
Elimination Algorithms for Data Flow Analysis

BARBARA G. RYDER and MARVIN C. PAULL

Department of Computer Science, Hill Center for the Mathematical Sciences, Busch Campus,
Rutgers University, New Brunswick, New Jersey 08903

A unified model of a family of data flow algorithms, called elimination methods, is
presented. The algorithms, which gather information about the definition and use of data
in a program or a set of programs, are characterized by the manner in which they solve
the systems of equations that describe data flow problems of interest. The unified model
provides implementation-independent descriptions of the algorithms to facilitate
comparisons among them and illustrate the sources of improvement in worst case
complexity bounds. This tutorial provides a study in algorithm design, as well as a new
view of these algorithms and their interrelationships.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors-
optimization; F.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems

General Terms: Algorithms, Languages

Additional Key Words and Phrases: data flow analysis, elimination algorithms

INTRODUCTION

Compile-time analysis of programs was
originally developed to allow the optimiza-
tion of compiler-generated code. Compile-
time analysis of programs includes control
flow analysk, which traces the patterns of
possible execution paths in a program, and
data flow analysis, which traces the possible
definitions and uses of data in the program.
The information gathered is used to opti-
mize the program by transforming it to a
semantically equivalent one that executes
faster and/or uses less space.

Optimization of compiled code probably
remains the most important use of data
flow information. The powerful constructs
in modern programming languages neces-
sitate data flow analysis for efficient trans-
lation. For example, in a language with late
bindings, data flow information allows the
replacement of an execution-time check by

a compile-time check; if the type of a vari-
able is constrained to be consistent with its
use, data flow information can be used to
ascertain the type of the variable. Data flow
information is also used in many noncom-
piling applications. When source-to-source
transformation systems convert a high-
level description of an algorithm into an-
other that is optimized for execution, data
flow information is used to ensure that the
transformations preserve meaning.

Software tools in interactive program-
ming environments make data flow infor-
mation available to programmers. The
ability to see all the definitions or uses of a
variable facilitates design, debugging,
maintenance, and documentation of code.
Interprocedural data flow analysis, which
traces data definition and usage across pro-
cedure boundaries, is especially suited to
this application [Banning 1979; Barth
1978; Burke 1984; Cooper and Kennedy

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1987 ACM 0360-0300/86/0900-0277 $01.50

ACM Computing Surveys, Vol. 18, No. 3, September 1986

278 l B. G. Ryder and M. C. Paul1

CONTENTS

INTRODUCTION
1. EQUATIONS MODEL

OF DATA FLOW ANALYSIS
2. ALLEN-COCKE INTERVAL ANALYSIS

2.1 Finding Intervals
2.2 Algorithm Statement
2.3 Linear Performance of Allen-Cocke

Interval Analysis
3. HECHT-ULLMAN T,-T, ANALYSIS

3.1 Parse Generation
3.2 T,-T, Transformations and Elimination
3.3 Propagation
3.4 Algorithm Statement
3.5 Comparison with Allen-Cocke

Interval Analysis
4. TARJAN INTERVAL ANALYSIS

4.1 Reduction Order and Finding Intervals
4.2 T3 Transformations and Elimination
4.3 Propagation
4.4 Algorithm Statement
4.5 Comparison with the Allen-Cocke

and Hecht-Ullman Algorithms
5. GRAHAM-WEGMAN ANALYSIS

5.1 S-Sets and S,, Sf, S, Transformations
5.2 Propagation
5.3 Algorithm Statement
5.4 Comparisons with the Allen-Cocke,

Hecht-Ullman, and Tarjan Algorithms
6. Summary
ACKNOWLEDGMENTS
REFERENCES

19841. Interprocedural analysis uncovers
possible side effects of a procedure call and
can help to maintain intricate, inade-
quately documented code [Ryder 1974,
1985; Ryder and Carroll 19861.

In complex software, a small change in
the program is expected to have localized
effect and therefore produce a small change
in the data flow information. An incremen-
tal update algorithm for data flow analysis
only modifies the original data flow solu-
tion to reflect changes in a problem and is
usually more efficient than a complete
reanalysis. Clearly, incremental updating
has application to programming environ-
ments [Cooper and Kennedy 1984; Zadeck
19841. The modeling work presented in this
tutorial was part of the development of
incremental update algorithms for data

flow analysis [Ryder 1982a; Ryder and
Paul1 19831.

Today, there are two families of global
data flow algorithms in use: the elimination
methods and the iterative methods. The
elimination methods include an original
algorithm, Allen-Cocke interval analysis,
and three improvements on it: Hecht-
Ullman Z’,-Z’, analysis, Graham-Wegman
analysis, and Tarjan interval analysis. Our
models of elimination methods describe
how each algorithm solves the data flow
equations that define useful data flow
problems. The iterative methods, called
workset, round robin, and node listing,
solve the data flow equations by initializ-
ing them to a safe value and then iterating
to a fixed-point solution. These methods,
which we do not treat here, originated
with G. Kildall’s algorithm [Hecht 1977;
Kildall 19731.

In the literature, all of these algorithms
are described in terms of a specific imple-
mentation, and it is difficult to see their
similarities and differences. Our aim is to
present the elimination algorithms in an
implementation-independent manner that
highlights the main ideas of each. To ac-
complish this we define the data flow prob-
lem by a system of equations and describe
how each technique solves these equations
[Cocke 19701. This reveals the similarities
and differences of the algorithms, as well
as where and why the complexity savings
occur in each, which is not clear from their
implementation descriptions. In addition,
the models show the algorithms to be
general solution procedures applicable to
certain systems of equations.

In the remainder of this section we intro-
duce data flow analysis, giving examples to
illustrate the definitions and concepts. In
the program fragment in Figure 1 the ques-
tion is, “Can execution reach statement L
withy never having been assigned a value?”
To answer, we insert statement K (see Fig-
ure 2), assuming that neither a nor b can
have the value 9999, and use our analysis
to determine whether it is possible for y to
have the value 9999 at statement L. If so,
then in the original fragment, the value of
y may be undefined at statement L. To

ACM Computing Surveys, Vol. 16, No. 3, September 1966

Elimination Algorithms for Data Flow Analysis 9 279

if x> 2 then y := a
else if z > 3 * w then y := b

L: q:=2*y /* can y be undefined here? */

Figure 1. Program fragment.

K: y := 9999
if x > z then y := a

else if .a > 3 * w then y := b
L: q:=2*y /* can y = 9999 here? */

Figure 2. Transformed program fragment.

analyze the program fragment of Figure 2,
we transform it into the graphical represen-
tation of Figure 3. The directed graph em-
bodies possible execution paths through the
statements in the program.

Data flow analysis is usually performed
on some intermediate form of a program.
We can start with either a control flow
graph, which is a directed graph that de-
scribes the possible execution paths in a
procedure [Hecht 19771, or a parse tree
representation of a procedure [Farrow et
al. 1975; Kennedy and Zucconi 19771; we
use the former in Figure 3. To build the
control flow graph of a program, we parti-
tion its statements into basic blocks, maxi-
mal single-entry sequences that are exited
only at their end [Backus et al. 19571. Each
basic block is represented by a node in the
control flow graph. There is an edge (i, j)
in the control flow graph if, during execu-
tion, control can transfer from basic block
i to basic block j.’ If (i, j) is an edge, then
we call j an immediate successor of i and i
an immediate predecessor of j. Although
each basic block has only one entry, it can
have more than one immediate predecessor.

Data flow analysis can also be performed
on a call graph, a directed graph that
describes the possible calling relations
between procedures in a software system
[Allen 1974; Ryder 19791. Each procedure
in the system is represented by a node in
the call graph, and each directed edge rep-
resents a possible procedure invocation. In

1 We make the underlying assumption of all static
analysis, that all paths in the program are executable,
since it is an undecidable problem to identify those
that are not.

1 y := 9999 (i)

1
2 r>z-------+3 y:=a(ii)*

1
4 z>3+w+5 y:=b(iii)

6 q:=2*y

Figure 3. Control flow paths for Figure 2.

interprocedural analysis, we trace data flow
through the use of reference parameters
and global variables [Banning 1979; Barth
1978; Burke 1984; Cooper and Kennedy
1984; Schwartz and Sharir 1979; Sharir
19771.

The term flow graph covers both control
flow and call graphs. Throughout this
tutorial n is the number of nodes in the
flow graph and e is the number of edges.
A flow graph has a unique source node
(source), which has no predecessors, and
one or more exit nodes, each of which has
no successors. Each node in the flow graph
is associated with a function that describes
how the code at the node affects data in the
program. Data flow analysis algorithms
gather this local information and from it
infer the global data flow. The global infor-
mation then can be specialized to provide
data flow information for any node in the
flow graph.

By using Figures 2 and 3, we want to
calculate the set of possible values for y at
statement L (i.e., node 6). This is tanta-
mount to considering the set of definitions
or value-setting statements for y that can

ACM Computing Surveys, Vol. 18, No. 3, September 1986

280 l B. G. Ryder and M. C. Paul1

be propagated along paths containing no
subsequent redefinitions of y, called the set
of reaching definitions of y. For example,
definition (i) of y at statement K (node 1)
can be propagated to statement L (node 6)
along (1 2 4 6) but not along (1 2 3 6)
because definition (ii) at node 3 blocks (i).

The problem of reaching definitions can
be expressed concisely using equations. Let
pj be the set of all definitions of y in the
program if y is not defined at node j, and
the empty set otherwise. Let dj be the set
of definitions of y created at node j if there
are definitions of y at j, and the empty set
otherwise. Then Xi, the set of definitions
of y that reach node i, can be expressed for
our example by the equations in Figure 4.
The intersection of pj and Xj either elim-
inates all definitions that reach node j if y
is defined at j, or keeps them all if y is not
defined at j.

data flow algorithm for REACH-must solve

More formally, X, is the set of all defi-
nitions of variables reaching node m; if a

these equations. The equation for X,,,,,

definition of variable y at node n reaches
node m, then y may have the value assigned

reflects the assumption that no variable

to it at node n when execution reaches the

definitions reach the entry to the source

code at node m. A definition-clear path for
variable y from node n to m is a path along
which there is no value-setting statement

node. We have

for y; therefore the definition of y at node
n reaches node m if there is a definition-
clear path for y from n to m. Finding

x, = 0,

the definitions reaching a node is referred

m = source,

to as the reaching definitions problem
(REACH).

Equations (1) completely describe
REACH on an arbitrary flow graph; any

x, = er,

X, = plnXlUd1,

X, = X, = pznXzud2,

Xa = p,nX,ud,,

X, = (fin&ud,)u(p,nX,U&)

u(pan&Udd.

Figure 4. Equations for Figure 3.

(3) pj is the set of all variable definitions
that may be preserved through node j
(i.e., the set of definitions of variables
not redefined at j);

(4) dj is the set of locally exposed defini-
tions at node j, that is, the set of last
definitions of each variable -defined at
node j [Hecht 19771.

The solution of REACH can be used to
optimize the code generated for each basic
block in the flow graph. For example, if all
the definitions of a variable reaching node
m are the same constant value, then we
know the variable has that value at m until
it is redefined; we can instantiate this con-
stant value in the appropriate places.

common subexpressions elimination).
Consider

& = ~jES,l%n,j n Zj U b,,j) U cm

for 15 m 5 n,

where

The four classical data flow problems-
reaching definitions, live uses of variables,
available expressions, and very busy
expressions-all can be formulated as in
eq. (2), which is a generalized of eq. (1)
[Hecht 19771. The data flow solutions of
these classical problems are sufficient for
most compiler optimizations (e.g., dead
code elimination, constant propagation,

(2)

m # source,

where

(1) pred(m) is the set of all immediate
predecessors of m;

(2) Xj is the set of all variable definitions
reaching the entry to node j;

(1) 2, is the data flow solution either on
entry to or on exit from node m;

(2) 0 is intersection or union;
(3) a,,j, b,,j, and c,,, are constants derived

from local data flow information (pos-
sibly null);

(4) S, G (i 1 1 5 i I n).

Each variable in the system of equations
(Z,)&1 is identified with a unique flow

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis l 281

graph node; its value is the data flow solu-
tion on entry to (or exit from) the node.
Given this one-to-one relationship between
nodes and variables, we use these terms
interchangeably; interpretation will be
clear from the context. The coefficients and
constants in the equations are defined
using the local data flow characteristics
associated with each node, analogous to
their definition in eq. (1). From a flow
graph annotated with this information at
each node, we can obtain a system of equa-
tions describing an associated data flow
problem.

Data flow problems are called forward or
backward, according to the direction of in-
formation flow in the flow graph [Kennedy
1971, 19791. In REACH, variable defini-
tions are propagated along paths in the flow
graph that represent possible execution
paths in the program; this is a forward data
flow problem. For such problems the set S,
in eq. (2) is the set of immediate predeces-
sors of node m (i.e., predlm}). We limit our
attention to forward data flow problems,
although some of the methods developed
are applicable to backward data flow prob-
lems as well [Allen and Cocke 19771.

If X,,, is a solution to a forward data flow
problem on entry to node m, then there is
a Y, that is the solution for the same
problem on exit from node m. In particular,
if

Xn = fljEpred{m) h,j n Xj U bm,j), (3)

then

Ym = ~jEpredlml(&?m,j n yi) U GTI, (4)

where

(1) B is intersection or union;
(2) o,,j and b,,j are constants associated

with data flow through node j;
(3) g,,j and cm are constants associated

with data flow through node m;
(4) pred(m) is the set of immediate prede-

cessors of node m.

The choice of which system to solve de-
pends in part on the data flow problem
being solved and the use for that data flow
information; different equation forms seem
natural for different problems. For a for-
ward problem, Y,,, consists of elements of

x, = 0,

X2 = X3 = X4 = X6 = (i),

X6 = (i ii iii).

Figure 5. Solution to Figure 4.

X, that are not affected by the code at
node m plus any relevant side effects of the
code at node m; there is a linear function f
such that Y, = f(X,). Our model can han-
dle data flow solutions on entry to or exit
from a node equally well. In subsequent
discussions, we use the form most conven-
ient for the algorithm modeled.

In data flow problems the initial equa-
tions for certain variables, called boundary
uariables, are particularly simple. X8,,,, is
the boundary variable of a forward data
flow problem; (Xj), for j an exit node of the
flow graph, are the boundary variables of a
backward data flow problem. The initial
equation for a boundary variable depends
on the specific data flow problem and the
equation form being used; a correct initial
equation is essential for obtaining a cor-
rect data flow solution. For example, for
REACH, as illustrated in Figure 4, the
initial equation for X,,,, is

X Bo”lVX = 0,

using eq. (3). Using eq. (4), the equation is

Y Eo”me = d source,

where d,,,, is the set of all value-setting
statements in the source node that assign
a value to a variable that may be its value
on exit from the source node.

The solution of the equations in Figure 4
tells which definitions of y reach each
node.’ We can obtain this solution by suc-
cessive substitutions in the equations taken
in order. We substitute 0 for X1, solve for
X,, and use that solution to obtain X3
and X4. By using those solutions we can
obtain X, and X6 and thus fully solve the
system, obtaining the solution shown in
Figure 5. Since the added definition of y
(i) reaches statement L (i.e., node 6), we
know that y may be undefined at L dur-

’ In this example we are only concerned with defini-
tions of the variable y.

