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A unified model of a family of data flow algorithms, called elimination methods, is 
presented. The algorithms, which gather information about the definition and use of data 
in a program or a set of programs, are characterized by the manner in which they solve 
the systems of equations that describe data flow problems of interest. The unified model 
provides implementation-independent descriptions of the algorithms to facilitate 
comparisons among them and illustrate the sources of improvement in worst case 
complexity bounds. This tutorial provides a study in algorithm design, as well as a new 
view of these algorithms and their interrelationships. 
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INTRODUCTION 

Compile-time analysis of programs was 
originally developed to allow the optimiza- 
tion of compiler-generated code. Compile- 
time analysis of programs includes control 
flow analysk, which traces the patterns of 
possible execution paths in a program, and 
data flow analysis, which traces the possible 
definitions and uses of data in the program. 
The information gathered is used to opti- 
mize the program by transforming it to a 
semantically equivalent one that executes 
faster and/or uses less space. 

Optimization of compiled code probably 
remains the most important use of data 
flow information. The powerful constructs 
in modern programming languages neces- 
sitate data flow analysis for efficient trans- 
lation. For example, in a language with late 
bindings, data flow information allows the 
replacement of an execution-time check by 

a compile-time check; if the type of a vari- 
able is constrained to be consistent with its 
use, data flow information can be used to 
ascertain the type of the variable. Data flow 
information is also used in many noncom- 
piling applications. When source-to-source 
transformation systems convert a high- 
level description of an algorithm into an- 
other that is optimized for execution, data 
flow information is used to ensure that the 
transformations preserve meaning. 

Software tools in interactive program- 
ming environments make data flow infor- 
mation available to programmers. The 
ability to see all the definitions or uses of a 
variable facilitates design, debugging, 
maintenance, and documentation of code. 
Interprocedural data flow analysis, which 
traces data definition and usage across pro- 
cedure boundaries, is especially suited to 
this application [Banning 1979; Barth 
1978; Burke 1984; Cooper and Kennedy 
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19841. Interprocedural analysis uncovers 
possible side effects of a procedure call and 
can help to maintain intricate, inade- 
quately documented code [Ryder 1974, 
1985; Ryder and Carroll 19861. 

In complex software, a small change in 
the program is expected to have localized 
effect and therefore produce a small change 
in the data flow information. An incremen- 
tal update algorithm for data flow analysis 
only modifies the original data flow solu- 
tion to reflect changes in a problem and is 
usually more efficient than a complete 
reanalysis. Clearly, incremental updating 
has application to programming environ- 
ments [Cooper and Kennedy 1984; Zadeck 
19841. The modeling work presented in this 
tutorial was part of the development of 
incremental update algorithms for data 

flow analysis [Ryder 1982a; Ryder and 
Paul1 19831. 

Today, there are two families of global 
data flow algorithms in use: the elimination 
methods and the iterative methods. The 
elimination methods include an original 
algorithm, Allen-Cocke interval analysis, 
and three improvements on it: Hecht- 
Ullman Z’,-Z’, analysis, Graham-Wegman 
analysis, and Tarjan interval analysis. Our 
models of elimination methods describe 
how each algorithm solves the data flow 
equations that define useful data flow 
problems. The iterative methods, called 
workset, round robin, and node listing, 
solve the data flow equations by initializ- 
ing them to a safe value and then iterating 
to a fixed-point solution. These methods, 
which we do not treat here, originated 
with G. Kildall’s algorithm [Hecht 1977; 
Kildall 19731. 

In the literature, all of these algorithms 
are described in terms of a specific imple- 
mentation, and it is difficult to see their 
similarities and differences. Our aim is to 
present the elimination algorithms in an 
implementation-independent manner that 
highlights the main ideas of each. To ac- 
complish this we define the data flow prob- 
lem by a system of equations and describe 
how each technique solves these equations 
[Cocke 19701. This reveals the similarities 
and differences of the algorithms, as well 
as where and why the complexity savings 
occur in each, which is not clear from their 
implementation descriptions. In addition, 
the models show the algorithms to be 
general solution procedures applicable to 
certain systems of equations. 

In the remainder of this section we intro- 
duce data flow analysis, giving examples to 
illustrate the definitions and concepts. In 
the program fragment in Figure 1 the ques- 
tion is, “Can execution reach statement L 
withy never having been assigned a value?” 
To answer, we insert statement K (see Fig- 
ure 2), assuming that neither a nor b can 
have the value 9999, and use our analysis 
to determine whether it is possible for y to 
have the value 9999 at statement L. If so, 
then in the original fragment, the value of 
y may be undefined at statement L. To 
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if x> 2 then y := a 
else if z > 3 * w then y := b 

L: q:=2*y /* can y be undefined here? */ 

Figure 1. Program fragment. 

K: y := 9999 
if x > z then y := a 

else if .a > 3 * w then y := b 
L: q:=2*y /* can y = 9999 here? */ 

Figure 2. Transformed program fragment. 

analyze the program fragment of Figure 2, 
we transform it into the graphical represen- 
tation of Figure 3. The directed graph em- 
bodies possible execution paths through the 
statements in the program. 

Data flow analysis is usually performed 
on some intermediate form of a program. 
We can start with either a control flow 
graph, which is a directed graph that de- 
scribes the possible execution paths in a 
procedure [Hecht 19771, or a parse tree 
representation of a procedure [Farrow et 
al. 1975; Kennedy and Zucconi 19771; we 
use the former in Figure 3. To build the 
control flow graph of a program, we parti- 
tion its statements into basic blocks, maxi- 
mal single-entry sequences that are exited 
only at their end [Backus et al. 19571. Each 
basic block is represented by a node in the 
control flow graph. There is an edge (i, j) 
in the control flow graph if, during execu- 
tion, control can transfer from basic block 
i to basic block j.’ If (i, j) is an edge, then 
we call j an immediate successor of i and i 
an immediate predecessor of j. Although 
each basic block has only one entry, it can 
have more than one immediate predecessor. 

Data flow analysis can also be performed 
on a call graph, a directed graph that 
describes the possible calling relations 
between procedures in a software system 
[Allen 1974; Ryder 19791. Each procedure 
in the system is represented by a node in 
the call graph, and each directed edge rep- 
resents a possible procedure invocation. In 

1 We make the underlying assumption of all static 
analysis, that all paths in the program are executable, 
since it is an undecidable problem to identify those 
that are not. 

1 y := 9999 (i) 

1 
2 r>z-------+3 y:=a(ii)* 

1 
4 z>3+w+5 y:=b(iii) 

6 q:=2*y 

Figure 3. Control flow paths for Figure 2. 

interprocedural analysis, we trace data flow 
through the use of reference parameters 
and global variables [Banning 1979; Barth 
1978; Burke 1984; Cooper and Kennedy 
1984; Schwartz and Sharir 1979; Sharir 
19771. 

The term flow graph covers both control 
flow and call graphs. Throughout this 
tutorial n is the number of nodes in the 
flow graph and e is the number of edges. 
A flow graph has a unique source node 
(source), which has no predecessors, and 
one or more exit nodes, each of which has 
no successors. Each node in the flow graph 
is associated with a function that describes 
how the code at the node affects data in the 
program. Data flow analysis algorithms 
gather this local information and from it 
infer the global data flow. The global infor- 
mation then can be specialized to provide 
data flow information for any node in the 
flow graph. 

By using Figures 2 and 3, we want to 
calculate the set of possible values for y at 
statement L (i.e., node 6). This is tanta- 
mount to considering the set of definitions 
or value-setting statements for y that can 
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be propagated along paths containing no 
subsequent redefinitions of y, called the set 
of reaching definitions of y. For example, 
definition (i) of y at statement K (node 1) 
can be propagated to statement L (node 6) 
along (1 2 4 6) but not along (1 2 3 6) 
because definition (ii) at node 3 blocks (i). 

The problem of reaching definitions can 
be expressed concisely using equations. Let 
pj be the set of all definitions of y in the 
program if y is not defined at node j, and 
the empty set otherwise. Let dj be the set 
of definitions of y created at node j if there 
are definitions of y at j, and the empty set 
otherwise. Then Xi, the set of definitions 
of y that reach node i, can be expressed for 
our example by the equations in Figure 4. 
The intersection of pj and Xj either elim- 
inates all definitions that reach node j if y 
is defined at j, or keeps them all if y is not 
defined at j. 

data flow algorithm for REACH-must solve 

More formally, X, is the set of all defi- 
nitions of variables reaching node m; if a 

these equations. The equation for X,,,,, 

definition of variable y at node n reaches 
node m, then y may have the value assigned 

reflects the assumption that no variable 

to it at node n when execution reaches the 

definitions reach the entry to the source 

code at node m. A definition-clear path for 
variable y from node n to m is a path along 
which there is no value-setting statement 

node. We have 

for y; therefore the definition of y at node 
n reaches node m if there is a definition- 
clear path for y from n to m. Finding 

x, = 0, 

the definitions reaching a node is referred 

m = source, 

to as the reaching definitions problem 
(REACH). 

