~_l. Let

[Uzk,Zzk] ‘: [Vzk+ ~, zzk+ ~1 be the send transition after the state [Vzk, z~k].
Then jumping over nodes (line 3 in procedure propagation) would put the

send edge vzk ‘~g V2k + ~ into first[ u]. Let w be the concatenation of the

messages sent on path r’. It is easy to see that w = z and that the theorem is

true.

Case 2. z2k # E. Let w be the concatenation of the send messages on path

r’. Again, we consider two cases.
~h—.

If –gl = –g (i.e., gl = g), then when the receive edge v~h.~ + vzh 1s
–gl —

matched with the send edge v ~ + v; at lines 2. 3–2.4 the invocation of
–g2 y

procedure propagation at line 2.5 would put the edge ~ + V2 mto first[ fil.

Obviously, gz “ “ “ g] w = z.

If –gl + –g, then – gl $ – ZJ’,, (otherwise, either an unspecified recep-
tion would occur or e is not executable). Let tsl be the portion of ts from
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[rJo,El to [Uzh_l, zz~-ll. Let [u;, z;] ~ [u;, z:] be the send transitions on tsl,
where dt = –g and d, = –g, + –~, ,, (1 ~ i < t) As N is a strict FIFO

network, by Lemma 5.1, there exists another transition sequence ts2= [uo,E]
*

1 here z’+ [u~~–~, zj~_~ >w 2k–l=ggl ““” g~_l&?t+~ ““- g] (note that zz~ _ ~ =

gl ””” gt-lggt+l .““ gj) and label(ts2) = label(tsl). Since ts2 has k – 1 re-

ceive events, by the induction hypothesis there is a path

–g ~
in G’, where the edge vi + Vle first[v2~_l] and ggl . . . gt_lg~+l . . . gJ =

+g —
z; k. ~. Therefore, when the receive edge Vfk _ ~ + v2~ is checked against the

–g > –gl ~

send edge vi + Vl, the edge V; + V2 would be added to first[ U]. This

completes the proof. ❑

We now show that our unspecified reception analysis is sound

THEOREM 5.2. (Detecting unspecified receptions in strict FIFO networks).
Let 5 be a node in V~. If there is a global state of the form [ fi, zlgz~], where,

forsomei, j~I, g~~,,,, and zl do not contain any message from E,, ,, then a
–i$-.

send edge of the form u’ + v“ w in first[ 0].

PROOF. From Lemma 5.1, if [U, zlgz2] is a reachable global state, then

there exists another reachable global state [D, gzl Z2 ]. By Lemma 5.2, if

[U, gzl221 is a reachable global state, then there exists some send edge v’ ~g Z

in first[ D]. ❑

The significance of Theorem 5.2 is as follows: From Proposition 3.1, if [ U, z]

is a reachable global state of the shuffle-product, then [U, c] is a reachable

global state of the network, where c,, ~ = h],, ( z), i, j e I. Theorem 5.2 says

that if c, ~
–g —

= gc~, ~ then there exists a send edge v’ ~ u“ in first[ u]. There-

fore, to check if N is free of unspecified receptions at a node G, we merely

need to look at the set first[ u]. Our next theorem concerns deadlock detec-

tions.

THEOREM 5.3. (Detecting deadlocks in strict FIFO networks). If node [~, s]

is reachable, then empty( U] = 1 after Algorithm 5,1,

PROOF.
+g

empty[ U] can be set to 1 only when a receive edge u’ + G is
–g —

matched against an edge UI G U2 in first[u’] where the node u’ is in the

--closure of the node V2..
Let 0 e V~ and [U, e] be a reachable global state in the shuffle-product; that

is, there exists an execution sequence
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The event b must be a receive event. Assume that b = + g c +X, , for some
–g —’<* —

i, jeZ, and z’ = g. By Lemma 5.2, there exists a path r: VI ~ U2 ~ U’ in G’
–g — +g

and the edge e: UI ~ Uze first[u’1. Therefore, when the edge ~ ~ U is

checked against e at lines 2. 3–2 .5, a call to procedure nodej”ump at line 3 in

procedure propagation will set empty[ VI to 1. ❑

For each node U e V~, define head[ U] = { g I UI ~g ~e first[ u]}. The restric-

tion of head[ U] over machine P,, notated as head[ U] \ P,, is defined as

head[ti]\ P, = {g I gehead[til and ~jel(ge~j,,)}.