ACM Computing Surveys, Vol. 18, No. 3, September 1986

282 l B. G. Ryder and M. C. Paul1

K: y := 9999
M: if x > z then (x := x - y; goto M]

else if z > 3 * w then y := b
L: q := 2*Y /* can y = 9999 here? */

Figure 6. Program variant of Figure 2.

ing the execution of the original program
fragment in Figure 1.

Unfortunately, the solution procedure is
not always so straightforward. The pro-
gram fragment in Figure 6 is a variant of
the one in Figure 2; we have introduced a
loop in the if statement labeled M. The
flow graph for the program fragment is
shown in Figure 7, and the corresponding
REACH equations are shown in Figure 8.

If we try to solve these equations using
successive substitutions, we find that X2 is
a function of both Xi and X3, and so we
cannot obtain its value merely by substi-
tuting for the term in X1. Moreover, if we
try to obtain a value for X3 first, we see
that we need the value of X, in order to
obtain a value for X3! Therefore the suc-
cessive substitution procedure alone is not
sufficient to solve the equations. Never-
theless, by examining the flow graph in
Figure 7, we can obtain the solution shown
in Figure 9.

In Section 1 we present general tech-
niques for solving data flow equations, even
when loops are present in the flow graph.
A straightforward Gaussian-elimination-
like method yields a solution with O(n3)
complexity. Each of the algorithms pre-
sented is a refinement of this method.
Allen-Cocke interval analysis defines a
natural order on the equations that leads
to a highly structured coefficient matrix.
Ordered substitutions are used to reduce
the solution of the entire system to the
solution of a smaller system. This process
is repeated, yielding successively smaller
systems of similarly structured equations
and producing an 0 (n’) solution [Allen and
Cocke 19771. Algorithms that improve on
interval analysis detect common substitu-
tion sequences in the equations and utilize
them to reduce the work to 0 (n log n). The
Hecht-Ullman Z’i-Z’, algorithm substitutes
for individual terms in the equations in a
nondeterministic manner but retains a rec-

ACM Computing Surveys, Vol. 18, No. 3, September 1936

1 y := 9999 (i)

2
1,

X>Z.-k3 x:=x-y1

1
1 ;z32;:,-*5 y:=b(iill

Figure 7. Flow graph of Figure 6.

x, = 0,

x2 = (P~nx,ud,)u(P3nXud3),

X, = X, = pnnXzUdz,

X5 = p4n-&u&,

X, = (p4nX,ud,)u(p,nX,ud,).

Figure 6. Equations for Figure 7.

Xl = 0,

X2 = X3 = X4 = X5 = (i),

X6 = (i ii).

Figure 9. Solution for Figure 8.

ord of them in a 2-3 tree, calculating com-
mon substitution sequences only once
[Ullman 19731. The Tarjan algorithm uses
a constrained substitution order in which a
reduced equation for a variable is obtained
by substituting for all dependent variables,
that is, those on the right-hand side of the
equation, at once [Tarjan 1974, 1981a]. A
path-compressed tree is used to remember
the substitution sequences so as to elimi-
nate duplicate calculations. The Graham-
Wegman algorithm uses a different con-
strained substitution order for individual
terms in the equations [Graham and
Wegman 19761, taking advantage of com-
mon substitution sequences in the equa-

Elimination Algorithms for Data Flow Analysis 283

tions by delaying the substitutions for
terms involving such sequences until the
calculations corresponding to such se-
quences have been performed.

We describe the Gaussian-elimination-
like solution procedure and the concept of
reducibility. We present models for each of
the algorithms and discuss their key ideas.
The linear performance of Allen-Cocke in-
terval analysis on a large class of flow

graphs is shown. We compare and contrast
the Hecht-Ullman, Tarjan, and Graham-
Wegman methods with the Allen-Cocke
approach and with each other. One example
is worked by all four algorithms to highlight
their characteristics. We then summarize
the results of our modeling efforts.

1. EQUATIONS MODEL
OF DATA FLOW ANALYSIS

We now show in detail the procedure used
to obtain the solutions to the REACH prob-
lems in Figures 4 and 8 and use these
techniques to motivate a formal solution
procedure for data flow equations, with and
without loops, which is illustrated in an
additional example. We consider the struc-
tural properties of the dependency graph of
the equations and show how they affect the
efficiency of the solution procedure. We
make use of the reducibility property of
flow graphs and show that it provides an
order-of-magnitude improvement for the
four algorithms modeled.

In Figure 4, given a variable whose solu-
tion is known (e.g., X1), we simply substi-
tute the solution for all occurrences of that
variable in the system. Repetition of this
substitution procedure solves the system
of equations, as shown in Figure 10. In
Figures 6-8 we see that a loop in the pro-
gram being analyzed interferes with this
procedure by introducing a self-reference in
an equation. When we substitute the solu-
tion for X1 into the equation for X2, we
obtain

x2 = (pl n x1 u 4) u b3 n x3 u d3)

= ((0 fl 0) U (4) U (p3 f-7 X3 U d3)

= (p3 n X3 U d3) U (i).

Now we attempt to eliminate X3 from the
equation by substituting the right-hand
side of its equation for the X3 term. Since

x3 = pz n x2 u &,

we obtain

X2 = (p3 n X3 u d3) u (4

= (13~ n ((p2 n X2) u d2) u d3) u (4

= (pa f-7 p2 n x2) u (p3 n d2)

U cl3 U (i)

= ((i ii) n (i ii} n X2)

U ((i ii) n 0) U 0 U (i)

= ((i ii) n X2) U (i).

We have introduced a self-dependence in
the equation for X2. Examining the flow
graph in Figure 7, we see that the X2 term
corresponds to definitions reaching node 2
and subsequently traversing the path
(2 3 2). The only definition that can do
this is definition (i); therefore

X2 = (i).

Rather than resolve each self-reference in
this manner, we develop rules for dealing
with a self-referential equation by replacing
it with another equation in such a way that
a solution to the system containing the new
equation is also a solution to the original
system. This replacement is referred to as
“loop breaking.”

In the remainder of this section we pre-
sent our “equations” model of elimination
algorithms more formally. Consider those
data flow problems that can be defined by
a system of equations Q = (Q,,J L, where
Q,,, is an equation of the form of eq. (2) and
is solved by a Gaussian-elimination-like
method [Isaacson and Keller 19661. Each
equation Q,,, in the system is associated
with a node m in the flow graph. We assume
that the set of possible solution values, each
an n-tuple (2, o-e 2,) that satisfies the
system Q, admits a partial ordering (s).~

In Gaussian elimination variables are
successively eliminated from a system of

3 All the classical data flow problems have this prop-
erty.

ACM Computing Surveys, Vol. 18, No. 3, September 1966

284 ’ B. G. Ryder and M. C. Paul1

x, = 0,

X2 = d, = {i),

X, = X, = (pznXz)udz

= ((i ii iii} fl (i)) U0

= (i),

X5 = b4nX4)ud4

= (Ii ii iii) fl {i)) U0

= lil,

X6 = ~P3nx3~u~Plnx,~u~P5nx5~ud3ud,ud6

= (0rl(i))U((i ii iii)fl(i))

U (ran {i)) U (ii) U0U (iii)

= {i ii iii].

Figure 10. Solution procedure for the equations of Figure 4.

equations by repeated substitution of the
right-hand side of an equation for a term
in that variable. We define an analogous
substitution process. A substitution trans-
formation of a system of equations Q,
s(Q, m, j) for 1 5 m, j I n, is the result of
substituting the right-hand side of Q,,, for a
term in 2, on the right of equation Qj, m
j, and simplifying the resultant right-
hand side of Qj. Then s(Q, m, j) differs from
Q by having at most a different Qj equation;
all other equations are the same. It is clear
that a solution of s(Q, m, j) is also a solution
to Q, and vice versa.

To handle possible self-references intro-
duced by the substitution transformations,
we use a loop-breaking rule. An equation
Q,,, has a loop-breaking rule if there is an-
other equation for 2, called q,,, such that

(i) 2, does not appear on the right-hand
side of q,,,;

(ii) every solution of qm is also a solution
of Qm;

(iii) for every solution S of Q,,, there is a
solution s of qm such that s I S [Paul1
19861.

A set of equations Q is said to have a loop-
breaking rule if for each equation in Q ini-
tially there is a loop-breaking rule, and for
any equation in any set that can result from
Q by a sequence of substitution transfor-

ACM Computing Surveys, Vol. 18, No. 3, September 1986

mations of Q there is also a loop-breaking
rule. A loop-breaking transformation of Q,
b(Q, m), for 1 5 m 5 n is the result of
replacing Q,,, by qm.

The Gaussian-elimination-like solution
procedure for the system of equations con-
sists of applying a sequence of the substi-
tution and loop-breaking transformations;
the procedure is shown in Figure 11. The
complexity of this algorithm is O(n3), as-
suming (as usually holds) that each appli-
cation of b is O(1) and of s is O(n).4 It
can be shown that if a sequence of these
transformations is applied to a system
of equations Q producing the system R
and {S,] 1 I m I n) is a solution to R,
then it is also a solution to Q. Further, if
(L,] 1 5 m 5 n] is a solution to Q, then
there is a solution of R, (K,,, 1 1 5 m 5 n)
such that K,,, I L, for 1 5 m 5 n. If Q has
a loop-breaking rule, then the procedure in
Figure 11 terminates and produces the
unique minimal solution (in terms of the
partial ordering) [Paul1 19871.

For the classical data flow problems, the
implementation of this method can involve

‘These assumptions hold even for a multigraph for
data flow problems defined by equations of the form
of eq. (2). With the operators of union and intersec-
tion, multiple terms in one variable can always be
combined to yield one term. After a substitution trans-
formation is completed, there will be not more than n
distinct terms on any right-hand side of an equation.

Elimination Algorithms for Data Flow Anulysis l 285

/* elimination */
for i = 1 to n - 1 do

begin

Q t b(Q, i)
for j = i + 1 to n do Q+- s(Q, i, j)

end
/* back substitution */
for i = n to 2 do

begin
for j = i - 1 to 1 do Q c s(Q, i, j)

end

Figure 11. Gaussian-elimination-like solution procedure.

bit vector or set operations. The partial
ordering on the n-tuples is one of compo-
nentwise set inclusion for a set implemen-
tation and componentwise comparison for
a bit vector implementation. The loop-
breaking rules for these problems are very
simple.5 In eq. (2), if fl is U as in REACH,
then we have

Qm: 2 = a n 2 u p, (5)

where a is a constant and B can contain
terms in variables other than 2 as well
as constants. The corresponding loop-
breaking rule substitutes equation qm
for Q,,,:

qm: z = p. (6)

In this case we say the loop-breaking rule
is to drop the self-referential term (i.e.,
a n 2). In eq. (2), if 0 is n, then we have

Qm: 2 = (a n 2 u C) n p, (7)

where a and c are constants and fi can
contain terms in variables other than 2
as well as constants. The corresponding
loop-breaking rule substitutes equation
qm for Qm:

qm: 2 = c n p. (8)

To validate a loop-breaking rule for an
equation, we must satisfy the conditions
(i)-(iii) given above. Clearly, 2 does not
appear on the right-hand side of q,,, in
eq. (6) (i.e., (i) is satisfied). Then the solu-
tion of the loop-breaking rule qm must be

6 In general, loop-breaking rules are determined by the
operators in the equations [Paul1 19871.

1 81: X1=0,

1
2

0

Qz: X2 = (~lnX~ud,)U(wnXaUd,),

3 Qa:Xa=pznX,udp.

Flow graph

Figure 12. REACH example with loop.

shown to satisfy the original equation Qm.
Letting 2 = p in eq. (5), we have

p =? (a n p) U p,

which is clearly true (i.e., (ii) is satisfied).
Finally, for every solution S of Qm there
must be a solution s of qm such that s 5 S.
Here, if S is a solution to Qm, then

S=(anS)uP*BGS.

Therefore 2 = p 5 S for S any solution of
Qm (i.e., (iii) is satisfied). By replacing
eq. (5) by eq. (6) we are selecting the min-
imal solution for 2 from the set of possible
solutions satisfying Qm.

We use an example of REACH to illus-
trate these ideas. In Figure 12, we apply a
loop-breaking rule; the variable whose
equation becomes self-referential corre-
sponds to node 2, which is an entry node of
a loop in the flow graph. The substitution
transformation s(Q, 3, 2) introduces an X2
term in the right-hand side of Qz,

Qz: Xz = (PI n X, u dd

u b3 f-7 b n x2 u d2) u d3),

ACM Computing Surveys, Vol. 18, No. 3, September 1986

286 . B. G. Ryder and M. C. Paul1

which is eliminated by a loop-breaking
transformation b(s(Q, 3, 2), 2),

qz: X2 = (PI n XI u 4)

u (~3 n dd u &.

Let R = (Qi, q2, Q3). Now two substitu-
tion transformations solve the system R,
4R, 1, 21,

X2 = (~1 n 0 u 4) u (~3 n 4) u da,

X2 = 4 u (~3 n 4) u da,

and s(R’, 2,3), where R’ is R with the result
of s(R, 1, 2) replacing q2,

X3 = ~2 n (4 u (~3 n d2) u d3) u d2,

x3 = (p2 n dl) u (p2 f-7 p3 n dd

u (PZ n &) u &,

yielding after simplification,

x, = 0,

X2 = dt u (~3 n d2) u d3,

X3 = (~2 n 4) u (~2 n d3) u d2.

Thus the loop-breaking transformations
guarantee the effectiveness of the proce-
dure in Figure 11 on flow graphs with loops.

Thus far we have described the data flow
problems as defined by the flow graph of
the corresponding program. However, we
can use the solution technique presented
here on any system of equations that has a
loop-breaking rule. Given a set of equations
of the form of eq. (2), we can define
a dependency graph, a directed graph cor-
responding to the interdependencies of
variables given by the equations in that
system. Each node represents a variable;
each directed edge (m, n) represents the
dependence of X,, on X,,, (i.e., the occur-
rence of X,,, on the right-hand side of the
equation for X,,). For forward data flow
problems, the dependency graph is the
flow graph of the problem.

We describe the elimination algorithms
as solution procedures for systems of equa-
tions and their corresponding dependency
graphs, comparing and contrasting the data
flow algorithms by examining how they
solve these systems. The equations can be
solved by a method patterned after

ACM Computing Surveys, Vol. 18, No. 3, September 1986

straightforward Gaussian elimination with
order O(n3) complexity. In fact, the elimi-
nation methods described here all have bet-
ter worst case bounds because they take
advantage of a special coefficient structure,
first utilized by Allen-Cocke interval anal-
ysis, that results from the sparseness of the
system of equations and the reducibility of
the dependency graph. A standard assump-
tion in data flow analysis of control flow
graphs that correspond to real programs is
that e = O(n) [Hecht 1977; Hopcroft and
Ullman 1972; Tarjan 1974; Ullman 19731.

A reducible directed graph is one with no
multiple-entry loops [Hecht 1977a].6 In a
system with a reducible dependency graph,
the variables of the system are naturally
partitioned into groups that can affect each
other only in a highly constrained manner.
In practice, irreducible control flow graphs
are rare; therefore data flow methods that
require reducible systems are almost always
sufficient [Hecht 1977; Knuth 19711. The
Hecht-Ullman and Tarjan interval analy-
sis algorithms are restricted to systems of
equations with reducible dependency
graphs. The Graham-Wegman algorithm
can handle irreducible systems (see Sec-
tion 5.3). Allen-Cocke interval analysis
can be adjusted to handle irreducibilities
as well [Schwartz and Sharir 19791. We
should bear in mind that an irreducible
system can always be solved straight-
forwardly, if inefficiently, by the Gaussian-
elimination-like method in Figure 11.