Equations (1) completely describe 
REACH on an arbitrary flow graph; any 

x, = er, 

X, = plnXlUd1, 

X, = X, = pznXzud2, 

Xa = p,nX,ud,, 

X, = (fin&ud,)u(p,nX,U&) 

u(pan&Udd. 

Figure 4. Equations for Figure 3. 

(3) pj is the set of all variable definitions 
that may be preserved through node j 
(i.e., the set of definitions of variables 
not redefined at j); 

(4) dj is the set of locally exposed defini- 
tions at node j, that is, the set of last 
definitions of each variable -defined at 
node j [Hecht 19771. 

The solution of REACH can be used to 
optimize the code generated for each basic 
block in the flow graph. For example, if all 
the definitions of a variable reaching node 
m are the same constant value, then we 
know the variable has that value at m until 
it is redefined; we can instantiate this con- 
stant value in the appropriate places. 

common subexpressions elimination). 
Consider 

& = ~jES,l%n,j n Zj U b,,j) U cm 

for 15 m 5 n, 

where 

The four classical data flow problems- 
reaching definitions, live uses of variables, 
available expressions, and very busy 
expressions-all can be formulated as in 
eq. (2), which is a generalized of eq. (1) 
[Hecht 19771. The data flow solutions of 
these classical problems are sufficient for 
most compiler optimizations (e.g., dead 
code elimination, constant propagation, 

(2) 

m # source, 

where 

(1) pred(m) is the set of all immediate 
predecessors of m; 

(2) Xj is the set of all variable definitions 
reaching the entry to node j; 

(1) 2, is the data flow solution either on 
entry to or on exit from node m; 

(2) 0 is intersection or union; 
(3) a,,j, b,,j, and c,,, are constants derived 

from local data flow information (pos- 
sibly null); 

(4) S, G (i 1 1 5 i I n). 

Each variable in the system of equations 
(Z,)&1 is identified with a unique flow 
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graph node; its value is the data flow solu- 
tion on entry to (or exit from) the node. 
Given this one-to-one relationship between 
nodes and variables, we use these terms 
interchangeably; interpretation will be 
clear from the context. The coefficients and 
constants in the equations are defined 
using the local data flow characteristics 
associated with each node, analogous to 
their definition in eq. (1). From a flow 
graph annotated with this information at 
each node, we can obtain a system of equa- 
tions describing an associated data flow 
problem. 

Data flow problems are called forward or 
backward, according to the direction of in- 
formation flow in the flow graph [Kennedy 
1971, 19791. In REACH, variable defini- 
tions are propagated along paths in the flow 
graph that represent possible execution 
paths in the program; this is a forward data 
flow problem. For such problems the set S, 
in eq. (2) is the set of immediate predeces- 
sors of node m (i.e., predlm}). We limit our 
attention to forward data flow problems, 
although some of the methods developed 
are applicable to backward data flow prob- 
lems as well [Allen and Cocke 19771. 

If X,,, is a solution to a forward data flow 
problem on entry to node m, then there is 
a Y, that is the solution for the same 
problem on exit from node m. In particular, 
if 

Xn = fljEpred{m) h,j n Xj U bm,j), (3) 

then 

Ym = ~jEpredlml(&?m,j n yi) U GTI, (4) 

where 

(1) B is intersection or union; 
(2) o,,j and b,,j are constants associated 

with data flow through node j; 
(3) g,,j and cm are constants associated 

with data flow through node m; 
(4) pred(m) is the set of immediate prede- 

cessors of node m. 

The choice of which system to solve de- 
pends in part on the data flow problem 
being solved and the use for that data flow 
information; different equation forms seem 
natural for different problems. For a for- 
ward problem, Y,,, consists of elements of 

x, = 0, 

X2 = X3 = X4 = X6 = (i), 

X6 = (i ii iii). 

Figure 5. Solution to Figure 4. 

X, that are not affected by the code at 
node m plus any relevant side effects of the 
code at node m; there is a linear function f 
such that Y, = f(X,). Our model can han- 
dle data flow solutions on entry to or exit 
from a node equally well. In subsequent 
discussions, we use the form most conven- 
ient for the algorithm modeled. 

In data flow problems the initial equa- 
tions for certain variables, called boundary 
uariables, are particularly simple. X8,,,, is 
the boundary variable of a forward data 
flow problem; (Xj), for j an exit node of the 
flow graph, are the boundary variables of a 
backward data flow problem. The initial 
equation for a boundary variable depends 
on the specific data flow problem and the 
equation form being used; a correct initial 
equation is essential for obtaining a cor- 
rect data flow solution. For example, for 
REACH, as illustrated in Figure 4, the 
initial equation for X,,,, is 

X Bo”lVX = 0, 

using eq. (3). Using eq. (4), the equation is 

Y Eo”me = d source, 

where d,,,, is the set of all value-setting 
statements in the source node that assign 
a value to a variable that may be its value 
on exit from the source node. 

The solution of the equations in Figure 4 
tells which definitions of y reach each 
node.’ We can obtain this solution by suc- 
cessive substitutions in the equations taken 
in order. We substitute 0 for X1, solve for 
X,, and use that solution to obtain X3 
and X4. By using those solutions we can 
obtain X, and X6 and thus fully solve the 
system, obtaining the solution shown in 
Figure 5. Since the added definition of y 
(i) reaches statement L (i.e., node 6), we 
know that y may be undefined at L dur- 

’ In this example we are only concerned with defini- 
tions of the variable y. 
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K: y := 9999 
M: if x > z then (x := x - y; goto M] 

else if z > 3 * w then y := b 
L: q := 2*Y /* can y = 9999 here? */ 

Figure 6. Program variant of Figure 2. 

ing the execution of the original program 
fragment in Figure 1. 

Unfortunately, the solution procedure is 
not always so straightforward. The pro- 
gram fragment in Figure 6 is a variant of 
the one in Figure 2; we have introduced a 
loop in the if statement labeled M. The 
flow graph for the program fragment is 
shown in Figure 7, and the corresponding 
REACH equations are shown in Figure 8. 

If we try to solve these equations using 
successive substitutions, we find that X2 is 
a function of both Xi and X3, and so we 
cannot obtain its value merely by substi- 
tuting for the term in X1. Moreover, if we 
try to obtain a value for X3 first, we see 
that we need the value of X, in order to 
obtain a value for X3! Therefore the suc- 
cessive substitution procedure alone is not 
sufficient to solve the equations. Never- 
theless, by examining the flow graph in 
Figure 7, we can obtain the solution shown 
in Figure 9. 

In Section 1 we present general tech- 
niques for solving data flow equations, even 
when loops are present in the flow graph. 
A straightforward Gaussian-elimination- 
like method yields a solution with O(n3) 
complexity. Each of the algorithms pre- 
sented is a refinement of this method. 
Allen-Cocke interval analysis defines a 
natural order on the equations that leads 
to a highly structured coefficient matrix. 
Ordered substitutions are used to reduce 
the solution of the entire system to the 
solution of a smaller system. This process 
is repeated, yielding successively smaller 
systems of similarly structured equations 
and producing an 0 (n’) solution [Allen and 
Cocke 19771. Algorithms that improve on 
interval analysis detect common substitu- 
tion sequences in the equations and utilize 
them to reduce the work to 0 (n log n). The 
Hecht-Ullman Z’i-Z’, algorithm substitutes 
for individual terms in the equations in a 
nondeterministic manner but retains a rec- 
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1 y := 9999 (i) 

2 
1, 

X>Z.-k3 x:=x-y1 

1 
1 ;z32;:,-*5 y:=b(iill 

Figure 7. Flow graph of Figure 6. 

x, = 0, 

x2 = (P~nx,ud,)u(P3nXud3), 

X, = X, = pnnXzUdz, 

X5 = p4n-&u&, 

X, = (p4nX,ud,)u(p,nX,ud,). 

Figure 6. Equations for Figure 7. 

Xl = 0, 

X2 = X3 = X4 = X5 = (i), 

X6 = (i ii). 

Figure 9. Solution for Figure 8. 

ord of them in a 2-3 tree, calculating com- 
mon substitution sequences only once 
[Ullman 19731. The Tarjan algorithm uses 
a constrained substitution order in which a 
reduced equation for a variable is obtained 
by substituting for all dependent variables, 
that is, those on the right-hand side of the 
equation, at once [Tarjan 1974, 1981a]. A 
path-compressed tree is used to remember 
the substitution sequences so as to elimi- 
nate duplicate calculations. The Graham- 
Wegman algorithm uses a different con- 
strained substitution order for individual 
terms in the equations [Graham and 
Wegman 19761, taking advantage of com- 
mon substitution sequences in the equa- 
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tions by delaying the substitutions for 
terms involving such sequences until the 
calculations corresponding to such se- 
quences have been performed. 