It is clear from Theorem 5.3 that to check for deadlocks we only need to

look at the Boolean array empty, while from Theorem 5.2, to check for

unspecified receptions, we only need the collection of message set head. From

the definition of unspecified reception, we can get the following two impor-

tant corollaries:

COROLLARY 5.1. If first[ U] = # and empty[ U] = O, after Algorithm 5.1,

then 5 is an unreachable state.

COROLLARY 5.2. Let N = (PI, . . . . PJ be a NCFSM. A receive node p, in

machine P, (1 s i s n] is free of unspecified receptions if for all GE VN, where

P, is a component state in ~, RMsg( P,) z head[ 01 \ P,.

Theorem 5.3 and Corollary 5.2 suggest the following algorithm for detect -

ing unspecified receptions and deadlocks in a NCFSM N = (PI, . . ., PJ:

Algorithm 5.2 Detecting deadlocks and unspecified receptions in a NCFSM.

1 Construct the shuffle-product graph S~G(~) = ( VN, E)

2 Apply Algorithm 5.1 to SPG(IV). Let G = ( VN, E’) be the output graph.

3 For each receive state tuple u e V~, if empty[ al = Q declare that [ U,:1 is not

a reachable global state (and hence not a deadlock state).

4 For each node tie VN, construct head[ U] I P, for all i e Z.

5 for i:= 1 to n do

for each receive node p e P, do

if RMsg( p) z head[ U] I P, for all Ue VN where p isa componentin ~

then

Declare p free of unspecified receptions.

6 If each receive node p ● P, is free of unspecified receptions, then declare that

P, free of unspecified receptions. Otherwise, state that P, probably has

unspecified receptions.

7 If all P, in the network are free of unspecified receptions, then declare N to

be free of unspecified receptions. Otherwise, state that N probably has

unspecified receptions.

Example 4. Consider the NCFSM Nz = ( PZ, .QZ) shown in Figure 2. Nodes

3 and 4 in P2 are receive nodes. RMsg(3) = { c}; RMsg(4) = { d}. Nodes 7

and 8 in Qz are receive nodes. RMsg(7) = { a}; RMsg(8) = { b}. There are 16
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send edges in SP( NJ. Let

e,= [1,5] ~“ [1,6], e~ = [1,5] ~“ [2,5],

es = [1,6] <b [1,7], el= [1,6] ~a [2,6],

e,= [2,5] ~a [2,6], e,= [2,5] ~b [3,5],

e,= [1,7] ~a [2,7], e,= [2,6] ~b [2,7],

e9 = [2,6] G’ [3,6], e,,= [3, 5] ~a [3,6],

ell = [1,8] ~a [2,8], elz= [2,7] ~ [3,7],

e,, = [3,6] ;’ [3,7], e,,= [4, 5] <U [4,6]

@l, = [2,8] ~ [3,8], e,,= [4, 6] ~b [4,7].

By running Algorithm 5.1, we can get

em@y[3, 7] = evzpty[3,8] = en-@y[4,7] = en-@y[4,8] = O.

And also,

first[3,5] = first[3,6] = fi7-st[3,7] = {ez, elo, e,, en, en, e,},

fzrst[3,8] = {es, e~, el~, el~},

first[4,5] = first[4, 6] = first[4, 7] = {e,,, e,,, es, e~},

first[4,8] = {es,%} and

first[l,7] = first[2,7] = {ez,elo,e~,e~~,el,,e~},

first[l,8] = first[2,8] = {e5, e6, elz, @lS}.