2. ALLEN-COCKE INTERVAL ANALYSIS

Interval analysis was orginally developed
in the elimination algorithm in Allen
[1971]. The key step is to use the reduci-
bility of the dependency graph to convert
the solution of a system of n equations to
the solution of a smaller system of r equa-
tions by partitioning the equation variables
into r subgroups called intervals, single-
entry regions corresponding approximately
to loops in the dependency graph.’ The
partitioning algorithm that finds the inter-

6 A subgraph is defined to be single entry if all incident
edges are incident on a single vertex. Single exit is
defined similarly.
‘For forward data flow problems, the dependency
graph will be the flow graph.

Elimination Algorithms for Data Flow Analysis l 287

INT := null;
I := null;
H := [s];

while (H # null) do

/” list of intervals */
/* each interval */

/* header list initialized to source node */

Destructively select h from H;
I := (h]; /* form Zh */
while (There is a node m not s, whose immediate predecessors are all

in I but m is not yet in I) do
Add m to I;

endwhile;
Add I to INT;
while (There is node n not in H and not in INT, with at least one

predecessor in I) do
Add n to H;

endwhile ;
endwhile ;

Figure 13. Interval-finding algorithm.

vals is explained in Section 2.1. If h is the
entry node of an interval, we call it the
interval head node of interval Ih. The order
in which nodes are added to an interval,
called an interval order, preserves the par-
tial order of the dependency graph. By
forming a linear order of all the nodes in
the graph that embeds the interval orders
on every interval and writing the equations
in this order, we obtain a highly structured
coefficient matrix, amenable to simplifica-
tion by a sequence of substitution transfor-
mations. This structure ensures that the
equation for each variable in an interval
can be parameterized in terms of the inter-
val head variable (i.e., the variable corre-
sponding to the interval head node). We
call the result of this parameterization a
reduced equation.

In this section we present our model of
the Allen-Cocke algorithm. First we infor-
mally discuss the algorithm that finds the
intervals and demonstrate their use in solv-
ing the system of equations. We then state
the interval analysis algorithm formally,
and we show that the Allen-Cocke algo-
rithm in practice has linear worst case
complexity on a reducible flow graph with
maximal loop nesting level bounded by
a constant.

2.1 Finding intervals

The partitioning algorithm finds single-
entry regions in the dependency graph.
This algorithm is presented in Figure 13

and may be paraphrased as follows [Allen
and Cocke 19771. We initialize a set S to
contain the unique source node of the de-
pendency graph. Then we look for any
nodes whose immediate predecessors are all
in S. We add any such nodes into S and
continue. Eventually, either every node will
be in S or we will have exhausted all the
nodes that could be added to S and have
remaining a set of nodes H that have been
examined but have predecessors both in S
and not in S. At this point all nodes cur-
rently in S constitute an interval, headed
by the first node added to S. Arbitrarily we
choose a node from H, reinitialize S to
contain only that node, and continue as
before. The process terminates when every
node in the graph has been added to some
interval.

Clearly an interval order as defined by
Figure 13 is not unique; that is, different
representations of the same graph will re-
sult in different interval orders. The order
also preserves the ancestor-first relations
on the graph. Characteristics of intervals
guaranteed by the algorithm are [Allen and
Cocke 19771:

(i) The set of interval head nodes on a
flow graph is unique.’

(ii) The head node of an interval domi-
nates internal interval nodes.

(iii) An interval is single entry.

‘This follows from the fact that a flow graph has a
unique source node.

ACM Computing Surveys, Vol. 18, No. 3, September 1986

288 . B. G. Ryder and M. C. Paul1

(iv) Any back edge in an interval has the
interval head node as its target [Hecht
19771.

(v) The interval order on an interval is
consistent with the partial ordering
imposed by the predecessor relations
of the flow graph.

2.2 Algorithm Statement

The algorithmic reduction of the solution
of a system of n equations to a smaller
system of r equations, where r is the num-
ber of intervals in the dependency graph
of the equations, consists of two phases:
elimination and propagation. During elim-
ination we perform successive substitution
and loop-breaking transformations on the
systems of equations; this phase gathers
and summarizes the local data flow side
effects. During propagation we perform
back-substitutions of solutions for terms in
equations; this phase propagates global
data flow side effects to the local regions
where they apply. The model of the algo-
rithm is given at the end of this section.

The elimination phase consists of iter-
ating three steps: finding intervals in the
dependency graph associated with the sys-
tem of equations, reducing the equations to
form a new system of reduced interval head
variable equations, and forming the de-
pendency graph of the reduced system.
Within each interval in the system, a
sequence of substitution transformations
reduces all the equations to linear functions
of the interval head variable. A derived
system of equations is formed that consists
of the r reduced interval head variable
equations and depends only on interval
head variables from the former system.
This derived system is partitioned in turn
into intervals: each with an interval order,
and the coeffuxent matrix structure of the
origin& problem is preserved in its equa-
tions.’ When the original flow graph is
reducible, the three-step process can be
continued, yielding a sequence of systems
of equations and a final system of one
equation.

’ The arguments establishing the coefficient matrix
structure utilize only the properties of intervals and
an interval order.

The propagation phase consists of iter-
ating two steps: establishing variable cor-
respondences and substituting interval
head variable solutions into reduced equa-
tions, thus obtaining solutions for internal
interval variables. To begin, we solve a
system of one equation. The final variable
is associated with the corresponding inter-
val head variable in the preceding system
as they share the same solution. Focusing
on the preceding system, the interval head
solution is substituted into the reduced
equations for variables in its interval.
Then, each of these newly solved variables
is associated with its corresponding interval
head variable in the system preceding the
one just solved. The solutions for all vari-
ables in this system are similarly obtained.
This variable correspondence/substitution
process is iterated through the derived
systems of equations established in the
elimination phase in reverse order until all
solutions are obtained.

The sequence of dependency graphs
(G’)ki corresponding to the sequence of
systems of equations is called the derived
sequence of graphs, and G’+’ is called the
derived graph of G’. Whenever we use G i,
we are referring to a graph in the derived
sequence of graphs in Allen-Cocke interval
analysis. When we say that y in G’+’ rep-
resents I,, in G’, we are referring to the fact
that all variables in Ih are represented by
variable X, in G i+l, the corresponding node
of which in G’+’ is y. The definition of
represents is extendible over finite subse-
quences of the derived sequence. Therefore,
if

ml E &a, ii G’, . . . , mk E &+, c G i+k-l,

we say that mk represents ml in Gi+k-‘.
During elimination, when we remove all

dependence in the system of equations on
variables in Ih, we replace those depen-
dences by a dependence on Xh. The graph-
ical interpretation of this action is that
h in G2 represents I,, in G ‘. In Figure 14,
node 2 in G2 represents I2 in G ‘. This
signifies that internal interval variables in
I2 on G1 (i.e., (3)) do not appear in the
derived system corresponding to G2. Of
course, since we partition the nodes of both
G ’ and G 2 into intervals, node 2 belongs to

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis l 289

G’ G2 G3

Zl = Ill, Zl = (1 2 41 z = Ill

12 = I2 3t,

14 = (41

Figure 14. Derived sequence.

two different intervals on the two graphs:
node 2 is in I2 on G * and in I1 on G ‘. That
is, there are two different systems of equa-
tions depicted in these graphs; X2 is in a
different partition element in each system.
A REACH problem fully solved using
Allen-Cocke interval analysis is presented
in Figure 22, Section 3.5.

2.2.1 Model of the Allen-Cocke Algorithm

Elimination Phase

(9

(ii)

(iii)

Define the forward data flow equa-
tions on the original flow graph, G1.
Let 12 = 1.
Find the intervals in Gk using the
Allen-Cocke interval finding algo-
rithm in Figure 13. Number the vari-
ables in each interval according to an
interval order. Apply substitution
transformations within each inter-
val to obtain the system of reduced
equations. Use the relevant loop-
breaking transformation on any
self-dependences introduced in the
process. Use substitution transfor-
mations to render all interval head
variable equations independent of
noninterval head variables.
Create the dependency graph G k+l the
nodes of which are the interval head
variables from Gk and the edges of
which are defined by the dependences
in the reduced system of equations

(i.e., insert an edge (m, n) if the data
flow equation for X, contains a
dependence on X,,,).

(iv) If there is more than one node in G k+l,
then increment k by 1 and return to
step (ii).

Propagation Phase

(v) Solve the final equation.
(vi) Each interval Ih in Gk corresponds to

a node w in Gk+l. For each interval
head node h in Gk set Xh equal to the
solution at the node corresponding
to I,, in Gk+l, X,. Then substitute
this value of Xh into the reduced equa-
tions in Ih to solve for all variables,
thus solving the system of equations
associated with G k.

(vii) If k = 1, stop. Otherwise, decrement
k by 1 and return to step (vi).

2.3 Linear Performance
of Allen-Cocke Interval Analysis

In this section we show that in Allen-Cocke
interval analysis, the amount of work both
in finding the intervals and in solving the
equations exhibits a linear worst case com-
plexity bound on reducible flow graphs un-
der common conditions. Our result is a
practical limit on the performance of the
Allen-Cocke algorithm on reasonable flow
graphs encountered in practice; it does not
hold for general graphs.

The worst case performance of the Allen-
Cocke algorithm can be O(n2) even if e is
only O(n). This bound is achieved on the
worst case reducible flow graph, which is
pictured in Figure 15. This graph of n nodes
has approximately 2n edges and a loop
nested at a depth of approximately 2n/3
[Ullman 19731. However, reasonable pro-
grams do not contain highly nested loops.

Empirical surveys of high-level program-
ming languages confirm that in actual prac-
tice, loop-nesting depths of greater than
six are rare. Two FORTRAN surveys in
the 1970s reported that typical nesting of
do statements was very shallow [Knuth
1971; Robinson and Torsun 19761. Knuth,
reporting on programs from Stanford
University and the Lockheed Corpora-
tion, stated that 91 percent of the do

ACM Computing Surveys, Vol. 18, No. 3, September 1986

290 l B. G. Ryder and M. C. Paul1

Figure 15. Pathological flow graph for Allen-Cocke interval analysis.

statements had fewer than four levels.
Robinson, surveying two program popula-
tions from students and systems program-
mers at Brunel University in England,
noted that a majority of the do statements
had fewer than four levels: 76-84 percent
(student/systems) of the do statements had
fewer than seven. The assumption of a six-
level limit of loop nesting in PL/I programs
was supported by Allen [private communi-
cation, 19791.

Thus in reasonable programs it is valid
to assume a maximum loop-nesting depth
that is a constant k, k << n, that is inde-
pendent of the number of nodes in the
control flow graph. Under that assump-
tion for a reducible control flow graph,
Theorem 1 shows that the equation solu-
tion work of the Allen-Cocke algorithm has
O(n) complexity using the standard as-
sumption that e is O(n). Furthermore, a
work-set form of the interval-finding algo-
rithm is O(n) on a flow graph when e is
O(n) [Hecht 19771; by restricting the loop
nesting depth to a constant k, we restrict
the possible length of the derived sequence,
resulting in an O(n) bound on interval find-
ing over the entire algorithm.” These re-
sults corroborate the common observation
that the O(n2) worst case complexity bound
is not observed in practice.

lo It seems straightforward to extend Theorem 1 to
show that Allen-Cocke interval analysis has a worst
case complexity hound of O(nf(n)) if the loop nesting
depth is bounded above by f(n).

Theorem 1 also holds on call graphs that
satisfy its hypotheses for data flow prob-
lems defined by equations of the form of
eq. (2). Although call graphs are multi-
graphs, we can combine multiple terms in
one variable into one term, because of the
form of our equation. Therefore they be-
come nonmultigraphs at a cost of no more
than O(e).

Theorem 1

Given a reducible flow graph G in which
e is O(n), suppose that the maximum loop
nesting depth is less than or equal to a
constant k. Assume that Allen-Co&e inter-
val analysis is applied to solve a forward
data flow analysis problem on G. Then the
worst case complexity of the equation solu-
tion work of the Allen-Co& algorithm on
that flow graph is O(n), where n is the
number of nodes in G.

PROOF. From our model of Allen-Cocke
interval analysis we see that the terms in
the system of equations can be partitioned
into two disjoint sets: a set S1 of elements
that are substituted for once during elimi-
nation and a set S2 of those elements for
which substitution takes place more than
once. The work of elimination can be cal-
culated by considering the sum of the elim-
ination work for terms in Si and Sp.

The elimination work for terms in Si is
0(] S1]) 5 O(n), by our assumption that e
is O(n). The terms in S2 occur in interval

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis l 291

head equations in G = G1. If a term in-
volving Xj E Sz occurs in the equation of
Xi in G1, then in step (iii) of the Allen-
Cocke algorithm a linear function of X,,
will be substituted for the variable Xi,
where j E Ih in G. Likewise, in G2 a linear
function of X, will be substituted for the
variable X,, in the equation of Xi, where
h E 1q in G2. Because G ’ is reducible,
this process continues for finitely many
steps until the edge representing (j, i) in
G1 no longer exists on some G”.

Assume that each interval in the flow
graph corresponds to a loop. Each step in
the derived sequence accomplishes the col-
lapse of the innermost loop of a nested loop.
Since the maximum nesting level is k, all
loops will be collapsed in Gk+l. Under our
assumption, the source node will also be in
a loop; therefore Gk+l will be the trivial
graph of a singleton node.”

Alternatively, there may be intervals not
corresponding to loops in the flow graph;
call these “null loops.” By the properties of
the interval-finding algorithm of Figure 13
we can show that if there are no loops in
the graph Gj, then there can be no null
loops in Gj except for the entire graph Gj
itself. If there are null loops on G’ and
loops are nested no deeper than k, then
Gk+l is acyclic, although it may contain
more than one node. Therefore the derived
sequence is at most k + 2 long, with either
Gk” or G k+2 being the trivial graph of a
singleton node.

Thus an edge (j, i) in G1 can be repre-
sented on at most k + 1 graphs in the
derived sequence, and the elimination
cost for terms in S2 is bounded above by
c 1 S2 1 (k + 1) for c a constant. Since the
total number of terms is the number of
edges in the original flow graph, both 1 S1 1
and 1 S2 1 are no greater than O(n). There-
fore the elimination work is bounded by
O(n).

The propagation work is bounded by the
number of nodes in the entire derived se-
quence since we are merely substituting
into reduced equations each a function of

I1 We “violate” the definition of source node here to
allow its inclusion in a loop.

one variable. Since the number of nodes in
successive graphs in the derived sequence
decreases, the number of nodes in any G’
is bounded by O(n). Therefore the total
number of nodes is bounded by bn(k + 1)
+ 1 for b a constant and (k + 2) the length
of the derived sequence, and so O(n) also
bounds the work of the propagation phase.

Thus the worst case complexity of the
equation solving by Allen-Cocke interval
analysis is bounded by O(n). Q.E.D.

In the proof of the theorem we assume
that 1 S:! 1 on G1 dominates the number of
substitutions on each G’, i > 1. This is true
because any term requiring substitution on
G’, i > 1, corresponds to a term on G ‘. In
some models of interval analysis the de-
rived graph can become a multigraph. Since
the parallel edges correspond to distinct
edges in the original graph, this does not
affect the complexity arguments in the
proof.