We describe the Gaussian-elimination- 
like solution procedure and the concept of 
reducibility. We present models for each of 
the algorithms and discuss their key ideas. 
The linear performance of Allen-Cocke in- 
terval analysis on a large class of flow 

graphs is shown. We compare and contrast 
the Hecht-Ullman, Tarjan, and Graham- 
Wegman methods with the Allen-Cocke 
approach and with each other. One example 
is worked by all four algorithms to highlight 
their characteristics. We then summarize 
the results of our modeling efforts. 

1. EQUATIONS MODEL 
OF DATA FLOW ANALYSIS 

We now show in detail the procedure used 
to obtain the solutions to the REACH prob- 
lems in Figures 4 and 8 and use these 
techniques to motivate a formal solution 
procedure for data flow equations, with and 
without loops, which is illustrated in an 
additional example. We consider the struc- 
tural properties of the dependency graph of 
the equations and show how they affect the 
efficiency of the solution procedure. We 
make use of the reducibility property of 
flow graphs and show that it provides an 
order-of-magnitude improvement for the 
four algorithms modeled. 

In Figure 4, given a variable whose solu- 
tion is known (e.g., X1), we simply substi- 
tute the solution for all occurrences of that 
variable in the system. Repetition of this 
substitution procedure solves the system 
of equations, as shown in Figure 10. In 
Figures 6-8 we see that a loop in the pro- 
gram being analyzed interferes with this 
procedure by introducing a self-reference in 
an equation. When we substitute the solu- 
tion for X1 into the equation for X2, we 
obtain 

x2 = (pl n x1 u 4) u b3 n x3 u d3) 

= ((0 fl 0) U (4) U (p3 f-7 X3 U d3) 

= (p3 n X3 U d3) U (i). 

Now we attempt to eliminate X3 from the 
equation by substituting the right-hand 
side of its equation for the X3 term. Since 

x3 = pz n x2 u &, 

we obtain 

X2 = (p3 n X3 u d3) u (4 

= (13~ n ((p2 n X2) u d2) u d3) u (4 

= (pa f-7 p2 n x2) u (p3 n d2) 

U cl3 U (i) 

= ((i ii) n (i ii} n X2) 

U ((i ii) n 0) U 0 U (i) 

= ((i ii) n X2) U (i). 

We have introduced a self-dependence in 
the equation for X2. Examining the flow 
graph in Figure 7, we see that the X2 term 
corresponds to definitions reaching node 2 
and subsequently traversing the path 
(2 3 2). The only definition that can do 
this is definition (i); therefore 

X2 = (i). 

Rather than resolve each self-reference in 
this manner, we develop rules for dealing 
with a self-referential equation by replacing 
it with another equation in such a way that 
a solution to the system containing the new 
equation is also a solution to the original 
system. This replacement is referred to as 
“loop breaking.” 

In the remainder of this section we pre- 
sent our “equations” model of elimination 
algorithms more formally. Consider those 
data flow problems that can be defined by 
a system of equations Q = (Q,,J L, where 
Q,,, is an equation of the form of eq. (2) and 
is solved by a Gaussian-elimination-like 
method [Isaacson and Keller 19661. Each 
equation Q,,, in the system is associated 
with a node m in the flow graph. We assume 
that the set of possible solution values, each 
an n-tuple (2, o-e 2,) that satisfies the 
system Q, admits a partial ordering (s).~ 

In Gaussian elimination variables are 
successively eliminated from a system of 

3 All the classical data flow problems have this prop- 
erty. 
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x, = 0, 

X2 = d, = {i), 

X, = X, = (pznXz)udz 

= ((i ii iii} fl (i)) U0 

= (i), 

X5 = b4nX4)ud4 

= (Ii ii iii) fl {i)) U0 

= lil, 

X6 = ~P3nx3~u~Plnx,~u~P5nx5~ud3ud,ud6 

= (0rl(i))U((i ii iii)fl(i)) 

U (ran {i)) U (ii) U0U (iii) 

= {i ii iii]. 

Figure 10. Solution procedure for the equations of Figure 4. 

equations by repeated substitution of the 
right-hand side of an equation for a term 
in that variable. We define an analogous 
substitution process. A substitution trans- 
formation of a system of equations Q, 
s(Q, m, j) for 1 5 m, j I n, is the result of 
substituting the right-hand side of Q,,, for a 
term in 2, on the right of equation Qj, m 
# j, and simplifying the resultant right- 
hand side of Qj. Then s( Q, m, j) differs from 
Q by having at most a different Qj equation; 
all other equations are the same. It is clear 
that a solution of s( Q, m, j) is also a solution 
to Q, and vice versa. 

To handle possible self-references intro- 
duced by the substitution transformations, 
we use a loop-breaking rule. An equation 
Q,,, has a loop-breaking rule if there is an- 
other equation for 2, called q,,, such that 

(i) 2, does not appear on the right-hand 
side of q,,,; 

(ii) every solution of qm is also a solution 
of Qm; 

(iii) for every solution S of Q,,, there is a 
solution s of qm such that s I S [Paul1 
19861. 

A set of equations Q is said to have a loop- 
breaking rule if for each equation in Q ini- 
tially there is a loop-breaking rule, and for 
any equation in any set that can result from 
Q by a sequence of substitution transfor- 
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mations of Q there is also a loop-breaking 
rule. A loop-breaking transformation of Q, 
b(Q, m), for 1 5 m 5 n is the result of 
replacing Q,,, by qm. 

The Gaussian-elimination-like solution 
procedure for the system of equations con- 
sists of applying a sequence of the substi- 
tution and loop-breaking transformations; 
the procedure is shown in Figure 11. The 
complexity of this algorithm is O(n3), as- 
suming (as usually holds) that each appli- 
cation of b is O(1) and of s is O(n).4 It 
can be shown that if a sequence of these 
transformations is applied to a system 
of equations Q producing the system R 
and {S, ] 1 I m I n) is a solution to R, 
then it is also a solution to Q. Further, if 
(L, ] 1 5 m 5 n] is a solution to Q, then 
there is a solution of R, (K,,, 1 1 5 m 5 n) 
such that K,,, I L, for 1 5 m 5 n. If Q has 
a loop-breaking rule, then the procedure in 
Figure 11 terminates and produces the 
unique minimal solution (in terms of the 
partial ordering) [ Paul1 19871. 

For the classical data flow problems, the 
implementation of this method can involve 

‘These assumptions hold even for a multigraph for 
data flow problems defined by equations of the form 
of eq. (2). With the operators of union and intersec- 
tion, multiple terms in one variable can always be 
combined to yield one term. After a substitution trans- 
formation is completed, there will be not more than n 
distinct terms on any right-hand side of an equation. 
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/* elimination */ 
for i = 1 to n - 1 do 

begin 

Q t b(Q, i) 
for j = i + 1 to n do Q+- s(Q, i, j) 

end 
/* back substitution */ 
for i = n to 2 do 

begin 
for j = i - 1 to 1 do Q c s(Q, i, j) 

end 

Figure 11. Gaussian-elimination-like solution procedure. 

bit vector or set operations. The partial 
ordering on the n-tuples is one of compo- 
nentwise set inclusion for a set implemen- 
tation and componentwise comparison for 
a bit vector implementation. The loop- 
breaking rules for these problems are very 
simple.5 In eq. (2), if fl is U as in REACH, 
then we have 

Qm: 2 = a n 2 u p, (5) 

where a is a constant and B can contain 
terms in variables other than 2 as well 
as constants. The corresponding loop- 
breaking rule substitutes equation qm 
for Q,,,: 

qm: z = p. (6) 

In this case we say the loop-breaking rule 
is to drop the self-referential term (i.e., 
a n 2). In eq. (2), if 0 is n, then we have 

Qm: 2 = (a n 2 u C) n p, (7) 

where a and c are constants and fi can 
contain terms in variables other than 2 
as well as constants. The corresponding 
loop-breaking rule substitutes equation 
qm for Qm: 

qm: 2 = c n p. (8) 

To validate a loop-breaking rule for an 
equation, we must satisfy the conditions 
(i)-(iii) given above. Clearly, 2 does not 
appear on the right-hand side of q,,, in 
eq. (6) (i.e., (i) is satisfied). Then the solu- 
tion of the loop-breaking rule qm must be 

6 In general, loop-breaking rules are determined by the 
operators in the equations [Paul1 19871. 

1 81: X1=0, 

1 
2 

0 

Qz: X2 = (~lnX~ud,)U(wnXaUd,), 

3 Qa:Xa=pznX,udp. 

Flow graph 

Figure 12. REACH example with loop. 

shown to satisfy the original equation Qm. 
Letting 2 = p in eq. (5), we have 

p =? (a n p) U p, 

which is clearly true (i.e., (ii) is satisfied). 
Finally, for every solution S of Qm there 
must be a solution s of qm such that s 5 S. 
Here, if S is a solution to Qm, then 

S=(anS)uP*BGS. 