Therefore,

head[3,5] = head[3,6] = head[3,7] = {a, c},

head[3,8] = {b, c},

head[4, 5] = head[4,6] = head[4, 7] = {a, d},

head[4,8] = {b, d},

head[l,7] = head[2,7] = {a, C},

head[l,8] = heczcZ[2,8] = {b, c}.

By Algorithm 5.2, Nz is free of unspecified receptions and deadlocks. O

Approximate algorithms provide approximate solutions. In our case, Algo-

rithm 5.2 gives a sufficient condition for the deadlock and unspecified recep-

tion problems in the following sense: If a network N suffers from deadlocks

at node G, then it will set empty[ U] to 1. Likewise, if N has unspecified
–g —

receptions at U, then first[ U] will capture a send edge ~ + u” such that
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Fig. 7. Network with unspecified receptions. (a) Ps;

0) Q,.

Fig. 8. Finite state automaton defined by a
–g —

send edge U1 + U2 in first[ u].

g ~ RMsg(~), where ~ is a local receive state in machine P,. The following

example illustrates this point:

Example 5. The NCFSM lV3 = (P~, QJ shown in Figure 7,

unspecified receptions at node [2, 3]. By running Algorithm

example, we find that the edge [2,41 ‘c [2,3] ~ @st[2, 31.

5.8 Approximate Solutions to Data Flow Equations

suffers from

5,1 on this

We show in this subsection that the least fix-points to the data flow equations

are approximated by regular languages.

Let G = ( V~, E’) be the output graph of Algorithm 5.1, and let U be a
–g —

node in G. For each edge e: VI ~ Uze ~zrst[ U], define a finite state automaton

(with &-edges) M= = (V~, Z, 8,, z,{ E}). The transition function ~. iS defin~d

by the edges in G’. Formally, for 7E V~, 6J~, a) = { v“ Ithe edge U’ +

~C l?’}, where a e {e} U X. The finite state automaton Me is illustrated in
Figure 8. Let L( Me) be the language accepted by Me. Let L~(0) = gL(MJ.
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Define

Let Lf,X(ti) be the
—

is, Lf, X(fi) = { z I [Uo,

L(U) = u L,(U).
eefirst[ C]

actual solution to the data flow equations at node U; that

E] : [E, z]}.

THEOREM 5.4. (Inclusion theorem for strict FIFO networks). For each node

F in the output graph G’ = (V~, E] of Algorithm 5.1,

%(~) - {~} = L(u).

WOOF. Follows from Lemma 5.2 and the definition of L(D). D

Theorem 5.4 effectively states that we have approximated the least fix-point

by a collection of regular languages L(=). What is more significant is the

following: We never systematically generate any portion of the reachability

set in order to solve the deadlock and unspecified reception problems. Fur-

thermore, these regular languages need not be explicitly constructed for the

purpose of verification.

6. APPROXIMATE SOLUTIONS FOR QUASI-FIFO NETWORKS

In this section we extend the results of the last section to quasi-FIFO

networks. To make the presentation simpler, we use the notation vi, j e I to

mean that, for all i, j ~ I such that P, + P] is an edge in the topology graph

TG(N).

6.1 Heuristics

The soundness of Algorithm 5.1 is based on Theorem 5.2, which, in turn, is

established on the assumption that the network under consideration is strict
FIFO. However, the single buffer in a quasi-FIFO network need not be a

FIFO queue. The following example should clarify this point:

Example 6. Consider the three-machine network NT = ( Pl, Pz, PJ, as

shown in Figure 9. Only the relevant parts of each of the three machines are

given to demonstrate the problem. Machine PI sends message a to P~ and

then attempts to receive message b from P~. Machine Pz sends c to Pl, then

sends message d to P3, and then attempts to receive f from P~. PB first

attempts to receive message d from Pz, then sends message b to Pl, and

finally sends f to Pz.