3. HECHT-ULLMAN T,-Tz ANALYSIS

In the next three sections we present
models of three closely related data flow
algorithms, all improvements on the Allen-
Cocke algorithm. On flow graphs in which
the number of edges e is O(n) these algo-
rithms achieve a worst case bound of
O(nlogn)12 rather than the O(n2) bound of
the Allen-Cocke algorithm. The perform-
ance is improved by the delay of certain
calculations and the discovery and utiliza-
tion of common substitution factors in the
equations. We compare them with the
Allen-Cocke algorithm on forward data
flow problems.

In this section we present our model of
Hecht-Ullman Tl-T2 analysis. The group-
ing of variables is less constrained than in
the Allen-Cocke algorithm and is per-
formed using a “nearest neighbor” heuris-
tic. The delay in the calculation of common
coefficient/constant factors in the reduced
equations yields savings in elimination.
These shared factors necessitate the use of

I2 The Tajan algorithm can achieve an almost linear
worst case bound of O(n C&Z)) but its practical imple-
mentation explained in Section 4 achieves a 0 (n log n)
bound [Tarjan 1981a].

ACM Computing Surveys, Vol. 18, No. 3, September 1986

292 l B. G. Ryder and M. C. Paul1

a data structure to remember them; a
height-balanced 2-3 tree is used [Aho et al.
19761. The Hecht-Ullman method consists
of three phases analogous to those of Allen-
Cocke interval analysis: parse generation,
elimination, and propagation. We contrast
the two for each of these phases. The
Hecht-Ullman algorithm can only be ap-
plied to programs with reducible flow
graphs [Hecht 19771, but as we noted
above, this is not really a limitation in
practice.

We begin by discussing the Hecht-
Ullman parse generation algorithm, which
determines the variable subgroups and
the order of variable substitution in the
equations. Graph transformations TI and
T2 applied to the dependency graph of the
equations define this order. We define con-
cepts necessary for understanding the TI
and T2 transformations and briefly outline
the actual parse algorithm [Hopcroft and
Ullman 1972; Ullman 19731. We explain
the elimination phase of the algorithm in
terms of our model, describing the equation
manipulations that correspond to the TI
and Tz transformations. We then discuss
the propagation phase of the algorithm.
Next we state the algorithm formally, and
finally we compare its parse and elimina-
tion phases with those of Allen-Cocke in-
terval analysis.

3.1 Parse Generation

The Hecht-Ullman TI-T, algorithm as-
sumes that a data flow problem is described
by a system of equations of the form of
eq. (4) with an associated dependency
graph (i.e., the flow graph). The algorithm
uses single-entry subgraphs of the flow
graph called regions to direct its elimina-
tion phase, much as the Allen-Cocke algo-
rithm uses intervals. In a region R there is
one vertex, the region head h, such that all
edges from outside of region R to nodes in
R are incident on h. If a node y is within a
region headed by h (i.e., Rh), then at some
point during the execution of the algorithm
the reduced equation for X, is a linear
function of Xh. This is analogous to the
relation between internal interval nodes
and interval head nodes. Regions are ma-
nipulated using the transformations TI and

Before T, transformation:

After Tl transformation:

1
Y

(ii) Th, w, &)

Before Tz transformation:

Yw = pton Yuu&,

Yy = pyn Ywud,.

After T2 transformation:

Y, = Pwn Yuud,,

Y, = prnpmn Y,Up,nd,ud,.

Figure 16. Examples of Tl and T2 transformations.

T2, illustrated in Figure 16, that correspond
to loop breaking and substitution transfor-
mations on the system of equations. These
substitutions and the meaning of the edge
sets E1 and E2 in terms of the equations are
explained in Section 3.2.

A parse of a reducible flow graph is
a sequence of TI and T2 transformations
that, when applied to the flow graph,
results in its collapse to one node [Hecht
19771. Each transformation in the parse is
called a parse element. A flow graph that
is transformed to one node is called col-
lapsed. Hecht and Ullman proved that TI
and Tz form a finite Church-Rosser trans-
formation, which means that they need
only be applied finitely many times to a
reducible flow graph and that the outcome
is independent of the order of their appli-
cation [Hecht 19771.

The parse generation algorithm is de-
rived from an algorithm of Hopcroft and

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis 9 293

Ullman [Hopcroft and Ullman 1972;
Ullman 19731. The algorithm examines a
flow graph that is represented by a set of
nodes and the lists of in-edges and out-
edges associated with each node. The order
of the edges on these lists influences the
parse generated. An explicit search and test
are made for each T2 transformation; Tl
transformations result from these tests
whenever a self-loop is detected. The same
node may appear in more than one Tl
transformation in a parse, although an edge
can appear in only one parse element.

In parse generation a sweep through all
nodes and edges in the flow graph initially
finds T2 candidates and any self-loops.
Figure 17 illustrates a suhgraph in which
node v is a T2 candidate because it has a
unique parent. For each T, candidate v, its
immediate neighbors are checked for Tz
candidacy. First each immediate descen-
dant of v is checked to see whether it be-
comes a Tz candidate after T&z, v, *), and
if necessary Z’,(y, *) is performed. Then
z the immediate parent of v is checked
to see if it becomes a Tz candidate after
T&, v, *) and if necessary Tl(z, *) is per-
formed; for example, this can occur if
(v, z) prevented z from being a Tz candi-
date previously, as in Figure 17. The parse
of a flow graph is nonunique; the order of
the transformations obviously depends on
the flow graph representation. The out-
line of the parse generation algorithm is
given in Figure 18.

In practice, when edge lists are manipu-
lated, the parse generation algorithm of
Figure 18 always merges the smaller region
into the larger one by counting the number
of nodes represented by each node in the
partially collapsed flow graph [Ullman
19731. This strategy ensures a worst case
bound for flow graphs with the usual as-
sumption for flow graphs that e is O(n)
[Hopcroft and Ullman 1972; Ullman 19731.

3.2 T,-T2 Transformations and Elimination

The calculations of the elimination phase
are directed by the parse of the flow graph.
A region in equation terms is a subgroup of
variables all of which have reduced equa-
tions that are linear functions of the region
head variable. Our descriptions of the Tl

Y

Figure 17. TS transformation candidate.

and T2 transformations in Section 3.1 are
graphical. In this section we explain the
sequence of equation manipulations to
which they correspond. Each Tl or T2
transformation triggers a coefficient/con-
stant calculation that further reduces at
least one of the equations in the system.
Examples of these calculations are given in
the REACH equations in Figure 16.

A T2 transformation can be applied when
a node has a unique predecessor, that is,
when the equation of the corresponding
variable is a function of one variable. The
T2 transformation Tz(u, w, E2) in Figure
16(ii) merges R,, the region represented by
node w in the partially collapsed flow graph,
into its unique predecessor region R,, rep-
resented by node u. Here Ez is the set of
edges in the original flow graph represented
by (u, w) in the partially collapsed flow
graph. In the elimination phase this Tz
parse element corresponds to selecting two
subgroups of variables (R, R,), each with a
region head variable (Y, Y,), and merging
them into one subgroup (R,). After the
merge there is one region head variable Y,
representing all the members of the newly
merged subgroup; therefore the reduced
equation of each variable in the new sub-
group is a linear function of Y,.

Each edge in the set of edges E2 corre-
sponds to a term in the original equation
for Y,. These terms are represented in the
partially reduced equation for Y, by the
term in Y,. When the parse element Tz(u,
w, E2) is performed, we do a sequence of
substitution transformations such that the
right-hand side of the reduced equation for
Y,, a linear function of Yu, is substituted
into the equations of any variables cur-
rently dependent on Y,. These include all
variables in R, represented by w in the
partially collapsed flow graph, as well as
all variables corresponding to immediate

ACM Computing Surveys, Vol. 18, No. 3, September 1986

294 l B. G. Ryder and M. C. Paul1

L := null; /* L is a list of Tz candidates */
for i := 1 do n do

if in-edges(i) contains (i, i) then Generate T,(i, *);
if in-edges(i) contains only one edge then Add i to L;

endfor;
while L # null do

Destructively select v from L;
Find unique predecessor of v, z;
Generate T2(z, v, *);
Determine if z can be added to L, perhaps after a T, transformation

of z;
for each immediate descendant of v, y do

Determine if y can be added to L, perhaps after a T,
transformation of y;

endf or ;
Add out-edges(v) to out-edges(z);

endwhile ;

Figure 18. Parse generation algorithm.

descendants of w; in Figure 16(ii), the latter
category includes Yy . Updated reduced
equations are obtained for all nodes in R,
and for these immediate descendant nodes;
thus all dependence on Y, in the current
system is eliminated.

A T1 transformation is applied to remove
a self-loop, or in equation terms, a variable
from the right-hand side of its own equa-
tion. The Z’i transformation Z’i(u, Ei)
in Figure 16(i) removes a self-loop from
node u. E, is the set of edges in the original
flow graph, represented by (u, u) in the
partially collapsed flow graph. Each edge
in El corresponds to a term in the ori-
ginal equation for Y,; each was a back edge
to u in the original flow graph. When the
T1(u, El) parse element is encountered, the
heads of these edges are nodes already in
region R,. When they were merged by pre-
vious Tz transformations into R,, the as-
sociated variable substitutions may have
resulted in the introduction of Y, on the
right-hand side of the partially reduced
equation for Y,. The self-loop in Figure
16(i) represents this dependence. In the
elimination phase, when a Tl parse element
is encountered, we apply the appropriate
loop-breaking rule (see Section 1) to elim-
inate any dependence of Y, on itself.

The basic elimination step of the Hecht-
Ullman T,-T2 algorithm, associated with
the T2 transformation, is the complete

removal of a particular variable in the
partially reduced system of equations (e.g.,
performing T2(u, w, Ez) removes Y, from
the system). In practice the algorithm ac-
tually performs the calculation associated
with T2(u, w, Ez) only for variables with
nodes in region R, after the T2 graph trans-
formation is performed; all other calcula-
tions are delayed. That is, if the equation
for Y, contains a term Y, and z 4 R, after
Tz(u, w, E2) is performed, then replacement
of Y, by a linear function of Y, (i.e.,
s(Q, w, z)) is delayed until z and w are in
the same region. At that time, occurrences
of Y, are replaced by the right-hand side
of the then current reduced equation for
Y,. Eventually z and w must be in the same
region, as all nodes are finally in the region
of the entire graph, R,,,,.

For example, in Figure 19 the graph
has two possible parses.13 In both, when
T2(3, 4, ((3, 4))) is performed, node 5 is in
neither R3 nor R4. The existence of edge
(4, 5) implies that there is a Y4 term in
the equation of Ys. The replacement of that
Y4 term is delayed until nodes 4 and 5
are in the same region; this occurs after
parse element TAl, 5, ((2, 5)(3,5)(4, 5))) is
performed. Then the current reduced equa-
tion for Y4 as a linear function of Y1 is
substituted into the equation for Ys.

I3 It has a unique interval order (1,2,3,4, 5).

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis 295

Parse A Parse B

T*(3,4, H3,4)1) T-2(1,2, I(19 2)l)

T2(1, 2, Hl, 2))) T2(3,4, {(3,4)1)

TI(3, ((4, 3N TI(3, N4,3N

T,U, 3, I& 3)(2,3)1) Tz(l, 3, W,3)(2,3)l)

T*U, 5, I@, 5)(3,5)(4,5)l) TZU, 5, w&5)(3,5)(4, 5)l)

T,(l, 1(5, l)l) Tl(l, 1(5, Ul)

Figure lg. Delayed substitutions example.

Graph

Figure 20.

Parse

1. T,(5,6, l(5,W

2. T,(5,7, l(5,7)l)

3. T2(4,5, 1(4,5)l)

4. T&3,% (@,g)l)

5. Tz@, 10, W3, WI)

6. T2(4,6, l(4,W)

7. T1(4, ((6,4)l)

6. Td3,4, l(3,4)l)

9. TI(3, H793)l)

10. T2(2,3, w, 3)))

11. TIC4 w, al)

12. Tz(L 2, 0 2)l)

13. TlU, IOO, w

Common factors example.

The delay in performing out-of-region and 21 illustrate these. Figure 20 shows
variable substitutions enables the Hecht- the Ullman worst case flow graph for
Ullman algorithm to avoid recalculating Allen-Cocke interval analysis for n = 10
common coefficient factors in some reduced (see Figure 15), with a possible parse
equations. These factors occur because [Ullman 19731. Figure 21 shows the
common substitution sequences exist in Hecht-Ullman algorithm applied to a
the system: The example in Figures 20 REACH problem formulated on that

ACM Computing Surveys, Vol. 18, No. 3, September 1986

296 . B. G. Ryder and M. C. Paul1

Initially:

Yl = pin Y,oud,,

Yz = pzn Y,upzn Ysu&r

Ya = PZ~ Ysupsn YTu&,

Y, = p,n Y3up,n Ysud,.
Let di ,... i, = pi,n.. . npiti,nd,Upi,n.. . npiJd;k,U.. . ud,.

After parse element 7. Y4 E &, Y3 E I&, Y2 E RP, Yl E RI:
YI, Y2, Y3 same as initially,

Y~=p4nY3upln(psn(p5nY~ud5)uds)ud,.

After loop breaking,

Y, = pdn Ysud,czs

= an Y,ub.

After parse element 9. YI E RI, Yz E Rz, Ys, Yd E RB:
Y,, Y2 same as initially,

Y3=p3nY2up3n(p,n(~5n(anY,Ub)UdS)Ud7)Ud3.

After loop breaking,

Y3 = p3n Y2ud315495,

= cn Y,ud.

Y, same as after parse element 7.

After parse element 11. YI E RI, Y2, Y3, Yd E Rt:

YI same as initially,

Y2=p2nY~upzn(p&(psn(anknY2Ud)Ub)Uds)U~)Ud2.

After loop breaking and simplification,

Yz = fin Y,udzssr~~5Udms,s5

= en Y,uf.

Y3 same as after parse element 9.

Y,=an(cnYzud)ub.

After parse element 13. YI, Yz, Y3, Y4 E RI:
Y~=pln(p~on(p8n(an(cn(enY~uf)Ud)Ub)Uds)Udlo)Udl.

After loop breaking and simplification,

Yl =pln(p,on(psn(ancnfuandub)ud8)Ud,o)Udl

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Yz same as after parse element 11.

Y3 = cn(enY,uf)ud,

Y, = an(cn(enYIuf)ud)ub.

Figure 21. Hecht-Ullman algorithm on REACH problem for Figure 20.

ACM Computing Surveys, Vol. 18, No. 3, September 1936

Elimination Algorithms for Data Flow Analysis 9 297

flow graph, using equations of the form of
eq. (4).14 The algebraically simplified, par-
tially reduced equations for Yi, Yz, Y3,
and Y4 are displayed at various times
during the elimination.