Therefore 2 = p 5 S for S any solution of 
Qm (i.e., (iii) is satisfied). By replacing 
eq. (5) by eq. (6) we are selecting the min- 
imal solution for 2 from the set of possible 
solutions satisfying Qm. 

We use an example of REACH to illus- 
trate these ideas. In Figure 12, we apply a 
loop-breaking rule; the variable whose 
equation becomes self-referential corre- 
sponds to node 2, which is an entry node of 
a loop in the flow graph. The substitution 
transformation s(Q, 3, 2) introduces an X2 
term in the right-hand side of Qz, 

Qz: Xz = (PI n X, u dd 

u b3 f-7 b n x2 u d2) u d3), 

ACM Computing Surveys, Vol. 18, No. 3, September 1986 



286 . B. G. Ryder and M. C. Paul1 

which is eliminated by a loop-breaking 
transformation b(s(Q, 3, 2), 2), 

qz: X2 = (PI n XI u 4) 

u (~3 n dd u &. 

Let R = (Qi, q2, Q3). Now two substitu- 
tion transformations solve the system R, 
4R, 1, 21, 

X2 = (~1 n 0 u 4) u (~3 n 4) u da, 

X2 = 4 u (~3 n 4) u da, 

and s(R’, 2,3), where R’ is R with the result 
of s(R, 1, 2) replacing q2, 

X3 = ~2 n (4 u (~3 n d2) u d3) u d2, 

x3 = (p2 n dl) u (p2 f-7 p3 n dd 

u (PZ n &) u &, 

yielding after simplification, 

x, = 0, 

X2 = dt u (~3 n d2) u d3, 

X3 = (~2 n 4) u (~2 n d3) u d2. 

Thus the loop-breaking transformations 
guarantee the effectiveness of the proce- 
dure in Figure 11 on flow graphs with loops. 

Thus far we have described the data flow 
problems as defined by the flow graph of 
the corresponding program. However, we 
can use the solution technique presented 
here on any system of equations that has a 
loop-breaking rule. Given a set of equations 
of the form of eq. (2), we can define 
a dependency graph, a directed graph cor- 
responding to the interdependencies of 
variables given by the equations in that 
system. Each node represents a variable; 
each directed edge (m, n) represents the 
dependence of X,, on X,,, (i.e., the occur- 
rence of X,,, on the right-hand side of the 
equation for X,,). For forward data flow 
problems, the dependency graph is the 
flow graph of the problem. 

We describe the elimination algorithms 
as solution procedures for systems of equa- 
tions and their corresponding dependency 
graphs, comparing and contrasting the data 
flow algorithms by examining how they 
solve these systems. The equations can be 
solved by a method patterned after 
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straightforward Gaussian elimination with 
order O(n3) complexity. In fact, the elimi- 
nation methods described here all have bet- 
ter worst case bounds because they take 
advantage of a special coefficient structure, 
first utilized by Allen-Cocke interval anal- 
ysis, that results from the sparseness of the 
system of equations and the reducibility of 
the dependency graph. A standard assump- 
tion in data flow analysis of control flow 
graphs that correspond to real programs is 
that e = O(n) [Hecht 1977; Hopcroft and 
Ullman 1972; Tarjan 1974; Ullman 19731. 

A reducible directed graph is one with no 
multiple-entry loops [Hecht 1977a].6 In a 
system with a reducible dependency graph, 
the variables of the system are naturally 
partitioned into groups that can affect each 
other only in a highly constrained manner. 
In practice, irreducible control flow graphs 
are rare; therefore data flow methods that 
require reducible systems are almost always 
sufficient [Hecht 1977; Knuth 19711. The 
Hecht-Ullman and Tarjan interval analy- 
sis algorithms are restricted to systems of 
equations with reducible dependency 
graphs. The Graham-Wegman algorithm 
can handle irreducible systems (see Sec- 
tion 5.3). Allen-Cocke interval analysis 
can be adjusted to handle irreducibilities 
as well [Schwartz and Sharir 19791. We 
should bear in mind that an irreducible 
system can always be solved straight- 
forwardly, if inefficiently, by the Gaussian- 
elimination-like method in Figure 11. 

2. ALLEN-COCKE INTERVAL ANALYSIS 

Interval analysis was orginally developed 
in the elimination algorithm in Allen 
[1971]. The key step is to use the reduci- 
bility of the dependency graph to convert 
the solution of a system of n equations to 
the solution of a smaller system of r equa- 
tions by partitioning the equation variables 
into r subgroups called intervals, single- 
entry regions corresponding approximately 
to loops in the dependency graph.’ The 
partitioning algorithm that finds the inter- 

6 A subgraph is defined to be single entry if all incident 
edges are incident on a single vertex. Single exit is 
defined similarly. 
‘For forward data flow problems, the dependency 
graph will be the flow graph. 



Elimination Algorithms for Data Flow Analysis l 287 

INT := null; 
I := null; 
H := [s]; 

while (H # null) do 

/” list of intervals */ 
/* each interval */ 

/* header list initialized to source node */ 

Destructively select h from H; 
I := (h]; /* form Zh */ 
while (There is a node m not s, whose immediate predecessors are all 

in I but m is not yet in I) do 
Add m to I; 

endwhile; 
Add I to INT; 
while (There is node n not in H and not in INT, with at least one 

predecessor in I) do 
Add n to H; 

endwhile ; 
endwhile ; 

Figure 13. Interval-finding algorithm. 

vals is explained in Section 2.1. If h is the 
entry node of an interval, we call it the 
interval head node of interval Ih. The order 
in which nodes are added to an interval, 
called an interval order, preserves the par- 
tial order of the dependency graph. By 
forming a linear order of all the nodes in 
the graph that embeds the interval orders 
on every interval and writing the equations 
in this order, we obtain a highly structured 
coefficient matrix, amenable to simplifica- 
tion by a sequence of substitution transfor- 
mations. This structure ensures that the 
equation for each variable in an interval 
can be parameterized in terms of the inter- 
val head variable (i.e., the variable corre- 
sponding to the interval head node). We 
call the result of this parameterization a 
reduced equation. 

In this section we present our model of 
the Allen-Cocke algorithm. First we infor- 
mally discuss the algorithm that finds the 
intervals and demonstrate their use in solv- 
ing the system of equations. We then state 
the interval analysis algorithm formally, 
and we show that the Allen-Cocke algo- 
rithm in practice has linear worst case 
complexity on a reducible flow graph with 
maximal loop nesting level bounded by 
a constant. 

2.1 Finding intervals 

The partitioning algorithm finds single- 
entry regions in the dependency graph. 
This algorithm is presented in Figure 13 

and may be paraphrased as follows [Allen 
and Cocke 19771. We initialize a set S to 
contain the unique source node of the de- 
pendency graph. Then we look for any 
nodes whose immediate predecessors are all 
in S. We add any such nodes into S and 
continue. Eventually, either every node will 
be in S or we will have exhausted all the 
nodes that could be added to S and have 
remaining a set of nodes H that have been 
examined but have predecessors both in S 
and not in S. At this point all nodes cur- 
rently in S constitute an interval, headed 
by the first node added to S. Arbitrarily we 
choose a node from H, reinitialize S to 
contain only that node, and continue as 
before. The process terminates when every 
node in the graph has been added to some 
interval. 

Clearly an interval order as defined by 
Figure 13 is not unique; that is, different 
representations of the same graph will re- 
sult in different interval orders. The order 
also preserves the ancestor-first relations 
on the graph. Characteristics of intervals 
guaranteed by the algorithm are [Allen and 
Cocke 19771: 

(i) The set of interval head nodes on a 
flow graph is unique.’ 

(ii) The head node of an interval domi- 
nates internal interval nodes. 

(iii) An interval is single entry. 

‘This follows from the fact that a flow graph has a 
unique source node. 
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(iv) Any back edge in an interval has the 
interval head node as its target [Hecht 
19771. 

(v) The interval order on an interval is 
consistent with the partial ordering 
imposed by the predecessor relations 
of the flow graph. 

2.2 Algorithm Statement 

The algorithmic reduction of the solution 
of a system of n equations to a smaller 
system of r equations, where r is the num- 
ber of intervals in the dependency graph 
of the equations, consists of two phases: 
elimination and propagation. During elim- 
ination we perform successive substitution 
and loop-breaking transformations on the 
systems of equations; this phase gathers 
and summarizes the local data flow side 
effects. During propagation we perform 
back-substitutions of solutions for terms in 
equations; this phase propagates global 
data flow side effects to the local regions 
where they apply. The model of the algo- 
rithm is given at the end of this section. 