The event sequence e: ( – a)( – c)( – d) in the execution path

[1,4,8, s] ~a [2,4,8, a] ~ [2,5,8, (zc] :d [2,6,8, acd]

will lead to global state [2, 6, 8, czcd]. However, it should be clear that even
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Fig, 9. Quasi-FIFO network NT = ( Pl, PZ, P3)
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-b /P ~
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P~

though a, c # x ~,~, there is no event sequence e’ = e that can lead to the

global state [2, 6,8, dczcl.

The problem is caused by the fact, that although Pz sends c to PI before it

sends d to P~, P~ has to pick up the message d before PI can pick up b in

order for the whole network to proceed. Although the message d is the first

message in the channel Pz ~ P~, it has to be placed after the message c in

the shuffle-product’s single buffer.

For quasi-FIFO networks, as the single buffer is no longer a strict FIFO

queue, the general heuristics used in the last section has to be modified as

follows: To detect unspecified receptions at state 5, we need to capture all send

events ~ ~~ ~, where g E ~,,J for some i, j ~ I, such that the execution of these

send events causes the message g to appear as the first message in the channel

PL+P1.

Based on this observation, for each node 5 E V~, we associate an array
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Fig. 10. Illustration of the function

grab- first (~, Z, j, u’)

~irst[ U, i, j] (i, j c l), which is intended to include all send events u’ ~g ~ as
defined in the above heuristics.

To make the presentation more concise, we define a function grab-

first( G, i, j, v’) as follows:

Put differently, grab-first(v’, i, j, U) captures all of the first send event on

some send path from u’ to u that contributes a message to the channel

P, ~ PJ. Figure 10 illustrates the idea behind the function grczb-first( U, i, j, ~).

We can initialize first[ G, i, j] by grab- first(5, i, j, UO).

6.2 Information Propagation

In Algorithm 6.1, to be presented shortly, as in the case of Algorithm 5.1, a

graph G’ = ( V~, E’) is first initialized, where E’ contains only the send edges

in SPG( N). Algorithm 6.1 then repeatedly matches receive edges of the form
+g — . –g —

el: G + VI with some send edge e2: V2 ~ US in first[ U, i, J“]. This process

continues until none of the first sets can be augmented.

Information propagation is much more complex for quasi-FIFO networks.

Let us use Example 6 for our illustration. Figure 11 shows a portion of the
shuffle-product SP(N7), where s(g, i, J“)( r(g, i, J“), resp. ) denotes the event

that machine P, sends message g to (receives messages g from, resp.) PJ. To

simplify the presentation, we use the mnemonic names for nodes and edges,

as given in Figure 11.

Initially, we have

first[v2,1,3] = {e,};

first[u,,2,1] = {e2};
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s(a,l,3)

r7

,4,8 2,4,8

S(C,2, ) S(C,2, )

s(d,2, )

:$1 ~

?::::33=13)

@H@s(a’’:)2f’J8

r(d,3, 2)

s(a, l,3) 2,6,1 2,7,11

1,6,9 2,6, r(f,2,3)

s(b,3, 1)

~~

s(b,3, s(f,3,2) s(f,3,2)

s(a, l,3)
1,6,1 2,6,1 2,7,1

r(f,2,3)

Notation

T= [1,4,8] ~ = [2,4,8] G= [1,5,8] ~ = [2,5,8] ~= [1,6,8]

~ = [2,6,8] V= [1,6,9] T = [1,7, 10] ~ = [2,6,9] G= [1,6,10]

== [2>6> 10] == [3,6> 10] W5= [2,6> 11] ~= [297s 101 == [3,L111
~= [2,7,11] m= [3,7,11]

_#(a,l ,3)_ _s(c,2 ,1)_ _6(c,2 ,1)_ _8(a,l,3)_
el=v~--+v2 e2=vl+v3 e3=v~+v4 e4=v3+v4

_s(d,2,3)_ _#(d,2,3)_ _4a,l,3)_ _r(d,3,2)_
e5=v3*v~ ee=ti4-v6 e7=v~4v6 e8=v5dv7

—r U.2 ,3)_ _r(d,3,2)_ —*(.,1,3)— _s(b,3 ,2)_
eg=t!s~vg elo=vfj~w ell=v7-vg e12 = 07 + 7JI0