After parse element 7. is performed, the
reduced equations for (Yi]il=o5 are linear
functions of Y4. The equation for Y1 is the
same as it was initially because the substi-
tution for the YiO term has been delayed.
Likewise, the equations for Y2 and Y3 are
the same as initially, with the substitution
for the Ys and Y7 terms delayed. After parse
element 9. is performed, Y3, Y4 E R3. The
Y7 term in the equation for Y3 is replaced
by the right-hand side of the reduced equa-
tion for Y4 as a linear function of Y3,
and a loop-breaking rule is applied. After
parse element 11. is performed, Y2, Y3, and
Y4 E Rz. The delayed substitution for the
Ys term in the equation for Yz is performed
using, as a subcalculation, the right-hand
side of the reduced equation for Y4 as a
linear function of

Y2: Y4=an(cnY,ud)ub. (9)

After parse element 13. is performed, all
variables are contained in RI. The delayed
substitution for the Y1o term in the equa-
tion for Y1 is performed using, as a subcal-
culation, the right-hand side of eq. (9).
Therefore the equations for Y1 and Y2 share
a common interregional substitution factor,
the right-hand side of eq. (9), introduced
by the variable substitutions for the YiO
and Ys terms, respectively.

The control flow paths,

(234892) (12348101)
(2345734892) (12345648101)
(234564892) (123457348101)

(1234892348101)

which are substitution sequences in the
system as well, all share subpath (2 3 4),
which is an interregional path containing
three region heads that are back edge tar-
gets. The variable substitutions along that

“Because node 1 has a predecessor, node 10, it does
not satisfy our definition of the source node. Never-
theless, we can analyze this flow graph by considering
Y, a boundary variable with an equation of the form
given in Section 1 plus a term for Y,,.

subpath resulting in eq. (9) are only calcu-
lated once by the Hecht-Ullman algorithm.
The longer the common interregional sub-
stitution paths, which are shared by two or
more factors in the system of equations, the
larger is the savings.

Efficient use of these delayed common
calculations requires an appropriate data
structure. The Hecht-Ullman method
builds a 2-3 height-balanced calculation
forest to keep track of the common factors
[Aho et al. 1976; Ryder 1982b; Ullman
19731. At the end of the elimination phase,
one tree contains all the reduced equations
in factored form.

For a flow graph for which e is O(n), the
savings provide a solution with complexity
O(nlogn) rather than O(n2) as for the Al-
len-Cocke algorithm. In Section 3.5 the
Allen-Cocke algorithm is applied to the
flow graph in Figure 20, and comparison
shows the calculations saved by the Hecht-
Ullman algorithm. We also solve this ex-
ample using Tarjan interval analysis in
Section 4.5 and Graham-Wegman analysis
in Section 5.4.

3.3 Propagation

The propagation phase of the Hecht-
Ullman algorithm involves only the back
substitution of the value of the source node
variable. By substitution of this solution
in each reduced equation, the solution for
every other variable is obtained.

3.4 Algorithm Statement

In the first phase of the Hecht-Ullman
algorithm a parse generation method forms
a parse of the flow graph, establishing an
order for the elimination phase substitu-
tions. At the end of this phase, all equations
are reduced to linear functions of the source
node variable. Then the propagation phase
finds the solution for the source node vari-
able and uses the reduced equations to solve
for all other variables in the system.

3.4.1 Model of Hecht-Ullman T,-T2
Analysis Algorithm

Parse Generation

(i) Find a T1-Tz parse of the flow graph
(see Figure 18) to establish a substi-

ACM Computing Surveys, Vol. 18, No. 3, September 1986

298 l B. G. Ryder and M. C. Paul1

tution order for the terms in the sys-
tem.

Elimination Phase

(ii) In parse order for each parse element,
do

(iii) (a) If the parse element is TAi, j, Ez),
then perform any delayed substi-
tution transformations necessary
to transform the equation for Yj
into

Yj = a n Yi U b, (10)

where a and b are constants.
Change any dependence on Yj in
equations for variables with cor-
responding nodes in Ri U Rj into a
dependence on Yi by a sequence
of substitution transformations
that substitute the right-hand side
of eq. (10) for each Yj term. Delay
this substitution for nodes outside
Ri U Rj.

(b) If the parse element is Ti(i, El),
then perform any delayed substi-
tution transformations for Yj

where (j, i) E El. Apply the rele-
vant loop-breaking rule (see Sec-
tion 1) to eliminate Yi from the
right-hand side of the current
reduced equation for Yi.

Propagation Phase

(iv) Determine the solution of Y,,,,,. Sub-

3.5

stitute the value of YWW, into each
reduced equation to obtain a solution.

Comparison with Allen-Cocke
Interval Analysis

The complexity distinction between the
Allen-Cocke and Hecht-Ullman algo-
rithms arises because the latter finds com-
mon factors in the reduced equations that
elude the former. Figure 22 illustrates the
common factors for which multiple calcu-
lations are saved by the Hecht-Ullman
computation; it shows Allen-Cocke inter-
val analysis applied to the example of Fig-

ure 20, highlighting the equations for Yi,
Yz, Y3, and Y4 in the sequence of systems.15
We use the same names for the constants
wherever possible in Figures 21 and 22 for
ease of comparison. In calculating the re-
duced equations of interval head nodes in
G1, the Y,, term in the equation for Y1 is
replaced by a linear function of Y4, defined
by the right-hand side of the ‘reduced equa-
tion of YiO since 10 E 1,. Similarly, the Ys
and Y7 terms in the equations for Yz and
Y3 are replaced by linear functions of Y4.
Substitution for the Ys term in the equation
of Y4 triggers application of a loop-breaking
rule, resulting in the Y4 equation in G2
shown in Figure 22. In obtaining reduced
equations in G2, the Y4 terms in the equa-
tions for Yi , Yz, and Y3 are each replaced
by a linear function of Y3 derived from the
reduced equation for Y4 as a linear function
of Y3. A loop-breaking rule is applied to the
equation of Y3 to obtain the reduced equa-
tion of Y3 as a linear function of Y2. In the
reduced equation derivation in G3, the two
Y3 terms in the equations for Yi and Y2 are
each replaced by a linear function of Y2.
By using a loop-breaking rule, we obtain
the reduced equation of Y2 as a linear fimc-
tion of Y1. Finally, in G4 the Y2 term in
the equation of Y1 is replaced by a linear
function of Y1. After loop-breaking and
simplification we will have calculated the
source node reduced equation.

The substitutions represented by the
right-hand side of eq. (9) in Section 3.2,
performed in the derivation of reduced
equations, are duplicate work, indicating
the possibility of savings due to common
factors. Essentially, the Hecht-Ullman
method perceives the I4 C 13 C I2 reduction
and calculates the substitutions associated
with it only once. The more interinterval
paths that occur in the flow graph, the more
common substitution sequences there may
be. For example, in a heavily nested loop
structure with many back edges to outer
loops, there may be many common factors.

I5 For ease of comparison, we assume that equations
of the form of eq. (4) are used by the Allen-Cocke
algorithm, rather than equations of the form of
eq. (3).

ACM Computing Surveys, Vol. 18, No. 3, September 1986

1

1
2

1
3

1
4

il

I

Letdi ,... ir=pi,n...np,,nd,Upi,n...np,,nd,,u.-.udi,.

Equations in G 5

Yl = pin YdJdl,

Yz =pznY,UpznYsUdz,

Ya = p3nyzup3n y7ud3,

Y, = p,n Y3up,n Y,ud,.

Equations in G’:

Yl =pln(plon(psnY,Uds)Udlo)Udl,

Y2 =p2nYlupzn(psn(p&Y,Uds)Uds)Ud2,

Y3 = pan Y,up,n(pn(p5n Y,uds)ud7)ud3,

Y, = p,n Y3up,n(p6n(p5n Y,u&)u&)Ud,.

After loop breaking,

Y, = p,n Y,u&,

= anY3ub.

Equations in G3:

YI =pln(plon(p8n(anY,ub)Uds)Udlo)Udl,

Y2 =p,nY,up2n(p&(psn(anY3Ub)Ud8)udg)Ud2,

Y3=p3nY2up3n(prn(p5n(anY3ub)Ud5)Ud7)Ud3.

After loop breaking and simplification,

Ys = pzn Yzudm,os

= cn Y2Ud.

Equations in G’:

YI =pln(plon(psn(on(cnY,ud)ub)Uds)Udto)Udl,

Y? =pznYIup2n(psn(psn(on(cnY,Ud)Ub)Uds)Ud9)Udz.

After loop breaking and simplification,

Y2 = pzn Yl~d298,375~d298,65

= en Y,Uf.

Equations in G5:

YI =pln(plon(psn(on(cn(enY,uf)ud)Ub)Ud,)Ud,,)Ud,.

After loop breaking and simplification,

YI = pln(plon(psn(ancnfuandub)Uds)Udlo)Udl

Figure 22. Allen-Cocke algorithm on REACH problem for Figure 20.

300 l B. G. Ryder and M. C. Paul1

4. TARJAN INTERVAL ANALYSIS

In this section we present our model of
Tarjan interval analysis, which we contrast
with Allen-Cocke interval analysis and
Hecht-Ullman Tl-T2 analysis. The node
order for variable substitutions in Tarjan
interval analysis is similar to that of the
Allen-Cocke algorithm; however, the defi-
nition of a Tarjan interval as a single-entry,
strongly connected subgraph [Reingold et
al. 19771 of the dependency graph of the
original system of equations is more restric-
tive than the definition of an Allen-Cocke
interval and more closely models the loop
structure of the underlying flow graph
[Tarjan 19741. The key elements of the
Tarjan algorithm are the order of variable
substitution and the judicious delay of cer-
tain substitutions until a time when com-
mon factors can be detected, calculated
once, and used.

Tarjan interval analysis consists of three
phases: interval finding, elimination, and
propagation. For clarity we explain these
as distinct, although the first two can be
intermingled. Interval finding defines a
node order, reduction order, closely con-
nected to the depth-first spanning tree con-
struction. Variable elimination occurs in
each interval according to the reduction
order. Some substitutions are delayed, as
in the Hecht-Ullman algorithm, enabling
the Tarjan algorithm to take advantage of
common substitution sequences in the
equations. The propagation phase performs
back-substitutions of known solutions
into reduced equations of variables depen-
dent on them. Tarjan interval analysis is
applied to programs with reducible flow
graphs; once again, this is not a restriction
in practice.

We first present the node order used by
Tarjan interval analysis to order the vari-
able substitutions during elimination. We
then consider the elimination phase, defin-
ing the T3 graph transformation and its
corresponding equation manipulations.
Several examples illustrate how the Tarjan
algorithm achieves the same delayed cal-
culation savings as the Hecht-Ullman al-
gorithm. We next discuss the propagation
phase of the algorithm. The Tarjan interval

analysis algorithm is stated formally, and
finally the three algorithms modeled so far
are compared.

4.1 Reduction Order and Finding Intervals

Tarjan interval analysis assumes a data
flow problem described by a system of equa-
tions of the form of eq. (3) with an associ-
ated dependency graph. Like the Allen-
Cocke algorithm, the Tarjan algorithm uses
subgraphs of the dependency graph called
intervals to direct its elimination phase.
An interval here is a single-entry, strongly
connected subgraph, differing from an
Allen-Cocke interval, which need not even
contain a cycle; the Tarjan interval more
closely reflects the loop structure of the
flow graph. The term “interval” in this
section refers to Tarjan intervals unless
otherwise indicated. I,, represents the inter-
val headed by h. If n E I,,, then the reduced
equation calculated for X,, is a linear func-
tion of Xh. By definition the source node
is the interval head node of the outer-
most interval, which need not be strongly
connected.

In calculating intervals, Tarjan interval
analysis defines a linear order on the nodes
called a reduction order. Reduction order
determines the order in which reduced
equations are calculated in an interval as
well as the relative order among the inter-
vals themselves. The determination of a
reduction order for a reducible flow graph
is fairly straightforward using a depth-first
spanning tree (DFST) [Schwartz and
Sharir 1978; Tarjan 1972,1974].

We first form a DFST on the flow graph
G, rooted at the source node of G, and
number the nodes by a preorder traversal.
We obtain the set of all back edges in G;
back edge targets become interval head
nodes. For each back edge target x in re-
verse preorder, we then repeat the following
procedure. We calculate the set reachun-
der(x), where a node n is a member of this
set if there is a simple path from n to x for
which the final edge is a back edge
[Schwartz and Sharir 19781. Reachunder
U (x) is the interval I,. All the nodes in 1,
are removed from G and represented by
node x in a newly derived flow graph. We

ACM Computing Surveys, Vol. 16, NO. 3, September 1986

Elimination Algorithms for Data Flow Analysis l 301

set HIGHPT(y) = x for all nodes y in
reachunder and continue to form
reachunder sets using the newly derived
graph. If the original flow graph is reduci-
ble, the graph transformation process re-
sults in a final graph consisting of one
interval, Isource. This final interval contains
all nodes that are not within any strongly
connected subgraph of the flow graph, and
some nodes representing intervals not
nested within any other intervals.

After all the intervals are calculated, we
number the nodes according to an ancestor-
first, rightmost-first traversal of the DFST,
calling this numbering SNUMBER. If
(y, u) is a tree or cross edge, then
SNUMBER(y) < SNUMBER(u). We
associate the tuple

WIGHPT(y), SNUMBER(y)) = (YI,Y~),

with every node y, sorting the tuples so that
x precedes y in reduction order if and only
if xi > y1 or x1 = y1 and x2 < y2.16 From the
derivation we see that each DFST has a
unique associated reduction order.

Nodes within the same interval occur as
contiguous subsequences in the reduction
order, since all HIGHPT values within an
interval are its interval head node. There-
fore, if reduced equations in the system are
calculated in reduction order, all the equa-
tions in one interval are reduced before any
equations in the next interval. Reduction
order is an ancestor-first order on each
interval; this is similar to Allen-Cocke
interval order. When the equation for
X,,, n E I,,, is reduced to a linear function
of X,,, this ancestor-first property ensures
that every term on the right-hand side of
the equation for X,, already has a reduced
equation that is a linear function of Xh.

The selection criterion on HIGHPT en-
sures that the equations for variables in
inner, nested intervals are reduced before
the equations for variables in outer, syn-
tactically surrounding intervals, another
property shared with Allen-Cocke interval
analysis. Nestings of intervals can be traced

I6 An exception is that the source node always is last
in reduction order. The sort is performed by an O(n)
radix sort [Knuth 1968, Tajan 19741.

Figure 23. Example of SNUMBER values.

by following reverse sequences of HIGHPT
values corresponding to interval head
nodes. For example, if 3c E Ih c 14, then
(HIGHPT(x) = h, HIGHPT(h) = q}. The
HIGHPT function yields loop-nesting
information for the program represented
by the flow graph, since Tarjan intervals
directly correspond to loops.

We can show that SNUMBER values
for nodes within the same interval guaran-
tee that if there is a path from y to v of
tree and/or cross edges in the DFST, then
y > u in reduction order, substantiating
our claim that reduction order within an
interval is an ancestor-first order. If only
tree edges appear on the path, finite induc-
tion on the definition of SNUMBER yields
this result. Figure 23 illustrates the case
in which tree and cross edges are in-
volved, here u, y E I,,, and there is a path
of tree edges from y to x represented by a
solid line and one cross edge from x to v
represented by a dotted line. By finite in-
duction on the definition of SNUMBER,
we have SNUMBER(y) < SNUMBER(x).
Also, SNUMBER is defined as a right-
most-first order on the DFST, and so
SNUMBER(x) < SNUMBER(u). There-
fore SNUMBER(y) < SNUMBER(u).