The elimination phase consists of iter- 
ating three steps: finding intervals in the 
dependency graph associated with the sys- 
tem of equations, reducing the equations to 
form a new system of reduced interval head 
variable equations, and forming the de- 
pendency graph of the reduced system. 
Within each interval in the system, a 
sequence of substitution transformations 
reduces all the equations to linear functions 
of the interval head variable. A derived 
system of equations is formed that consists 
of the r reduced interval head variable 
equations and depends only on interval 
head variables from the former system. 
This derived system is partitioned in turn 
into intervals: each with an interval order, 
and the coeffuxent matrix structure of the 
origin& problem is preserved in its equa- 
tions.’ When the original flow graph is 
reducible, the three-step process can be 
continued, yielding a sequence of systems 
of equations and a final system of one 
equation. 

’ The arguments establishing the coefficient matrix 
structure utilize only the properties of intervals and 
an interval order. 

The propagation phase consists of iter- 
ating two steps: establishing variable cor- 
respondences and substituting interval 
head variable solutions into reduced equa- 
tions, thus obtaining solutions for internal 
interval variables. To begin, we solve a 
system of one equation. The final variable 
is associated with the corresponding inter- 
val head variable in the preceding system 
as they share the same solution. Focusing 
on the preceding system, the interval head 
solution is substituted into the reduced 
equations for variables in its interval. 
Then, each of these newly solved variables 
is associated with its corresponding interval 
head variable in the system preceding the 
one just solved. The solutions for all vari- 
ables in this system are similarly obtained. 
This variable correspondence/substitution 
process is iterated through the derived 
systems of equations established in the 
elimination phase in reverse order until all 
solutions are obtained. 

The sequence of dependency graphs 
(G’)ki corresponding to the sequence of 
systems of equations is called the derived 
sequence of graphs, and G’+’ is called the 
derived graph of G’. Whenever we use G i, 
we are referring to a graph in the derived 
sequence of graphs in Allen-Cocke interval 
analysis. When we say that y in G’+’ rep- 
resents I,, in G’, we are referring to the fact 
that all variables in Ih are represented by 
variable X, in G i+l, the corresponding node 
of which in G’+’ is y. The definition of 
represents is extendible over finite subse- 
quences of the derived sequence. Therefore, 
if 

ml E &a, ii G’, . . . , mk E &+, c G i+k-l, 

we say that mk represents ml in Gi+k-‘. 
During elimination, when we remove all 

dependence in the system of equations on 
variables in Ih, we replace those depen- 
dences by a dependence on Xh. The graph- 
ical interpretation of this action is that 
h in G2 represents I,, in G ‘. In Figure 14, 
node 2 in G2 represents I2 in G ‘. This 
signifies that internal interval variables in 
I2 on G1 (i.e., (3)) do not appear in the 
derived system corresponding to G2. Of 
course, since we partition the nodes of both 
G ’ and G 2 into intervals, node 2 belongs to 
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G’ G2 G3 

Zl = Ill, Zl = (1 2 41 z = Ill 

12 = I2 3t, 

14 = (41 

Figure 14. Derived sequence. 

two different intervals on the two graphs: 
node 2 is in I2 on G * and in I1 on G ‘. That 
is, there are two different systems of equa- 
tions depicted in these graphs; X2 is in a 
different partition element in each system. 
A REACH problem fully solved using 
Allen-Cocke interval analysis is presented 
in Figure 22, Section 3.5. 

2.2.1 Model of the Allen-Cocke Algorithm 

Elimination Phase 

(9 

(ii) 

(iii) 

Define the forward data flow equa- 
tions on the original flow graph, G1. 
Let 12 = 1. 
Find the intervals in Gk using the 
Allen-Cocke interval finding algo- 
rithm in Figure 13. Number the vari- 
ables in each interval according to an 
interval order. Apply substitution 
transformations within each inter- 
val to obtain the system of reduced 
equations. Use the relevant loop- 
breaking transformation on any 
self-dependences introduced in the 
process. Use substitution transfor- 
mations to render all interval head 
variable equations independent of 
noninterval head variables. 
Create the dependency graph G k+l the 
nodes of which are the interval head 
variables from Gk and the edges of 
which are defined by the dependences 
in the reduced system of equations 

(i.e., insert an edge (m, n) if the data 
flow equation for X, contains a 
dependence on X,,,). 

(iv) If there is more than one node in G k+l, 
then increment k by 1 and return to 
step (ii). 

Propagation Phase 

(v) Solve the final equation. 
(vi) Each interval Ih in Gk corresponds to 

a node w in Gk+l. For each interval 
head node h in Gk set Xh equal to the 
solution at the node corresponding 
to I,, in Gk+l, X,. Then substitute 
this value of Xh into the reduced equa- 
tions in Ih to solve for all variables, 
thus solving the system of equations 
associated with G k. 

(vii) If k = 1, stop. Otherwise, decrement 
k by 1 and return to step (vi). 

2.3 Linear Performance 
of Allen-Cocke Interval Analysis 

In this section we show that in Allen-Cocke 
interval analysis, the amount of work both 
in finding the intervals and in solving the 
equations exhibits a linear worst case com- 
plexity bound on reducible flow graphs un- 
der common conditions. Our result is a 
practical limit on the performance of the 
Allen-Cocke algorithm on reasonable flow 
graphs encountered in practice; it does not 
hold for general graphs. 

The worst case performance of the Allen- 
Cocke algorithm can be O(n2) even if e is 
only O(n). This bound is achieved on the 
worst case reducible flow graph, which is 
pictured in Figure 15. This graph of n nodes 
has approximately 2n edges and a loop 
nested at a depth of approximately 2n/3 
[Ullman 19731. However, reasonable pro- 
grams do not contain highly nested loops. 

Empirical surveys of high-level program- 
ming languages confirm that in actual prac- 
tice, loop-nesting depths of greater than 
six are rare. Two FORTRAN surveys in 
the 1970s reported that typical nesting of 
do statements was very shallow [Knuth 
1971; Robinson and Torsun 19761. Knuth, 
reporting on programs from Stanford 
University and the Lockheed Corpora- 
tion, stated that 91 percent of the do 
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Figure 15. Pathological flow graph for Allen-Cocke interval analysis. 

statements had fewer than four levels. 
Robinson, surveying two program popula- 
tions from students and systems program- 
mers at Brunel University in England, 
noted that a majority of the do statements 
had fewer than four levels: 76-84 percent 
(student/systems) of the do statements had 
fewer than seven. The assumption of a six- 
level limit of loop nesting in PL/I programs 
was supported by Allen [private communi- 
cation, 19791. 

Thus in reasonable programs it is valid 
to assume a maximum loop-nesting depth 
that is a constant k, k << n, that is inde- 
pendent of the number of nodes in the 
control flow graph. Under that assump- 
tion for a reducible control flow graph, 
Theorem 1 shows that the equation solu- 
tion work of the Allen-Cocke algorithm has 
O(n) complexity using the standard as- 
sumption that e is O(n). Furthermore, a 
work-set form of the interval-finding algo- 
rithm is O(n) on a flow graph when e is 
O(n) [Hecht 19771; by restricting the loop 
nesting depth to a constant k, we restrict 
the possible length of the derived sequence, 
resulting in an O(n) bound on interval find- 
ing over the entire algorithm.” These re- 
sults corroborate the common observation 
that the O(n2) worst case complexity bound 
is not observed in practice. 

lo It seems straightforward to extend Theorem 1 to 
show that Allen-Cocke interval analysis has a worst 
case complexity hound of O(nf(n)) if the loop nesting 
depth is bounded above by f(n). 

Theorem 1 also holds on call graphs that 
satisfy its hypotheses for data flow prob- 
lems defined by equations of the form of 
eq. (2). Although call graphs are multi- 
graphs, we can combine multiple terms in 
one variable into one term, because of the 
form of our equation. Therefore they be- 
come nonmultigraphs at a cost of no more 
than O(e). 

Theorem 1 

Given a reducible flow graph G in which 
e is O(n), suppose that the maximum loop 
nesting depth is less than or equal to a 
constant k. Assume that Allen-Co&e inter- 
val analysis is applied to solve a forward 
data flow analysis problem on G. Then the 
worst case complexity of the equation solu- 
tion work of the Allen-Co& algorithm on 
that flow graph is O(n), where n is the 
number of nodes in G. 

PROOF. From our model of Allen-Cocke 
interval analysis we see that the terms in 
the system of equations can be partitioned 
into two disjoint sets: a set S1 of elements 
that are substituted for once during elimi- 
nation and a set S2 of those elements for 
which substitution takes place more than 
once. The work of elimination can be cal- 
culated by considering the sum of the elim- 
ination work for terms in Si and Sp. 