_.(b,3,1 )_ _*(%l!3)- __r(b,l,3)_
e13 = w --+ w el, = VIO --+ VII

_.(J,3, z)_
e15 — vll A 012 e16 = VII - V13

_,(f72 ,3)_ —I(f,3,2L_ _r(b,1,3~ —, (f2 !3)_
’17 = vll + 014 elS = 012 + 015 e19 = v13 + v15 e20 = v13 + UM

_#(f.3. z)_ _,(f!2!3)_ _r(b,l ,3)_
’21 = U14 + 016 e22 = v15 - v17 e23 = U16 + V17

Fig. 11. Portion of the shuffle-product of quasi-FIFO networks.

{

{e,, e4} if (i, j) = (1,3),

first[~, i,j] = {e,, es} if (i, j) = (2,1),

fl otherwise;

-{

{%} if (i, j) = (2,1),

first[o~, i,j] = {e5} if (i, j) = (2,3),

o otherwise;
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1
{e,, e4, e7} if (i, j) = (2,3),

first[~, i,j] = {e27 %}
if (ijj) = (2,1),

{es, e~} if (i,.j) = (1,3),

otherwise;

All other first[uh, i, ~1 = ~

At node <, as first[u~, 2,31 = #, we cannot Use the edge eg to propagate

information to node ~. However, first[u5, 2, 31 = {es}. Hence, we can match

e5 against es and propagate information to VT. SimilarlY, ‘6! firs~[~, a, z] =

{ e5, e6}. Therefore, we can match es or e~ against elo and change the

information in first[~l. Now the central question is, how should we ProPa-

gate the information about the first sets?

To envision the problem, assume that the send edge es is used to match the

receive edge elo. We should be able to modify the first array for state—. ——
UT, Ug, u~~, u~~. Before the match takes place, for all i, j e 1, first[~, i] =

first[~, i, .jI = first[ull, i, ~1 = first[ul,, i ~1 = 0. After the match, we should

have the following:

first[u~, i, j {%}1={0

-1
{e,, e4, e7}

first[u9, i, j] = {ez, e3}

fl

({ }el, ed, e~

lo

first [~, i, jl = first

{e,, e4, e7}

{e2, e3}

{%3}

{e16}

@

if (i, j) = (2,1),

otherwise;

if (ijj) = (1,3),

if (i, j) = (2,1),

otherwise;

if (ijj) = (1,3),

if (ijj) = (2,1),

if (i, j) = (3,1),

otherwise;

if (iJj) = (1,3),

if (i, j) = (2,1),

if (i, j) = (3,1),

if (i, j) = (3,2),

otherwise;

There are three main difficulties: The first is that although the edge e2

contributes the message c to the channel Pz + PI and occurs before the edge

eb it is still necessary to place ez in first[u9, 2, 11, first[vll, 2, 11, and

first[u13, 2, 1] after the match. The second difficulty is that even though edges

like e~ seem unrelated to the channel Pz ~ P~ they also have to be

propagated. The third difficulty is the necessity to put edges like e13 to the

first sets of relevant nodes after matching e5 with elo.

Our algorithm for quasi-FIFO networks, Algorithm 6.1, has three proce-

dures (type-one-propagation, type-two propagation, and type-three-propagation)
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0
—
v

5—v’

o—v

?
—
VI

o—v’

(a) (b)

Fig, 12. Propagation of information in quasi-FIFO networks.

to solve each of the three problems. Figure 12 illustrates the main ideas

behind procedures type-one-propagation and type-two-propagation. Procedure
–g’ — .

type-one-propagation will put all edges of the form e: z + us m Figure 12a,

where g, g’ ~ Z,, ~, into first[v’, i, j]. Procedure type-two-propagation will put

two types of edges into first[~, k, 11. The first type of edge is of the form e: ~