These reduction-order and interval-find-
ing calculations can be accomplished in
time bounded by O(ea(e, n)), where cr(e, n)
is related to the inverse of Ackermann’s
function and cr(e, n) I 3 virtually always
[Schwartz and Sharir 1978; Tarjan 1981a].
For a flow graph where e is O(n) this re-
duces to O(na(n)). Schwartz and Sharir
[1978] give a SETL procedure for optimiz-
ing of the reduction-order calculation. A
simpler O(n log n) algorithm for computing
the Tarjan intervals of a flow graph is also
available, using path compressed trees

ACM Computing Surveys, Vol. 18, No. 3, September 1986

302 . B. G. Ryder and M. C. Paul1

Node HIGHPT(node) SNUMBER(node) Intervals

1 0 1 4 = (1, {2,3,4, (9, 10, 121, (596981, 71,111
2 0 2 Zz = (2, 394, 19, 10,12l, 1596,819 71
3 2 3
4 2 8
5 2 9 1s = kX6,8l
6 5 10
7 2 12
8 5 11
9 2 4 19 = 19, 10, 12)

10 9 5
11 0 7
12 9 6

Reduction order: (10, 12, 6, 8, 3, 9, 4, 5, 7, 2, 11, 1)

Figure 24. Example of Tajan interval-finding algorithm.

rather than the balanced, path compressed
trees needed to achieve the almost linear
bound [Tarjan 19791. It is the implemen-
tation suggested by Tarjan [1981a] for
practical use.

Figure 24 shows a reduction-order cal-
culation. In the flow graph, the DFST edges
are solid lines, the back edges are dashed
lines, and the cross edge appears as a dotted
line. The table lists the HIGHPT and
SNUMBER values for the nodes, the set of
intervals on the flow graph with their nodes
listed in interval order, and the reduction
order for this DFST. The appearance of
{9, 10, 12) in Iz indicates that when I9 is
collapsed to node 9, that node is an internal
interval node in 12.

4.2 T3 Transformations and Elimination

We now discuss how the reduction order
defined here directs variable substitution
during elimination, as do the interval order
in the Allen-Cocke algorithm and the parse
in the Hecht-Ullman algorithm. The basic
elimination step of Tarjan interval analysis
is the application of a T3 transformation,
which corresponds to the calculation of the
reduced equation of a variable as a linear
function of its interval head variable.

A T3 transformation is the composite of
a Tl and a T2 transformation; that is, T3 =
T2 . Tl (see Section 3.2). Figure 25 illus-
trates the transformation T3(u, w, El, I&).
Edge (u, w) in the partially collapsed flow

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis l 303

u. u

A3 A
V W V Y

1

Y

Figure 25. T&J, w, El, I&) = T&, UJ, &J . TI(w, EJ.

graph represents a set of original flow graph
edges E2. Likewise, edge (w, w) represents
a set of original flow graph edges El. The
graphical interpretation of the T~(u, w, El,
E2) transformation is the merger of node w
into I, (represented in the partially col-
lapsed flow graph by u).

The equation manipulations correspond-
ing to the T3 transformation in Figure 25
first apply a loop-breaking rule to eliminate
any self-dependency in the equation for X,
and then apply a sequence of substitution
transformations to eliminate the variable
X,,, from the current system of partially
reduced equations. The former occurs only
when w itself is an interval head node; the
latter is accomplished by substitution of
the right-hand side of the reduced equation
for X,,

X, = a fl X, U b,

where a and b are constants, for any occur-
rence of X, in the system of equations.

Figure 26 presents the Tarjan algorithm
elimination phase. The variables have T3
transformations applied to them in reduc-
tion order within each interval. Nested
intervals are processed in reduction
order, from innermost to outermost. The
final Ti(source, E1) transformation in
Figure 26 handles those flow graphs for
which the source node is the outermost
loop head.17

The actual calculations in Tarjan inter-
val analysis are performed somewhat dif-
ferently than in our interpretation. When
Ta(u, w, El, E2) is performed, the substi-
tution of a linear function of X, for an X,
term is accomplished only in the equations
of those variables that precede X, in the

I7 These graphs violate our definition of source node,
but they can be accommodated.

reduction order. For other dependencies on
X, the variable substitution is delayed,
much as in the Hecht-Ullman algorithm.
The delayed substitution takes place when
the reduced equation for the variable
dependent on X, is calculated.

For example, if there is a back edge
(w, u) in the flow graph such that w E
I,!G **- G I”, then (w, u) will be in the E1
set of the T3 transformation of u. The sub-
stitution for the X, term in the equation
for X, will not occur when a T3 transfor-
mation is applied to w; it will be delayed
until the reduced equation for X, is calcu-
lated. The actual substitution will occur
in step (iiia) of the Tarjan algorithm in
Section 4.4. At the time the delayed substi-
tution is performed, the current reduced
equation for X, is a linear function of X,.
It is possible that other delayed substitu-
tions involve the same interinterval control
flow paths on the flow graph from v to u
or subpaths of these. These common sub-
paths correspond to the common inter-
regional paths referred to in Section 3.2.

4.3 Propagation

The propagation phase of Tarjan interval
analysis is fairly straightforward and simi-
lar to that of the Allen-Cocke algorithm.
The initial conditions of the data flow prob-
lem expressed in the original equation for
X source enable us to solve the reduced equa-
tion for X,,,,,. This solution is substituted
into the reduced equations of all variables
dependent on X,,,,,. Some of these vari-
ables are interval head variables. Solutions
for variables in an interval are obtained by
substituting the interval head variable
solution into the reduced equations of
variables in that interval. This process
continues until all solutions are obtained.

4.4 Algorithm Statement

Tarjan interval analysis consists of the
same three phases as Allen-Cocke interval
analysis: interval finding, elimination, and
propagation. Interval finding requires the
establishment of a reduction order on
the flow graph using a DFST (see Section
4.1). The elimination phase performs

ACM Computing Surveys, Vol. 18, No. 3, September 1986

304 l B. G. Ryder and M. C. Paul1

/* H is queue of interval head nodes, ordered in reduction order */
while H # null do

Destructively select first element from H, h;
for a reduction order pass through all nodes n in Ih do

Apply T3(h, n, El, G):
endfor;

endwhile ;
Apply T, (source, E,) if necessary;

Figure 26. Reduction order variable substitution.

coefficient/constant substitutions in the
equations in reduction order, within inter-
vals that themselves are ordered in reduc-
tion order. At the end of elimination, the
reduced equation for each variable X,, is
a linear function of an interval head vari-
ableXh,wherenEIP,C . . . CI,,,G&for
k L 0. The propagation phase obtains the
solution for the source variable and per-
forms back substitutions in the reduced
equations.

(c) By a sequence of substitution
transformations, substitute the
right-hand side of eq. (11) for an
X,, term wherever necessary,
changing any dependence on X,, to
a dependence on X,,, for the equa-
tions of nodes that precede n in
reduction order. Delay all other
substitutions for X,.

4.4.1 Model of Tarjan Interval Analysis
Algorithm

Interval Finding

Propagation Phase

(iv) Determine the solution of X,,,,,.
(Note: If X,,,,, is in a loop, apply a
loop-breaking rule to the reduced
equation for X,,,,,.) Let S = (X,,,,).

Iterate until all solutions are obtained: (i) Using a DFST construction, find a (v)
reduction order and the intervals of
the flow graph (see Section 4.1).

Elimination Phase

(ii) In reduction order, for each interval
1, and each n E I,, perform T&n, n,
EI, Ed:

(iii) (a) For each edge (z, n) E El apply a
substitution transformation, re-
placing the X, term in the equa-
tion for X,, by the right-hand side
of the reduced equation for X,.
Apply the relevant loop-breaking
rule (see Section 1).

(b) For each edge (w, n) E E2 apply a
substitution transformation re-
placing the X, term in the equa-
tion for X, by the right-hand side
of the reduced equation for X,.
The reduced equation for X,,

X,=anX,ub (11)

is obtained for constants a and b.

For each unsolved variable X, for
which the reduced equation is a linear
function of Xk E S, substitute the value
of the solution of Xk into that equa-
tion, obtaining the value of X,,. Add
x, to s.

4.5 Comparison with the Allen-Cocke
and Hecht-Ullman Algorithms

In this section we compare the definitions
of intervals used in the Allen-Cocke and
Tarjan algorithms, using an interval de-
pendency tree or id-tree to illustrate the
source of common substitution factors used
by the Tarjan and Hecht-Ullman algo-
rithms. We then show the solution of the
REACH example of Figure 20 by the Tar-
jan algorithm and comment on the data
structures used by the Tarjan and the
Hecht-Ullman algorithms to remember
common factors.

Figure 27 illustrates some differences be-
tween Tarjan and Allen-Cocke intervals,

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis 305

Tarjan intervals:

4 = (6, 71,

13 = 13, 41,

42 = (2, 13, 411,

4 = 11, 12, (3, 411, (6, 71, 51.

Reduction order: (7,4,3,6,2,5, 1)

Allen-Cocke intervals:

G’ G2 G3 G’

11 = Ill Z, = {l, 61 Zl = (1,2,5) Zl = (1)
12 = 64 12 = 12,31
16 = 151 Is = I51
13 = 13941
1s = IS,71

Figure 27. Comparison of Tajan and Allen-Cocke
intervals.

defined on the same flow graph. Again
DFST edges are solid lines, back edges are
dashed lines, and cross edges are dotted
lines. Since Tarjan intervals correspond
to the loop structure of the flow graph,
nested loops in Figure 27 appear as explicit
nested intervals. For example, loop 3
is nested within loop 2, which is nested
within loop 1, and HIGHPT(3) = 2,
HIGHPT(2) = 1. The same information is
found by the Allen-Cocke algorithm, but it
must be determined by examination of the
derived sequence, and so it is less explicit.

In both algorithms the set of interval
head nodes of a reducible flow graph is
unique, depending only on the underlying
flow graph, not on its representation. We
showed this for Allen-Cocke intervals in

Section 2.1; for Tarjan intervals it follows
since

(1) a flow graph is reducible if and only if
it has a unique decomposition into a
set of back edges plus a directed acyclic
graph (DAG) [Hecht 19771, and

(2) the set of back edges of a reducible flow
graph is the set of backward arcs of any
DFST on that flow graph [Hecht 19771.

Both an interval order and a reduction
order of nodes impose an ancestor-first or-
der within an interval; each is nonunique.
An interval order partially depends on the
order of the edges in the representation of
the flow graph. A reduction order depends
on the DFST constructed starting at the
source node, which is similarly dependent
on the graph representation.

To further illustrate the common substi-
tution sequences found by the Tarjan al-
gorithm, we define an interval dependency
tree or id-tree to be a directed tree rooted
in the source node, with nodes that are the
nodes of the flow graph and edges that
reflect the interval structure of the flow
graph. A directed edge (h, y) in the id-tree
signifies that h is an interval head node in
the flow graph and y E Ih. Clearly, the id-
tree for a reducible flow graph is unique
because the set of interval head nodes of
the flow graph is unique. All internal nodes
in the tree are interval head nodes.

Each node y in the id-tree has associated
with it the reduced equation for X, as a
linear function of Xh for h the parent of y
in the id-tree. A path (pl . - - pk) in the id-
tree represents a set of interinterval paths
in the dependency graph. It follows from
the association of a reduced equation with
each node in the id-tree that such paths
represent variable substitution sequences
in the system of equations for the data flow
problem. If we traverse the reverse id-tree
path (pk - -. pl), successively substituting
the right-hand side of the reduced equation
for X,,, for the X,,, term in the equation
for Xpi for i = k, k - 1, . . . , 3, we obtain
an equation for X,, as a linear function
of X,,. If subpaths are common to two or
more equation calculations, Tarjan interval
analysis will accrue savings over the

ACM Computing Surveys, Vol. 18, No. 3, September 1986

306 . B. G. Ryder and M. C. Paul1

1

0
2

15
3

15
4

A
5 2 7

1 1 1
6 3 8

1
4

Figure 28. Flow graph and its id-tree.

straightforward Allen-Cocke approach by
identifying these common factors and
using delayed substitutions to take advan-
tage of them.

Our first example of common substitu-
tion factors involves two transfers out of a
nested loop as shown in Figure 28. Edges
(4, 5) and (4, 7) appear in the T3 trans-
formations that add nodes 5 and 7 respec-
tively to interval I1. The interinterval path
(1 2 3) in the id-tree is shared by both
reduced equation calculations, as X4 ap-
pears in the equation for X5 and XT. Again,
the substitution path in the flow graph is
represented by the identical path (12 3) in
the id-tree. In the Tarjan algorithm, the
reduced equation for X, as a linear function
of X1 is calculated once and used in a de-
layed substitution in both the X5 and XT
equations. In Allen-Cocke interval analysis
the X4 term in the equations for X5 and X7
would be transformed in turn into a term
in X3, X2, and X1 by explicit successive
substitutions in each equation separately.

In our second example we assume there
are back edges in the flow graph that share
variable substitution subpaths. Figure 29
shows Ullman’s worst case graph for Allen-
Cocke interval analysis for the case of n =
10 (see Figure 20) and its id-tree [Ullman
19731. The data flow effect of back edge
(9, 2) is calculated when TJl, 2, ((9, 2)},
((1, 2))) is performed. A corresponding
substitution path in the flow graph is (2 3
4 8 9 2). Likewise, the data flow effect of

1

l\
2 10

llhA
3 89

l\
4 7

11
5 6

Figure 29. Graph from Figure 20 and its interval
dependency tree.

(10, 1) is calculated when Tl(1, ((10, 1))) is
performed; the corresponding substitution
pathintheflowgraphis(12348101).‘8
These two calculations share interinterval
subpath (2 3 4) in the id-tree. By coinci-
dence, (2 3 4) in the id-tree represents the
same path (2 3 4) in the flow graph. Thus,
if the coefficient/constant substitutions
that obtain X, as a linear function of X2
are performed once, they can be used in
two different variable substitutions: for the
X, term in the reduced equation for X2
and for the Xi0 term in the reduced equa-
tion for X1. Figure 30 shows the simpli-
tied reduced equations calculated at
each step of the Tarjan algorithm. After
T3(2, 8, ((4, 8))) the shared computation
of X, as a linear function of X2 is calculated.
In Section 4.5 we applied the Allen-Cocke
algorithm to this example; comparison will
show the duplicate variable substitutions
avoided.

Both the Tarjan and Hecht-Ullman al-
gorithms use an auxiliary data structure, a
tree, to store the common-factors infor-
mation. The Tarjan path-compressed tree,
with nodes that store the partially reduced
equations of the corresponding variables, is
easier to understand and implement than
the height-balanced 2-3 tree of the Hecht-

la Recall from Fig. 26 that this final TI transformation
must be applied when the source node is in a loop in
the flow graph.

ACM Computing Surveys, Vol. 16, No. 3, September 1966

Elimination Algorithms for Data Flow Analysis l 307

Reduction order (5, 6,4, ‘7, 3, 8, 9, 2, 10, 1). After 2’3(3,4, ((6,4)), ((3,4)1):

Intervals:
X, =panX3udsUds5,.

h = IL 12, (3, 14, 5, 61, 71, 6, 91, 1% After 7’3(3, 7,) ((5, 711):

Zz = (2, (3, (4, 5, 61, 71, 6, 91, X, = p,anXaud,sud,m,

13 = (3, (4, 5, 61, 71, x7 = pr,,~nX~udmudm.

1, = (4, 5, 6). After T3(2, 3, ((7, 3)), ((2, 3))):

Initially: x, =pznX*Ud2Ud,5,3Ud?s,~.