The elimination work for terms in Si is 
0( ] S1 ] ) 5 O(n), by our assumption that e 
is O(n). The terms in S2 occur in interval 

ACM Computing Surveys, Vol. 18, No. 3, September 1986 



Elimination Algorithms for Data Flow Analysis l 291 

head equations in G = G1. If a term in- 
volving Xj E Sz occurs in the equation of 
Xi in G1, then in step (iii) of the Allen- 
Cocke algorithm a linear function of X,, 
will be substituted for the variable Xi, 
where j E Ih in G. Likewise, in G2 a linear 
function of X, will be substituted for the 
variable X,, in the equation of Xi, where 
h E 1q in G2. Because G ’ is reducible, 
this process continues for finitely many 
steps until the edge representing (j, i) in 
G1 no longer exists on some G”. 

Assume that each interval in the flow 
graph corresponds to a loop. Each step in 
the derived sequence accomplishes the col- 
lapse of the innermost loop of a nested loop. 
Since the maximum nesting level is k, all 
loops will be collapsed in Gk+l. Under our 
assumption, the source node will also be in 
a loop; therefore Gk+l will be the trivial 
graph of a singleton node.” 

Alternatively, there may be intervals not 
corresponding to loops in the flow graph; 
call these “null loops.” By the properties of 
the interval-finding algorithm of Figure 13 
we can show that if there are no loops in 
the graph Gj, then there can be no null 
loops in Gj except for the entire graph Gj 
itself. If there are null loops on G’ and 
loops are nested no deeper than k, then 
Gk+l is acyclic, although it may contain 
more than one node. Therefore the derived 
sequence is at most k + 2 long, with either 
Gk” or G k+2 being the trivial graph of a 
singleton node. 

Thus an edge (j, i) in G1 can be repre- 
sented on at most k + 1 graphs in the 
derived sequence, and the elimination 
cost for terms in S2 is bounded above by 
c 1 S2 1 (k + 1) for c a constant. Since the 
total number of terms is the number of 
edges in the original flow graph, both 1 S1 1 
and 1 S2 1 are no greater than O(n). There- 
fore the elimination work is bounded by 
O(n). 

The propagation work is bounded by the 
number of nodes in the entire derived se- 
quence since we are merely substituting 
into reduced equations each a function of 

I1 We “violate” the definition of source node here to 
allow its inclusion in a loop. 

one variable. Since the number of nodes in 
successive graphs in the derived sequence 
decreases, the number of nodes in any G’ 
is bounded by O(n). Therefore the total 
number of nodes is bounded by bn(k + 1) 
+ 1 for b a constant and (k + 2) the length 
of the derived sequence, and so O(n) also 
bounds the work of the propagation phase. 

Thus the worst case complexity of the 
equation solving by Allen-Cocke interval 
analysis is bounded by O(n). Q.E.D. 

In the proof of the theorem we assume 
that 1 S:! 1 on G1 dominates the number of 
substitutions on each G’, i > 1. This is true 
because any term requiring substitution on 
G’, i > 1, corresponds to a term on G ‘. In 
some models of interval analysis the de- 
rived graph can become a multigraph. Since 
the parallel edges correspond to distinct 
edges in the original graph, this does not 
affect the complexity arguments in the 
proof. 

3. HECHT-ULLMAN T,-Tz ANALYSIS 

In the next three sections we present 
models of three closely related data flow 
algorithms, all improvements on the Allen- 
Cocke algorithm. On flow graphs in which 
the number of edges e is O(n) these algo- 
rithms achieve a worst case bound of 
O(nlogn)12 rather than the O(n2) bound of 
the Allen-Cocke algorithm. The perform- 
ance is improved by the delay of certain 
calculations and the discovery and utiliza- 
tion of common substitution factors in the 
equations. We compare them with the 
Allen-Cocke algorithm on forward data 
flow problems. 

In this section we present our model of 
Hecht-Ullman Tl-T2 analysis. The group- 
ing of variables is less constrained than in 
the Allen-Cocke algorithm and is per- 
formed using a “nearest neighbor” heuris- 
tic. The delay in the calculation of common 
coefficient/constant factors in the reduced 
equations yields savings in elimination. 
These shared factors necessitate the use of 

I2 The Tajan algorithm can achieve an almost linear 
worst case bound of O(n C&Z)) but its practical imple- 
mentation explained in Section 4 achieves a 0 (n log n) 
bound [Tarjan 1981a]. 
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a data structure to remember them; a 
height-balanced 2-3 tree is used [Aho et al. 
19761. The Hecht-Ullman method consists 
of three phases analogous to those of Allen- 
Cocke interval analysis: parse generation, 
elimination, and propagation. We contrast 
the two for each of these phases. The 
Hecht-Ullman algorithm can only be ap- 
plied to programs with reducible flow 
graphs [Hecht 19771, but as we noted 
above, this is not really a limitation in 
practice. 

We begin by discussing the Hecht- 
Ullman parse generation algorithm, which 
determines the variable subgroups and 
the order of variable substitution in the 
equations. Graph transformations TI and 
T2 applied to the dependency graph of the 
equations define this order. We define con- 
cepts necessary for understanding the TI 
and T2 transformations and briefly outline 
the actual parse algorithm [Hopcroft and 
Ullman 1972; Ullman 19731. We explain 
the elimination phase of the algorithm in 
terms of our model, describing the equation 
manipulations that correspond to the TI 
and Tz transformations. We then discuss 
the propagation phase of the algorithm. 
Next we state the algorithm formally, and 
finally we compare its parse and elimina- 
tion phases with those of Allen-Cocke in- 
terval analysis. 

3.1 Parse Generation 

The Hecht-Ullman TI-T, algorithm as- 
sumes that a data flow problem is described 
by a system of equations of the form of 
eq. (4) with an associated dependency 
graph (i.e., the flow graph). The algorithm 
uses single-entry subgraphs of the flow 
graph called regions to direct its elimina- 
tion phase, much as the Allen-Cocke algo- 
rithm uses intervals. In a region R there is 
one vertex, the region head h, such that all 
edges from outside of region R to nodes in 
R are incident on h. If a node y is within a 
region headed by h (i.e., Rh), then at some 
point during the execution of the algorithm 
the reduced equation for X, is a linear 
function of Xh. This is analogous to the 
relation between internal interval nodes 
and interval head nodes. Regions are ma- 
nipulated using the transformations TI and 

Before T, transformation: 

After Tl transformation: 

1 
Y 

(ii) Th, w, &) 

Before Tz transformation: 

Yw = pton Yuu&, 

Yy = pyn Ywud,. 

After T2 transformation: 

Y, = Pwn Yuud,, 

Y, = prnpmn Y,Up,nd,ud,. 

Figure 16. Examples of Tl and T2 transformations. 

T2, illustrated in Figure 16, that correspond 
to loop breaking and substitution transfor- 
mations on the system of equations. These 
substitutions and the meaning of the edge 
sets E1 and E2 in terms of the equations are 
explained in Section 3.2. 

A parse of a reducible flow graph is 
a sequence of TI and T2 transformations 
that, when applied to the flow graph, 
results in its collapse to one node [Hecht 
19771. Each transformation in the parse is 
called a parse element. A flow graph that 
is transformed to one node is called col- 
lapsed. Hecht and Ullman proved that TI 
and Tz form a finite Church-Rosser trans- 
formation, which means that they need 
only be applied finitely many times to a 
reducible flow graph and that the outcome 
is independent of the order of their appli- 
cation [Hecht 19771. 

The parse generation algorithm is de- 
rived from an algorithm of Hopcroft and 
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Ullman [Hopcroft and Ullman 1972; 
Ullman 19731. The algorithm examines a 
flow graph that is represented by a set of 
nodes and the lists of in-edges and out- 
edges associated with each node. The order 
of the edges on these lists influences the 
parse generated. An explicit search and test 
are made for each T2 transformation; Tl 
transformations result from these tests 
whenever a self-loop is detected. The same 
node may appear in more than one Tl 
transformation in a parse, although an edge 
can appear in only one parse element. 

In parse generation a sweep through all 
nodes and edges in the flow graph initially 
finds T2 candidates and any self-loops. 
Figure 17 illustrates a suhgraph in which 
node v is a T2 candidate because it has a 
unique parent. For each T, candidate v, its 
immediate neighbors are checked for Tz 
candidacy. First each immediate descen- 
dant of v is checked to see whether it be- 
comes a Tz candidate after T&z, v, *), and 
if necessary Z’,(y, *) is performed. Then 
z the immediate parent of v is checked 
to see if it becomes a Tz candidate after 
T&, v, *) and if necessary Tl(z, *) is per- 
formed; for example, this can occur if 
(v, z) prevented z from being a Tz candi- 
date previously, as in Figure 17. The parse 
of a flow graph is nonunique; the order of 
the transformations obviously depends on 
the flow graph representation. The out- 
line of the parse generation algorithm is 
given in Figure 18. 

In practice, when edge lists are manipu- 
lated, the parse generation algorithm of 
Figure 18 always merges the smaller region 
into the larger one by counting the number 
of nodes represented by each node in the 
partially collapsed flow graph [Ullman 
19731. This strategy ensures a worst case 
bound for flow graphs with the usual as- 
sumption for flow graphs that e is O(n) 
[Hopcroft and Ullman 1972; Ullman 19731. 