–g’ —
~ VGin Figure 12a, where g’ = ~h,l, g= E,, J and (i, j) + (k, 1). The second

type of edge is shown in Figure 12b. Let us take the shuffle-product in Figure

11 as an example. After matching elo with es, proc~dure type-tW%propa-
gation will add the edge ez (the second type) to fi~sf[ug72> 11, fi~s~[~~i, 2, 11~

and first[u13, 2, 11, and the edge e~ (the first type) to first[ug, 1, 3],

first[ull, I, 3], and first[u13, 1,31. If any first[ U, k, 11 is changed during the
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invocation of these two procedures, J“ump-channel[ k, 1] will be set to O,

indicating that for the node E the channel Ph ~ Pl should not be propagated

by the procedure type-three-propagation.

Procedure type-three-propagation is designed to propagate edges like el~ to

~irst[ull, 3,11 and first[ul~, 3,11. Since the channel P~ -PI has not been
changed either by type-one-propagation or by type-two-propagation, the edge

e13 should be in the first sets first[ull, 3, 1]and first[ul~, 3, 11.

6.3 Detecting Nodes with Empty Buffers

The variable empty, as defined in the last section, is still associated with each

node U e V~. empty[ til will be set to 1 if the state U can be reached with all

channels P, ~ PJ being empty. As we are dealing with individual channels

separately, we introduce another Boolean array empty- fZag[ E, i, J“].A value of

1 in empty- flag[ 5, i, j] denotes that the channel P, * PJ is empty when the

global state tuple is 0. Hence, empty[ U] will be set to 1 if at any time during

the verification empty-flag[ U, i, ~1 is found to be 1 for all i, j = I.
–~ — +g —

When a send edge VI + Vz is matched against a receive edge US + Vb,

where gex,,l, an s-edge v~ ~ ~ is added. If us is reachable from ~ through

a sequence of edges of the form ~ ~ ~, where either a = – g # E,, ~ ora=c,

we set empty- fZag[ C, i, J’] to 1. Let us say such a path from ~ to US excludes
–g’ —

Pl + PJ. This can be justified by observing that a send edge ~ + U“ on any

path from U2 to ~, where g’ $ Z ,,J, will not contribute any messages to the

channel P, + IJ. We then check if empty- flagl~, k, 11 = 1 for all k, 1e I. If so,

we set empty[uJ to 1.

6.4 The Algorithm

This algorithm is a counterpart of Algorithm 5.1 for strict FIFO networks.

The arrays reach, send-reach, epsc, and iepsc, as defined in the last section,

are also used in Algorithm 6.1. We only give a sketch here. For a detailed

description and its correctness proof, readers are referred to [171. The algo-

rithm consists of two steps and four procedures. Step 1 initializes relevant

variables according to their definitions. In particular, if first[ U, i, j] # @after

initialization, then empty-flag[ U, i, j“] is set to 1. Step 2 consists of a single

while loop. It loops until the s~tg f~t[ U, i, j] cannot be augmented for any

U, i, j“. Once a receive edge el: U ~ UI is picked up to match a send edge ez: Vz
–8 —
+ Ua, at line 2.3, where –g e Z ,,J, line 2.4 will test if ~ can reach 0

–g’ —
through s-edges or send edges ~ ~ u“ where g‘ @z,, ~. If so, line 2.5 will set

empty- flag[ i7, i, j“] to 1. The Boolean array J“ump-channel is used to record

whether the first sets for a channel should be propagated with the procedure

type-three-propagation. Line 2.6 sets jump-channel[ i, j] to 1, presuming that

all channels need to be propagated in that way. Lines 2.7 and 2.8 will set

empty[ 0] to 1 if empty-flag[ U, k, 1] = 1 for all k, 1e 1, namely, if all channels

are empty at state U. Lines 2. 9–2. 12 sequentially calls the four procedures

type-one-propagation, type-two-propagation, type-three-propagation, and

modify-eps-reach.
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Procedure modify-eps-reach is simple. It merely modifies the relevant

reach, epsc, and iepsc sets of certain nodes to reflect the new reachability

relation after matching the edge el with ez. Procedure exclusive-path is also

simple. It checks if there exists a path from the end node of the send edge to

the start node of the receive edge that excludes P, -+ PJ.