X, = plonXloudlo, After 7’3(2, S,, ((4,S))):

x2 =p,nx,u~~nxd~d~uds, x, = paznX2ud32ud3?6,Udss,,

X3 = p2nX2UpYnX,UdzUd7, xs = p,32nXzud,32Ud,3~5Ud,a~.

X, = p,nXsUp,nXsUdsUda, After T&9,, ((8, 91):

x5 = p,nx,ud,, x9 =ps,32nX*Uds,32Uda,37~Ud~,6s.

Xg = X, = p,nXsUda, After 7’3(1, 2, ((9, 2)), ((1, 2))):
x8 = p,nX,ud,, X, =p,nX,ud,udss,32udss,~~~Ud~s,~~.

X9 = Xxi, = psnX8Uds.
After !I’&, lo,, ((8, 10))):

Let di ,... ir = pi,n.. . npic,nd;*U

pi,n.. . nptc2ndi,,U.. . Udi,,

pi ,... ih = pi,n . . . npih.

x8 = p,3zlnX,Ud,32,Ud,3t6Ud,~~Ud,~~~~,

xl0 = p8,321 nX1Uds,321Uds,37aUds,~~Ud~,3~9.

After Ti(1, ((10, I))):

After 7’a(4,5,, ((4, 5))), no change in equations.
Xl = d,osraz1ud,084375ud108465ud1o8,329.

After T,(4, 6, ,((4,6)1):

X6 =p5,nX,ud5,.

Figure 30. Tarjan interval analysis on REACH problem for Figure 20.

Ullman algorithm, which encodes the fac-
tored reduced equations as edge labels in
the tree.

5. GRAHAM-WEGMAN ANALYSIS

The Graham-Wegman algorithm is very
similar to the Hecht-Ullman and Tarjan
techniques. The groupings of the variables
used by the Graham-Wegman algorithm
are called S-sets. The elimination process
is described using graph transformations
similar to those of the Hecht-Ullman al-
gorithm. The Graham-Wegman algorithm
substitutes for each term in the system
individually as in the Hecht-Ullman algo-
rithm rather than substituting for the

entire right-hand side of an equation at
once as in the Allen-Cocke algorithm. The
specified substitution order for terms
in the equations results in common substi-
tution sequences only being performed
once. This algorithm makes explicit the
delay in substitutions utilized in the Tarjan
and Hecht-Ullman algorithms. A trans-
formed version of the original flow graph is
used to remember substitution sequences.

We start by discussing the S-sets and
the node order that governs substitution in
the equations, and we describe the graph
transformations (&, &,, &), their graph-
ical interpretations, and the corresponding
equation manipulations. We present the
formal algorithm and compare it with the

ACM Computing Surveys, Vol. 18, No. 3, September 1986

308 . B. G. Ryder and M. C. Paul1

other three. An example is given to illus-
trate the Graham-Wegman algorithm in
Figure 20.

5.1 S-Sets and S,, S2, SB Transformations

The Graham-Wegman algorithm assumes
that a data flow problem is defined by a
system of equations of the form of eq. (3)
and defines a node numbering num on the
dependency graph of the system of equa-
tions using a depth-first spanning tree (i.e.,
DFST). The order guarantees that for any
edge (x, y), num(x) > num(y) if it is a back
arc in the flow graph; otherwise, num(x) <
num(y). In deriving this node order, the
algorithm partitions the variables into non-
disjoint sets called S-sets. Back arc target
nodes are S-set entry nodes. The S-set
headed by node h is defined by starting at
h and following, in their reverse direction,
paths in the flow graph that end in a back
arc to h. S-sets are analogous to Tarjan
intervals; they are strongly connected re-
gions of the flow graph. However, not all
nodes in an S-set are collapsed into the
S-set entry node as they are in Tarjan
interval analysis; nodes in the S-set that
still have corresponding terms in the
system of equations after the S-set is pro-
cessed remain in the derived flow graph.
Thus the Graham-Wegman algorithm
makes explicit the delayed substitutions
in the system of equations.

Substitutions for terms in the equations
occur as follows. S-sets are considered in
reverse num order of their entry nodes,
ensuring that inner loops are processed be-
fore outer loops. Within an S-set, variables
are processed in num order, and so when a
variable is processed, it always has a unique
parent variable in the S-set.

When a variable X,, is processed, a loop-
breaking rule is applied to the equation for
X,,, and a sequence of substitution trans-
formations is applied to the equations of its
descendants in the S-set. Descendants that
are not in the same S-set as X,, represent
delayed substitutions. Therefore, unlike
Tarjan intervals, S-sets are not collapsed
to one variable after being processed, since
there still may be dependencies on variables
in the S-set in the system of equations.

Only when all dependence on a variable is
removed from the system of equations is
that variable also removed. The final re-
duced equation of a variable is a linear
function of the entry variable of the outer-
most S-set containing that variable (see
Section 5.4).

The substitutions of the Graham-
Wegman algorithm are described in terms
of (Si, Sz, &J, the three graph trans-
formations described below. As in the
Hecht-Ullman algorithm, each transfor-
mation has a corresponding sequence of
equation manipulations. Transformations
Si and Sz are applied to the flow graph until
a final flow graph is obtained, whereas
transformation SB is a technical device nec-
essary to collapse the outermost S-set of
the flow graph if the source node does not
lie on a cycle. When the original flow graph
is reducible, 5’3 results in a final graph of
one node [Wegman 19811. All three trans-
formations can only be applied to a node
with a unique parent. They are illustrated
in Figure 31.

Si and Sz are closely related to Tl and
T2, respectively, of the Hecht-Ullman al-
gorithm. S1 and Tl are approximately
equivalent; Tl does not require a unique
parent node for its application. A set of
k Sz transformations are the equivalent
of a Tz transformation on a node with k
descendants in the same S-set. SJu, v, w,
(v, w)) does not eliminate X, from the sys-
tem of equations (see Figure 31); however,
the sequence &(u, v, w, (v, w)), &(u, v, x,
(v, x)), &(u, v, y, (v, y)) will accomplish this
when applied to S-set (u, v, w, x, y). Thus
only when the node in the Sz transfor-
mation has a unique descendant will that
variable be eliminated from the system
of equations by the Sz transformation. Ss
is a degenerate Sp transformation, which
eliminates a node without descendants,
that is, a variable that does not appear in
a right-hand side of any equation in the
system.

The similarities between (&, &, SJ and
(Tl, T2) carry over to their interpretation
as equation manipulations. The S1 trans-
formation is a loop-breaking rule as was
the Tl transformation (see Section 3.2).
&(u, v, (v, v)) removes the self-dependence

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis l 309

U U

U

1 d
V 3

(4

W x Y W x Y

W

U

(4 (4

Figure31. Graham-Wegman &, Sz, S3 transformations: (a) &(u, v, (v, v)). (b) &(u, v, w, (v, w)).
(c) Wu, v, z, (u, ~1). (d) S,, (u, v, (u, u)).

on X, from the equation for X,; that is,

X,=anX,ubnX,uc

becomes

obtain their corresponding solutions, and
iterate this process until solutions for all
variables are obtained.

X, = a n X, u C. 5.3 Algorithm Statement

The &(u, u, w, (IJ, w)) transformation is
a substitution transformation that corre-
sponds to substitution of the right-hand
side of the equation for X, into the equation
of X,; that is, if

then

X, = a n X, U C,

x, = enX,ud

becomes

X,=enanX,uencud,

Graham-Wegman analysis consists of
three phases: S-set finding, elimination,
and propagation. Forming S-sets and es-
tablishing a num node order require the use
of a DFST (see Section 5.1). The elimina-
tion phase performs coefficient/constant
substitutions in the equations of variables
in num order within S-sets considered in
reverse num order of their entry variables.
The propagation phase obtains a solu-
tion for the source variable and performs
the back substitutions in the reduced
equations.

removing dependence on X, from the equa-
tion for X,. If XV appears only in the X,
equation (i.e., u has only one descendant
node w), then this transformation removes
X, from the system of equations.

5.2 Propagation

The propagation phase of this algorithm
resembles that of Tarjan interval analysis.
We obtain a solution for the final S-set
entry variable, substitute this solution into
all reduced equations dependent upon it,

The Graham-Wegman algorithm can
be transformed to handle irreducible de-
pendency graphs also. The irreducibility
is discernible during S-set construction
[Wegman 19811. If we encounter a node x
such that num(x) c num(h) while we are
performing a reverse traversal of all paths
ending in a back arc to h, then we know we
have a multiple entry loop by the properties
of num, and therefore an irreducible de-
pendency graph [Hecht 19771. This situa-
tion can be handled by generalizing
the definition of S-set to allow multiple

ACM Computing Surveys, Vol. 18, No. 3, September 1986

310 l B. G. Ryder and M. C. Paul1

‘\ JW * L JW
V V

(4

z

(4

U W

r x Y

u W

\J
V

U W

=a

(4

Figure 32. Graham-Wegmen G&, G&, GS, transformations. (a) GS,(P, v, (v, v)), P = (y w).
(b) GSAP, v, v, (v, v)). P = lu, ~1. GSAP, v, 2, (v, d), p = b, 4. (4 GE&P, v, (u, VI), p = b, 4.

entry regions and the transformations
(Si, Sp, SgJ to (GS,, G&, G&j, which han-
dle nodes with multiple parents.

To form the generalized S-sets, we use
the constructive definition of S-sets given
in Section 5.1. During a reverse traversal
of all paths ending in a back arc to h, if a
node x such that num(x) < num(h) is en-
countered, x is simply not added into the
S-set being constructed. If the node imme-
diately preceding x on the reverse traversal
is z, then during elimination, when node z
is processed, it will have two parent nodes,
one within the S-set and one not. We must
use the generalized transformations shown
in Figure 32, to accommodate the pos-
sibility of multiple parents for S-set
nodes. The meaning of transformations
(GSi, GS2, G&j in terms of the corre-
sponding equation manipulations is similar
to that of (Si, Sz, SSJ (see Section 5.1).

Application of G&(P, U, (u, u)) is a loop-
breaking rule for the equation for X,. Thus,
using the nodes in Figure 32,

X,=anX,UbnX,ucnX,ud

becomes

X, = b n X, u c n X, u d.

GSAP, u, r, (v, r)) is a substitution trans-
formation that corresponds to the substi-
tution of the right-hand side of the equation

for X,, which is a linear function of the
(X,), p E P, for the X, term in the equation
of X,. That is, if

X, = a n X, u b n X, u C,

then

X,=eflX,ud

becomes

X, = (e n a n X,) u (e n b n X,)

u (e n C) u d.

If, as in Figure 32(c), X, appears only in
the X, equation, then this transformation
removes X, from the system of equations.
GSs follows similarly from S3.

Thus the Graham-Wegman algorithm
can easily be adapted to handle irreducible
dependency graphs. Since the irreducibility
is discovered during the first phase of the
algorithm, there is no question as to which
set of transformations is appropriate.

5.3.1 Model of Graham-Wegman Analysis

S-Set Finding

(i) Using a DFST construction, identify
back arcs of the dependency graph of
the system of equations. Form S-sets.
Establish the num node order on the
DFST (see Section 5.1).

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis 311

Elimination Phase

(ii) Process S-sets in reverse num order of
their entry nodes. Within an S-set
process each node n in num order.

(a) If necessary, perform &(n, (n, n)).
Apply a loop-breaking rule to the
equation for X,.

(b) For each descendant z of n in the
S-set perform the substitution
transformation Sz(m, n, 2, (n, 2)).
Substitute the right-hand side of
the reduced equation for X,, for
the X, term in the equation for
X,. (If X, appears in only one
place in the system, this elim-
inates X, .)

(iii) If necessary, use SB transformations
to reduce the final graph to one node.

Propagation Phase

(iv) Determine the solution of X,,,,.
(Note: If X,,,,, is in a loop, apply a
loop-breaking rule to the reduced
equation for X,,,,,.) Let S = (X,,,,).
Iterate until all solutions are obtained: (VI
For each unsolved variable X,, with a
reduced equation that is a linear func-
tion of X, E S, substitute the value of
the solution of Xk into that equation,
obtaining the value of X,,. Add X,,
to s.

5.4 Comparisons with the Allen-Cocke,
Hecht-Ullman, and Tarjan Algorithms

The Graham-Wegman algorithm is closely
related to Tarjan interval analysis. Com-
mon substitution sequences in the system
of equations are recognized and used to
avoid duplicate calculations. The substitu-
tion sequences are shown explicitly in the
Graham-Wegman algorithm through the
node listing, rather than as a node order
as in the Tarjan algorithm. The delayed
substitutions are represented explicitly in
the flow graph by not collapsing S-sets to
one node. Substitutions are remembered
in a transformed version of the original
flow graph rather than the 2-3 tree of
the Hecht-Ullman algorithm or the path-

compressed tree of the Tarjan algorithm.
The Graham-Wegman algorithm is the
only one that handles irreducible flow
graphs gracefully by accommodating
such graphs rather than transforming
them to eliminate the irreducibility or not
handling them at all.

In Figure 33 the Graham-Wegman algo-
rithm is applied to the example of Figure
20, as were the other algorithms. We show
the four S-sets corresponding to the flow
graph and their S1 and Sz transforma-
tions.ig In Figure 34 we define a REACH
problem on this flow graph with equations
of the form of eq. (3), which facilitates
comparison with Figure 30. The solid lines
are edges within the S-sets; the dashed lines
are flow graph edges not within the S-set.
We give the equation transformations cor-
responding to the S1 and Sz transforma-
tions on the S-sets. Because of the ordering
of the substitutions, calculations along the
interregional substitution path (2 3 4) are
only performed once and then used in the
equations of X8, X9, and Xi,.

The Tarjan and Graham-Wegman vari-
able substitution orders are similar; in the
equation transformations in Figures 30 and
34 the order is the same. The Tarjan algo-
rithm elimination is described in terms of
a linear node order (reduction order), de-
layed calculations, and a path-compressed
tree for keeping track of delayed substitu-
tions. In the Graham-Wegman algorithm
the node listing is longer, with multiple
appearances of variables representing sub-
stitutions for individual terms in that vari-
able; the equation calculations are kept in
the transformed version of the original flow
graph. The Graham-Wegman algorithm
makes explicit the delayed calculations
of the Tarjan algorithm. In Figure 34 the
Graham-Wegman node listing is

15, 6, 4, 5, 7, 3, 4, 8, 9, 2, 10, 11,

whereas the reduction order is

6, 6, 4, 7, 3, 8, 9, 2, 10, 11.

I9 No SS transformation is needed here because the
source node is the entry node of the outermost cycle
in the flow graph.

ACM Computing Surveys, Vol. 18, No. 3, September 1986

312 l

\

\

L

8
\

\
L

7

\
\

L
8

B. G. Ryder and M. C. Paul1

\
\

L
8

\

‘L
7

(a)

\
\

L
8

(b)

c 4

1

\
\

L
5 8

\
\

L

\

‘L
8

c 3

1
4

\
\

L
8

\
\

L
10

1 c

c 2

1
8

\
\

L
10

(4

Figure 33. S-sets obtained in the example of Figure 20. (a) First S-set. (b) Second S-set. (c) Third S-set.
(d) Fourth S-set.