3.2 T,-T2 Transformations and Elimination 

The calculations of the elimination phase 
are directed by the parse of the flow graph. 
A region in equation terms is a subgroup of 
variables all of which have reduced equa- 
tions that are linear functions of the region 
head variable. Our descriptions of the Tl 

Y 

Figure 17. TS transformation candidate. 

and T2 transformations in Section 3.1 are 
graphical. In this section we explain the 
sequence of equation manipulations to 
which they correspond. Each Tl or T2 
transformation triggers a coefficient/con- 
stant calculation that further reduces at 
least one of the equations in the system. 
Examples of these calculations are given in 
the REACH equations in Figure 16. 

A T2 transformation can be applied when 
a node has a unique predecessor, that is, 
when the equation of the corresponding 
variable is a function of one variable. The 
T2 transformation Tz(u, w, E2) in Figure 
16(ii) merges R,, the region represented by 
node w in the partially collapsed flow graph, 
into its unique predecessor region R,, rep- 
resented by node u. Here Ez is the set of 
edges in the original flow graph represented 
by (u, w) in the partially collapsed flow 
graph. In the elimination phase this Tz 
parse element corresponds to selecting two 
subgroups of variables (R, R,), each with a 
region head variable (Y, Y,), and merging 
them into one subgroup (R,). After the 
merge there is one region head variable Y, 
representing all the members of the newly 
merged subgroup; therefore the reduced 
equation of each variable in the new sub- 
group is a linear function of Y,. 

Each edge in the set of edges E2 corre- 
sponds to a term in the original equation 
for Y,. These terms are represented in the 
partially reduced equation for Y, by the 
term in Y,. When the parse element Tz(u, 
w, E2) is performed, we do a sequence of 
substitution transformations such that the 
right-hand side of the reduced equation for 
Y,, a linear function of Yu, is substituted 
into the equations of any variables cur- 
rently dependent on Y,. These include all 
variables in R, represented by w in the 
partially collapsed flow graph, as well as 
all variables corresponding to immediate 
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L := null; /* L is a list of Tz candidates */ 
for i := 1 do n do 

if in-edges(i) contains (i, i) then Generate T,(i, *); 
if in-edges(i) contains only one edge then Add i to L; 

endfor; 
while L # null do 

Destructively select v from L; 
Find unique predecessor of v, z; 
Generate T2(z, v, *); 
Determine if z can be added to L, perhaps after a T, transformation 

of z; 
for each immediate descendant of v, y do 

Determine if y can be added to L, perhaps after a T, 
transformation of y; 

endf or ; 
Add out-edges(v) to out-edges(z); 

endwhile ; 

Figure 18. Parse generation algorithm. 

descendants of w; in Figure 16(ii), the latter 
category includes Yy . Updated reduced 
equations are obtained for all nodes in R, 
and for these immediate descendant nodes; 
thus all dependence on Y, in the current 
system is eliminated. 

A T1 transformation is applied to remove 
a self-loop, or in equation terms, a variable 
from the right-hand side of its own equa- 
tion. The Z’i transformation Z’i(u, Ei) 
in Figure 16(i) removes a self-loop from 
node u. E, is the set of edges in the original 
flow graph, represented by (u, u) in the 
partially collapsed flow graph. Each edge 
in El corresponds to a term in the ori- 
ginal equation for Y,; each was a back edge 
to u in the original flow graph. When the 
T1(u, El) parse element is encountered, the 
heads of these edges are nodes already in 
region R,. When they were merged by pre- 
vious Tz transformations into R,, the as- 
sociated variable substitutions may have 
resulted in the introduction of Y, on the 
right-hand side of the partially reduced 
equation for Y,. The self-loop in Figure 
16(i) represents this dependence. In the 
elimination phase, when a Tl parse element 
is encountered, we apply the appropriate 
loop-breaking rule (see Section 1) to elim- 
inate any dependence of Y, on itself. 

The basic elimination step of the Hecht- 
Ullman T,-T2 algorithm, associated with 
the T2 transformation, is the complete 

removal of a particular variable in the 
partially reduced system of equations (e.g., 
performing T2(u, w, Ez) removes Y, from 
the system). In practice the algorithm ac- 
tually performs the calculation associated 
with T2(u, w, Ez) only for variables with 
nodes in region R, after the T2 graph trans- 
formation is performed; all other calcula- 
tions are delayed. That is, if the equation 
for Y, contains a term Y, and z 4 R, after 
Tz(u, w, E2) is performed, then replacement 
of Y, by a linear function of Y, (i.e., 
s(Q, w, z)) is delayed until z and w are in 
the same region. At that time, occurrences 
of Y, are replaced by the right-hand side 
of the then current reduced equation for 
Y,. Eventually z and w must be in the same 
region, as all nodes are finally in the region 
of the entire graph, R,,,,. 

For example, in Figure 19 the graph 
has two possible parses.13 In both, when 
T2(3, 4, ((3, 4))) is performed, node 5 is in 
neither R3 nor R4. The existence of edge 
(4, 5) implies that there is a Y4 term in 
the equation of Ys. The replacement of that 
Y4 term is delayed until nodes 4 and 5 
are in the same region; this occurs after 
parse element TAl, 5, ((2, 5)(3,5)(4, 5))) is 
performed. Then the current reduced equa- 
tion for Y4 as a linear function of Y1 is 
substituted into the equation for Ys. 

I3 It has a unique interval order (1,2,3,4, 5). 
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Parse A Parse B 

T*(3,4, H3,4)1) T-2(1,2, I(19 2)l) 

T2(1, 2, Hl, 2))) T2(3,4, {(3,4)1) 

TI(3, ((4, 3N TI(3, N4,3N 

T,U, 3, I& 3)(2,3)1) Tz(l, 3, W,3)(2,3)l) 

T*U, 5, I@, 5)(3,5)(4,5)l) TZU, 5, w&5)(3,5)(4, 5)l) 

T,(l, 1(5, l)l) Tl(l, 1(5, Ul) 

Figure lg. Delayed substitutions example. 

Graph 

Figure 20. 

Parse 

1. T,(5,6, l(5,W 

2. T,(5,7, l(5,7)l) 

3. T2(4,5, 1(4,5)l) 

4. T&3,% (@,g)l) 

5. Tz@, 10, W3, WI) 

6. T2(4,6, l(4,W) 

7. T1(4, ((6,4)l) 

6. Td3,4, l(3,4)l) 

9. TI(3, H793)l) 

10. T2(2,3, w, 3))) 

11. TIC4 w, al) 

12. Tz(L 2, 0 2)l) 

13. TlU, IOO, w 

Common factors example. 

The delay in performing out-of-region and 21 illustrate these. Figure 20 shows 
variable substitutions enables the Hecht- the Ullman worst case flow graph for 
Ullman algorithm to avoid recalculating Allen-Cocke interval analysis for n = 10 
common coefficient factors in some reduced (see Figure 15), with a possible parse 
equations. These factors occur because [Ullman 19731. Figure 21 shows the 
common substitution sequences exist in Hecht-Ullman algorithm applied to a 
the system: The example in Figures 20 REACH problem formulated on that 
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Initially: 

Yl = pin Y,oud,, 

Yz = pzn Y,upzn Ysu&r 

Ya = PZ~ Ysupsn YTu&, 

Y, = p,n Y3up,n Ysud,. 
Let di ,... i, = pi,n.. . npiti,nd,Upi,n.. . npiJd;k,U.. . ud,. 

After parse element 7. Y4 E &, Y3 E I&, Y2 E RP, Yl E RI: 
YI, Y2, Y3 same as initially, 

Y~=p4nY3upln(psn(p5nY~ud5)uds)ud,. 

After loop breaking, 

Y, = pdn Ysud,czs 

= an Y,ub. 

After parse element 9. YI E RI, Yz E Rz, Ys, Yd E RB: 
Y,, Y2 same as initially, 

Y3=p3nY2up3n(p,n(~5n(anY,Ub)UdS)Ud7)Ud3. 

After loop breaking, 

Y3 = p3n Y2ud315495, 

= cn Y,ud. 

Y, same as after parse element 7. 

After parse element 11. YI E RI, Y2, Y3, Yd E Rt: 

YI same as initially, 

Y2=p2nY~upzn(p&(psn(anknY2Ud)Ub)Uds)U~)Ud2. 

After loop breaking and simplification, 

Yz = fin Y,udzssr~~5Udms,s5 

= en Y,uf. 

Y3 same as after parse element 9. 

Y,=an(cnYzud)ub. 

After parse element 13. YI, Yz, Y3, Y4 E RI: 
Y~=pln(p~on(p8n(an(cn(enY~uf)Ud)Ub)Uds)Udlo)Udl. 

After loop breaking and simplification, 

Yl =pln(p,on(psn(ancnfuandub)ud8)Ud,o)Udl 

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Yz same as after parse element 11. 