Algorithm 6.1: Compute the first sets and Boolean array empty.

Inputi The shuffle-product graph SPG(N) = (V~, E), where IV is quasi-FIFO.

Output: A graph G = ( V~, E’). Each node 0 e V~ has an array of first edge set

/irst[ U, i, j] and Boolean variable empty[ U] that satisfy the following:

(1) If there is a global state of the form [ 0, cl, where h~,,( Z) = CJ,, = gc~,,,
–g —

then a send edge of the form Z ~ U2 will be in first[ 0, i, j].

(2) If the global state [U, e] is reachable, then empty[ U] = 1.

Step 1. /’ initialize relevant variables ‘/

Step 2.

2.1 while Q # # do

begin

2.2 remove the first element (U, i, j) from Q;
+g — — –g —

2.3 for each edge el: E * VI and each edge e2: U2 + u3~ first[~, i, J“] do

begin

2.4 if exclusiue-path(i, j, uS,@ then

2.5 empty-flag[ti, i, j]:= 1;

2.6 jump-channel[ k, 11:= 1 for all k, 1e L

2.7 if empty-flag[ U, k, 1] = 1 for all k, 1 e I then

2.8 empty[ U]:= 1;

2.9 type-one-propagation( el, e2, i, j);

2.10 type-two-propagation( el, e2, i, j);

2.11 type-three-propagation( ul);—
2.12 modify-eps-reach( u~, 0, vJ

end

end;

7. EXAMPLES

Algorithm 5.2 provides a practical and strong tool to verify the progress

properties of NCFSMS. Note that a protocol is generally designed to limit the

set of cross-product states that the component machines are in simultane -

OUSIY. Furthermore, protocols are designed to simplify interaction between

the component processes and not to complicate the interaction. Holzmann

reports that, in a typical protocol, of all the shuffle-product nodes less than 10

percent of them are reachable [101.

We present two examples in this section. The first one is a specification

of X.25 call/establish clear protocol, and the other is the alternating bit

protocol.

Example 7. Figure 13 shows a NCFSM N, = (PL, Q*) that models the call

establishment /clear procedure in X.25 [3,81. It has been reported in the
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Initial node

+rc, +ri I -rc

literature

almost all

-rc I +rc, +rr

(a) (b)

Fig 13. Call establishment/clear protocol in X.25.(a) P4; (b)Q4.

that this specification and protocol have been hard to verify, as

of the shuffle-product states are reachable. Algorithm 5.2 success-

fully states that N1 is free of both unspecified receptions and deadlocks.

Example 8. Figure 14 shows a NCFSM N~ = (P~, Q~, Ml, MJ that mod-

els an alternating bit protocol [2, 161. This was the first protocol designed and

analyzed in the context of the computer networks. Machines Ml and Mz

model the unreliable communication media through which machines P~ and

Q~ communicate with each other.

This is a network of four machines. In particular, infinite capacity is

assumed for all the four channels P~ + Ml, Ml ~ Q~, Q~ + Mz, and Mz + P~.

Therefore, due to the infinite size of the set RS( N~) the conventional reacha-

bility analysis method is not applicable here. The shuffle-product SP(N~) has

1296 state tuples. Our implementation took about four seconds to verify that

it has no deadlock or unspecified reception. Among the possible 1296 state

tuples, our implementation declared 1152 (i.e., 80 percent) state tuples to be

unreachable.

Example 9. For the network NI shown in Figure 1, Algorithm 5.2 asserts

that it is free of both deadlocks and unspecified receptions. Again, NI has an

infinite reachability graph; hence, conventional state exploration methods

cannot be applied.

8. ABSTRACTING PARALLEL PROCESSES

The NCFSM model described here has both internal nondeterminism, as

— send events are nonblocking and

—two or more edges out of the same node can be labeled by the same event,
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Fig. 14. NCFSM N4 = (P~, QE, Ml, Mz). (a) l’s; (b) Q5; (c) Ml and Mz; (d) network tOPOIOgY

graph.

and external nondeterminism. But this does not seem to be enough to handle

the following situation.