6. SUMMARY worst case complexity improvement. The
original algorithm, Allen-Cocke interval

Our use of systems of equations to model analysis, establishes a natural partition of
elimination algorithms enables us to com- the variables and a variable order on each
pare them and contrast their sources of of a sequence of systems that, when used

ACM Computing Surveya, Vol. 18, No. 3, September 1986

Initially:

Xl = pm r-l -%I u 40,

Xz = plnX~upsnxsud,uds,

X, = pznXzup7nXrUd2UdT,

x, = p3nXauPsnXsud3u&,

X5 = p,nX,ud,,

X6 = X, = pbnXsud5,

Xs = p,nX,u&,

X9 = Xl0 = psnX,,ud.+

Let di,...i, = pi, fl . . npib,

Elimination Algorithms for Data Flow Analysis l

S-set = 12, 3,4,8,9).

After S,(3, (3, 3)):

Xa = p2nX2ud,3,3Ud,arsUd2.

After &(2, 3, 4, (3, 4)), eliminating X,:

X, = p32nX2Ud32ud3,5rUdos,.

After &(2,4, 8, (4, 8)), eliminating X,:

X9 = P432nX2Ud432Ud4375Ud455.

After &(2, 8, 9, (8, 9)):

XS = Psr32nXzUdsr32udsr37~Ud0,~~.

After &(2,9, 2, (9, 2)), eliminating X9: -. __.
fld;,Upi,fl . . . flpib,flUik,U.. . UU;,,

pi,..+ = pi,ll.. . llpi*.

S-set = (4, 5, 6).

X, = plnx,UP98132nX2Udl

Uds sr32udssrmu&srsa.

After &(4, 5, 6, (5, 6)):

X9 =p5,nX4Ud5,.

S-set = (1, 2, 8, 10).

After Sr(2, (2, 2)):

X2 = PInX,ud,udss,32udss,3,6ud~~,~~.

313

After &(4, 6, 4, (6, 4)), eliminating X,:

X4 =p3nX3UpssrnX~UdsarUda.

S-set = (3, 4, 5, 7).

After S,(4, (4, 4)):

X, =p3nX3UdG5,Uds.

After SJl, 2,8, (2, 8)), eliminating X,:

Xs = p43*,nX1Ud,32saUdra7aUdlGBUd,~~,.

After S2(3, 4, 5, (4, 5)):

X5 =p43nX3Ud466Ud43.

After &(3, 5, 7, (5, 7)), eliminating X5:

XT =pwnXsudwudm

After S,(3,7,3, (7, 3)), eliminating X7:

After S,(l, 8, 10, (8, lo)), eliminating Xs:

Xo = par32lnX,udsr32sUdsr375Uds,o3Ud3,32,.

After &(l, 10, 1, (10, l)), eliminating XI,:

XI = ~~~~~~~~~~~~~~~~~~~~

Ud,o*,315Ud,o8,65Ud,o*,32,.

After S,(l, (1, 1)):

XI = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

X3 = pznX*Up76,3nX3Ud?s,3Ud?516Ud2.

Figure 34. Graham-Wegman algorithm on REACH problem from Figure 20.

to order the equations, results in a highly a nondeterministic substitution order for
structured coefficient matrix facilitating terms in the equations; the substitutions
the equation-reduction process. The other are recorded in a height-balanced 2-3 tree
algorithms, Hecht-Ullman T,-T2 analysis, to take advantage of possible common fac-
Tarjan interval analysis, and Graham- tors in subsequent calculations. Tarjan in-
Wegman analysis, avoid repeated calcula- terval analysis establishes a linear variable
tions of common substitution sequences in order and eliminates variables from the
the equations by delaying certain compu- system of equations in that order, delaying
tations. Hecht-Ullman T,-T2 analysis uses some calculations; a path-compressed tree

ACM Computing Surveys, Vol. 18, No. 3, September 1986

314 l B. G. Ryder and M. C. Paul1

is used to remember sequences of reduced
equations for these delayed calculations.
Graham-Wegman analysis establishes an
order for substitution for each term in the
system that avoids duplication of common
substitution sequence calculations. It uses
a transformed version of the original flow
graph to remember previous substitutions.

The best elimination algorithm in terms
of worst case complexity is the Tarjan
almost-linear interval analysis algorithm,
which balances the path-compressed tree
in a preprocessing operation. This algo-
rithm is the best for doing a sequence of
unions and finds but is not used for data
flow analysis in practice [Tarjan 19791.
Tarjan suggests the use of path-compressed
trees for ease of calculation; they ensure a
bound of O(nlogn) [Tarjan 19811.

The four algorithms vary in their worst
case complexity bounds for reducible flow
graphs as shown:”

Allen-Cocke: O(N)
Hecht-Ullman: 0 (n log n)
Tarjan: O(ncu(n))
Graham-Wegman: O(n log n)

Here N is the total number of nodes in the
derived sequence of graphs and is bounded
by n2. Recall from Theorem 1 that this
O(N) bound is 0 (n) for many reasonable
programs. The (Y function is related
to the inverse of Ackermann’s function;
a(n) I 3 for all practical purposes (see
Section 4.1).

All of these algorithms represent a sav-
ings on reducible flow graphs over a
straightforward Gaussian-elimination-like
algorithm, which is a O(n3) method. Both
the Tarjan and Graham-Wegman algo-
rithms identify an irreducible system of
equations using an O(nlogn) algorithm
for a flow graph. The Allen-Cocke and
Graham-Wegman algorithms are applica-
ble in this eventuality although their per-
formance cannot be guaranteed to be better
than the Gaussian-elimination-like tech-
nique. All the algorithms can be used on a
reducible flow graph.

” Recall that for a flow graph, e is O(n).

The use of a uniform model for these
algorithms, reveals their similarities and
differences. All are applicable to general
systems of equations with coefficient struc-
tures similar to those described here. The
reducibility of the dependency graph is nec-
essary to partition the problem into
smaller, more easily solved problems. We
are interested in discerning related struc-
tural properties of systems of equations
that may aid in their solution; it is hoped
that the models described here will suggest
an approach for improving algorithms in
other problem domains.

ACKNOWLEDGMENTS

We wish to thank the referees who aided us greatly in
organizing this presentation; their support and en-
couragement are appreciated. We also owe thanks to
Tom Marlowe for his help in improving our writing.

REFERENCES

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D.
1976. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass.

ALLEN, F. E. 1971. A basis for program optimization.
In Proceediws of the 1971 IFIP Cowress. IEEE,
North Holland Publ., Amsterdam, pp. 385-390.

ALLEN, F. E. 1974. Interprocedural data flow anal-
ysis. In Proceedings of I974 ZFZP Congress. IEEE,
North Holland Publ., Amsterdam, pp. 398-402.

ALLEN, F. E., AND COCKE, J. 1977. A program data
flow analysis procedure. Commun. ACM 19, 3
(Mar.), 137-147.

BACKUS, J. W., BEEMER, R. J., BEST, S., GOLDBERG,
R., .HAIB~, L. M., .HER~ICK, H. L., NELSON,
R. A., SAYRE, D., SHERIDAN, P. B., STERN, H.,
ZILLER, I., HUGHES, R. A., AND NUTT, R.
1957. The FORTRAN automatic coding sys-
tem. In Proceedinps of the Western Joint
Computer Conference (Los Angeles, Calif.),
pp. 188-198. Also in Programming Systems and
Languages, S. Rosen, Ed. McGraw-Hill, New
York, 1967, pp. 29-47.

BANNING, J. 1979. An efficient way to find the side
effects of procedure calls and the aliases of vari-
ables. In Conference Record of the 6th Annual
ACM Symposium on Principles of Programming
Languages (San Antonio, Tex., Jan. 29-31).
ACM, New York, pp. 29-41.

BARTH, J. M. 1978. A practical interprocedural data
flow analysis algorithm. Commun. ACM 21, 9
(Sept.), 724-736.

BURKE, M. 1984. An interval analysis approach
toward interprocedural data flow analysis.

ACM Computing Surveys, Vol. 18, No. 3, September 1986

Elimination Algorithms for Data Flow Analysis l 315

Computer Science Tech. Rep. RC 10640, IBM
Thomas J. Watson Research Center, Yorktown
Heights, New York, July.

KNUTH, D. E. 1971. An empirical study of FOR-
TRAN programs. Softw. Pratt. Exper. 1,105-133.

PAULL, M. C. 1987. Introduction to Algorithm Design
Principles. Wiley-Interscience, New York, in
press.

COCKE, J. 1970. Global common subexpression elim-
ination. In Proceedines of ACM SIGPLAN Svm-
posium on Compiler -Co&u&ion (July). AeM,
New York, pp. 20-24.

COOPER, K., AND KENNEDY, K. 1984. Efficient com-
putation of flow insensitive interprocedural sum-
mary information. In Proceed& of SIGPLAN
‘84 Symposium on Compiler Con&u&ion (Mon-
treal,. Qbebec, Canada,-June 17-22). SZGbL,AN
Not. 19, No. 6. ACM, New York, pp. 247-258.

FARROW, R., KENNEDY, K., AND ZUCCONI, L. 1975.
Graph grammars and global program data flow
analysis. In Proceedings of the 17th Annual IEEE
Symposium on the Foundations of Computer Sci-
ence (Nov.). IEEE, New York, pp. 42-56.

FONG, A. C., AND ULLMAN, J. D. 1977. Finding the
depth of a flow graph. Comput. Syst. Sci. 15,300-
309.

GRAHAM, S., AND WEGMAN, M. 1976. Fast and
usually linear algorithm for global flow analysis.
J. ACM 23, 1 (Jan.), 172-202.

HECHT, M. S. 1977. Flow Analysis of Computer Pro-
grams. Elsevier North-Holland, Amsterdam.

HECHT, M. S., AND ULLMAN, J. D. 1977. A simple
algorithm for global data flow analysis problems.
SIAM J. Comput. 4,4 (Dec.), 519-532.

HOPCROFT, J. E., AND ULLMAN, J. D. 1972. An n
log n algorithm for reduction of flow graphs. In
Proceedings of the 6th Annual Princeton Confer-
ence on Information Sciences and Systems
(Princeton, N.J., Mar.), M. E. Van Valkenberg
and M. Edelberg, Eds. Dept of Electrical Engi-
neering, Princeton Univ., Princeton, N.J., pp.
119-122.

ISAACSON, E., AND KELLER, H. B. 1966. Analysis of
Numerical Methods. Wiley, New York.

KENNEDY, K. 1971. A global flow analysis algorithm.
Znt. J. Comput. Math. Sect. A 3, (Dec.), 5-15.

KENNEDY, K. 1979. A survey of data flow analysis
techniques. In Prozram Flow Analysis: Theory
and Applications, s. Muchnick an-d N. Jones
Eds., Prentice-Hall, Englewood Cliffs, N.J.,
pp. 5-54.

KENNEDY, K., AND ZUCCONI, L. 1977. Application
of a graph grammar for program control flow
analysis. In Conference Record of the 4th
Symposium on Principles of Programming
Languages (Los Angeles, Calif., Jan. 17-19).
ACM, New York, pp. 72-85.

KILDALL, G. 1973. A unified approach to global
program optimization. In Conference Record of
the ACM Symposium on the Principles of Pro-
gramming Lunguuges (Jan.). ACM, New York,
pp. 194-206.

KNUTH, D. E. 1968. The Art of Computer Program-
ming, Vol. I: Fundamental Algorithms. Addison
Wesley, Reading, Mass.

REINGOLD, E. M., NIEVERGELT, J., AND DEO, N.
1977. Combinatorial Algorithms: Theory and
Practice. Prentice-Hall, Englewood Cliffs, N.J.

ROBINSON, S. K., AND TORSUN, I. S. 1976. An em-
nirical analvsis of FORTRAN nromams. Commk
iJ. 19, 1, 5&62.

- -

RYDER, B. G. 1974. The PFORT verifier. Softw.
Pratt. Exper. 4,359-377.

RYDER, B. G. 1979. Constructing the call graph of a
program. IEEE Trans. Softw. Eng. SE-$3 (May),
216-225.

RYDER, B. G. 1982a. Incremental data flow analysis.
In Conference Record of the 10th Annual ACM
Symposium on Principles of Programming Lan-
guuges (Austin, Tex., Jan. 24-26). ACM, New
York, pp. 167-176.

RYDER, B. G. 198213. Incremental Data Flow Analy-
sis Based on a Unified Model of Elimination
Algorithms. Ph.D. dissertation, Dept. of Com-
puter Science, Rutgers Univ., New Brunswick,
N.J.

RYDER, B. G. 1985. Incremental algorithms for soft-
ware systems. Tech. Rep. DCS-TR-158, Dept. of
Computer Science, Rutgers Univ., New Bruns-
wick, N.J., July.

RYDER, B. G., AND CARROLL, M. D. 1986. An incre-
mental algorithm for software analysis. In Pro-
ceedings of the ACM SIGSOFTISIGPLAN Soft-
ware Engineering Symposium on Practical Soft-
ware Development Environments (Palo Alto,
Calif., Dec. 9-11). SZGPLAN Not. 22, 1 (ACM),
171-179.

RYDER, B. G., AND PAULL, M. C. 1983. Incremental
data flow analysis algorithms. Tech. Rep. DCS-
TR-131. Dept. of Computer Science. Rutgers
Univ., New Brunswick, N.J. Being re;iewebfor
publication.

SCHWARTZ, J. T., AND SHARIR, M. 1978. Tarjan’s
fast interval finding algorithm. SETL Newsletter
No. 204, Mar. 3,1978, Courant Institute of Math-
ematical Sciences, New York Univ., New York.

SCHWARTZ, J. T., AND SHARIR, M. 1979. A design
for optimizations of the bitvectoring class. Tech.
Rep. 17, Dept. of Computer Science, Courant
Institute of Mathematical Sciences, New York
Univ., New York, Sept.

SHARIR, M. 1977. On interprocedural flow analysis.
SETL Newsletters No. 187, Apr. 1977. No. 187a.
May 1977, Courant Instit&d of Maihematicai
Sciences, New York Univ., New York.

TARJAN, R. E. 1972. Depth-first search and linear
graph algorithms. SIAM J. Comput. 1, 2, 146-
159.

TARJAN, R. E. 1974. Testing flow graph reducibility.
J. Comput. Syst. Sci. 9,355-365.

ACM Computing Surveys, Vol. 18, No. 3, September 1986

316 l B. G. Ryder and M. C. Paul1

TARJAN, R. E. 1979. Applications of path compres- WEGMAN, M. 1981. General and efficient methods
sion on balanced trees. J. ACM 26, 4, 690-715. for global code improvement. Ph.D. thesis, Dept.

TARJAN, R. E. 1981a. Fast algorithms for solving of Computer Science, Univ. of California at

path problems. J. ACM 28,3 (July), 594-614. Berkeley.

TARJAN, R. E. 1981b. A unified approach to path
ZADECK, F. K. 1984. Incremental data flow analysis

problems. J. ACM 28,3 (July), 577-593.
in a structured program editor. In Proceedings of
the SIGPLAN 1984 Symposium on Compiler Con-

ULLMAN, J. D. 1973. Fast algorithms for the elimi- struction (Montreal, Quebec, Canada, June 17-
nation of common subexpressions. Acta Inform. 22). SZGPLAN Not. 19, No. 6. ACM, New York,
2, 3, 191-213. pp. 132-143.

Received January 1984; revised November 1984; August 1985; July 1986; final revwul I accepted December 1986.

ACM Computing Surveys, Vol. 18, No. 3, September 1986