Consider two processes described in a language for parallelism that has

asynchronous communication, as in NCFSMS. In order to analyze these
processes statically, one would have to abstract out assignment statements

and conditionals from them. But such an abstraction yields processes that

cannot be captured as NCFSMS. For example, consider a process P, that has
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the following piece of code:

false

*
Receivefrom P,: u

I [
Receivefrom P,. P

4 +

Since we cannot know at compile time which of the branches out of the

conditional would be chosen, we would have to assume conservatively that

both of them are equally likely. This assumption could be used to come up

with the following abstraction P;:

A

Receive from PJ: a Receive from PJ: p

Such an abstraction is not quite correct. There could be an execution se-

quence in which B is true, but the message in front of the queue PJ + P, is of

type p, thereby leading to unspecified reception. Thus, the abstraction given

is not quite right. The way out of this problem is to add to CFSMS a notion

similar to silent (~) transitions of CCS [15]. The semantics of a silent

transition can be defined such that process P; can change states without

changing any buffer contents. The abstraction P; of P,, should therefore be

as follows:

T

Receive from PJ: a Receive

t v

Such an enrichment to the definition of NCFSMS can

Algorithm 5.1. It involves enforcing the following rule:

If u ~ ~, then flrst[ U] G ~irst[v’] .

from PJ: p

be easily handled in

It is easy to see that such an extension is semantically sound. In very much

the same way, the notion of zero-testing, which allows transitions to test if a

buffer is empty, is added to NCFSMS. The details of experiments dealing

with such features in a protocol analyzer is forthcoming [11].
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9. DISCUSSION

We have proposed a new approximation method to detect unspecified recep-

tions and deadlocks in NCFSMS. Even though we have concentrated on the

nonprogress problems, we believe that the techniques proposed here can also

be used for the reachability and unboundedness problems.

We have implemented Algorithms 5.1 and 5.2 using C on our departmental

VAX-780 and have successfully verified more than a dozen protocols. This

encouraging outcome convinces us that the approximation/data flow ap -

preach is a very lucrative way to cope with undecidable problems like the

generaI progress problem of CFSMS.

We point out here that the O(t~ t~k 4, time complexity in Theorem 5.1 is

very unlikely in practice. This bound has been obtained under the assump-

tions that (1) each iteration of the while loop in Step 2 can add only one

sending edge into the ~irst set of some node in SPG( IV); and (2) the CFSMS

are fully dense, in the sense that each node in each machine can send and

receive messages of every possible type to every node. As far as we know,

condition (2) is not true for most practical protocols. Our experience shows

that condition (1) does not hold either. For instance, for the X.25 call

establishment/clear protocol k = 7, tl = 49, tz = 14, and our implementation

take only four iterations (not 247 20!) of the while loop and less than four

seconds of CPU time to verify this fairly large protocol. We expect that the

time constraint will not hamper the application of our algorithm for most

practical protocols.

The approach taken in this paper has been termed abstract interpretation

elsewhere [6, 7]. The concept of widening operator, as used in [6], does not

seem to carry over easily to the context on hand. Nevertheless, it would be

interesting to establish the relation between our work and those of Clarke [61

and Cousot [7].

The analysis described here captures the edge that contributes the first

message in a buffer. This can be generalized to capture the first k–edges,

much like the definition of LR( k ) grammars, to obtain a family of flow-analy-

sis algorithms. By considering larger ks, one would, of course, obtain a

sharper analysis. But, certainly, increasing k would increase the cost of the

analysis.

One of the impediments to analysis of concurrent systems has been the

explosion in the number of states to be analyzed. Our work also suffers from

this explosion. But it is no worse than those available for dealing with
NCFSMS with bounded buffers. The problem of dealing with such combinato-

rial explosion is a much addressed important open problem [22]. The class of

networks for which our algorithm is complete is also open.
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