Y3 = cn(enY,uf)ud, 

Y, = an(cn(enYIuf)ud)ub. 

Figure 21. Hecht-Ullman algorithm on REACH problem for Figure 20. 
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flow graph, using equations of the form of 
eq. (4).14 The algebraically simplified, par- 
tially reduced equations for Yi, Yz, Y3, 
and Y4 are displayed at various times 
during the elimination. 

After parse element 7. is performed, the 
reduced equations for (Yi]il=o5 are linear 
functions of Y4. The equation for Y1 is the 
same as it was initially because the substi- 
tution for the YiO term has been delayed. 
Likewise, the equations for Y2 and Y3 are 
the same as initially, with the substitution 
for the Ys and Y7 terms delayed. After parse 
element 9. is performed, Y3, Y4 E R3. The 
Y7 term in the equation for Y3 is replaced 
by the right-hand side of the reduced equa- 
tion for Y4 as a linear function of Y3, 
and a loop-breaking rule is applied. After 
parse element 11. is performed, Y2, Y3, and 
Y4 E Rz. The delayed substitution for the 
Ys term in the equation for Yz is performed 
using, as a subcalculation, the right-hand 
side of the reduced equation for Y4 as a 
linear function of 

Y2: Y4=an(cnY,ud)ub. (9) 

After parse element 13. is performed, all 
variables are contained in RI. The delayed 
substitution for the Y1o term in the equa- 
tion for Y1 is performed using, as a subcal- 
culation, the right-hand side of eq. (9). 
Therefore the equations for Y1 and Y2 share 
a common interregional substitution factor, 
the right-hand side of eq. (9), introduced 
by the variable substitutions for the YiO 
and Ys terms, respectively. 

The control flow paths, 

(234892) (12348101) 
(2345734892) (12345648101) 
(234564892) (123457348101) 

(1234892348101) 

which are substitution sequences in the 
system as well, all share subpath (2 3 4), 
which is an interregional path containing 
three region heads that are back edge tar- 
gets. The variable substitutions along that 

“Because node 1 has a predecessor, node 10, it does 
not satisfy our definition of the source node. Never- 
theless, we can analyze this flow graph by considering 
Y, a boundary variable with an equation of the form 
given in Section 1 plus a term for Y,,. 

subpath resulting in eq. (9) are only calcu- 
lated once by the Hecht-Ullman algorithm. 
The longer the common interregional sub- 
stitution paths, which are shared by two or 
more factors in the system of equations, the 
larger is the savings. 

Efficient use of these delayed common 
calculations requires an appropriate data 
structure. The Hecht-Ullman method 
builds a 2-3 height-balanced calculation 
forest to keep track of the common factors 
[Aho et al. 1976; Ryder 1982b; Ullman 
19731. At the end of the elimination phase, 
one tree contains all the reduced equations 
in factored form. 

For a flow graph for which e is O(n), the 
savings provide a solution with complexity 
O(nlogn) rather than O(n2) as for the Al- 
len-Cocke algorithm. In Section 3.5 the 
Allen-Cocke algorithm is applied to the 
flow graph in Figure 20, and comparison 
shows the calculations saved by the Hecht- 
Ullman algorithm. We also solve this ex- 
ample using Tarjan interval analysis in 
Section 4.5 and Graham-Wegman analysis 
in Section 5.4. 

3.3 Propagation 

The propagation phase of the Hecht- 
Ullman algorithm involves only the back 
substitution of the value of the source node 
variable. By substitution of this solution 
in each reduced equation, the solution for 
every other variable is obtained. 

3.4 Algorithm Statement 

In the first phase of the Hecht-Ullman 
algorithm a parse generation method forms 
a parse of the flow graph, establishing an 
order for the elimination phase substitu- 
tions. At the end of this phase, all equations 
are reduced to linear functions of the source 
node variable. Then the propagation phase 
finds the solution for the source node vari- 
able and uses the reduced equations to solve 
for all other variables in the system. 

3.4.1 Model of Hecht-Ullman T,-T2 
Analysis Algorithm 

Parse Generation 

(i) Find a T1-Tz parse of the flow graph 
(see Figure 18) to establish a substi- 
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tution order for the terms in the sys- 
tem. 

Elimination Phase 

(ii) In parse order for each parse element, 
do 

(iii) (a) If the parse element is TAi, j, Ez), 
then perform any delayed substi- 
tution transformations necessary 
to transform the equation for Yj 
into 

Yj = a n Yi U b, (10) 

where a and b are constants. 
Change any dependence on Yj in 
equations for variables with cor- 
responding nodes in Ri U Rj into a 
dependence on Yi by a sequence 
of substitution transformations 
that substitute the right-hand side 
of eq. (10) for each Yj term. Delay 
this substitution for nodes outside 
Ri U Rj. 

(b) If the parse element is Ti(i, El), 
then perform any delayed substi- 
tution transformations for Yj 

where (j, i) E El. Apply the rele- 
vant loop-breaking rule (see Sec- 
tion 1) to eliminate Yi from the 
right-hand side of the current 
reduced equation for Yi. 

Propagation Phase 

(iv) Determine the solution of Y,,,,,. Sub- 

3.5 

stitute the value of YWW, into each 
reduced equation to obtain a solution. 

Comparison with Allen-Cocke 
Interval Analysis 

The complexity distinction between the 
Allen-Cocke and Hecht-Ullman algo- 
rithms arises because the latter finds com- 
mon factors in the reduced equations that 
elude the former. Figure 22 illustrates the 
common factors for which multiple calcu- 
lations are saved by the Hecht-Ullman 
computation; it shows Allen-Cocke inter- 
val analysis applied to the example of Fig- 

ure 20, highlighting the equations for Yi, 
Yz, Y3, and Y4 in the sequence of systems.15 
We use the same names for the constants 
wherever possible in Figures 21 and 22 for 
ease of comparison. In calculating the re- 
duced equations of interval head nodes in 
G1, the Y,, term in the equation for Y1 is 
replaced by a linear function of Y4, defined 
by the right-hand side of the ‘reduced equa- 
tion of YiO since 10 E 1,. Similarly, the Ys 
and Y7 terms in the equations for Yz and 
Y3 are replaced by linear functions of Y4. 
Substitution for the Ys term in the equation 
of Y4 triggers application of a loop-breaking 
rule, resulting in the Y4 equation in G2 
shown in Figure 22. In obtaining reduced 
equations in G2, the Y4 terms in the equa- 
tions for Yi , Yz, and Y3 are each replaced 
by a linear function of Y3 derived from the 
reduced equation for Y4 as a linear function 
of Y3. A loop-breaking rule is applied to the 
equation of Y3 to obtain the reduced equa- 
tion of Y3 as a linear function of Y2. In the 
reduced equation derivation in G3, the two 
Y3 terms in the equations for Yi and Y2 are 
each replaced by a linear function of Y2. 
By using a loop-breaking rule, we obtain 
the reduced equation of Y2 as a linear fimc- 
tion of Y1. Finally, in G4 the Y2 term in 
the equation of Y1 is replaced by a linear 
function of Y1. After loop-breaking and 
simplification we will have calculated the 
source node reduced equation. 

The substitutions represented by the 
right-hand side of eq. (9) in Section 3.2, 
performed in the derivation of reduced 
equations, are duplicate work, indicating 
the possibility of savings due to common 
factors. Essentially, the Hecht-Ullman 
method perceives the I4 C 13 C I2 reduction 
and calculates the substitutions associated 
with it only once. The more interinterval 
paths that occur in the flow graph, the more 
common substitution sequences there may 
be. For example, in a heavily nested loop 
structure with many back edges to outer 
loops, there may be many common factors. 

I5 For ease of comparison, we assume that equations 
of the form of eq. (4) are used by the Allen-Cocke 
algorithm, rather than equations of the form of 
eq. (3). 
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1 
2 

1 
3 

1 
4 

il 

I 

Letdi ,... ir=pi,n...np,,nd,Upi,n...np,,nd,,u.-.udi,. 

Equations in G 5 

Yl = pin YdJdl, 

Yz =pznY,UpznYsUdz, 

Ya = p3nyzup3n y7ud3, 

Y, = p,n Y3up,n Y,ud,. 

Equations in G’: 

Yl =pln(plon(psnY,Uds)Udlo)Udl, 

Y2 =p2nYlupzn(psn(p&Y,Uds)Uds)Ud2, 

Y3 = pan Y,up,n(pn(p5n Y,uds)ud7)ud3, 

Y, = p,n Y3up,n(p6n(p5n Y,u&)u&)Ud,. 

After loop breaking, 

Y, = p,n Y,u&, 

= anY3ub. 

Equations in G3: 

YI =pln(plon(p8n(anY,ub)Uds)Udlo)Udl, 

Y2 =p,nY,up2n(p&(psn(anY3Ub)Ud8)udg)Ud2, 

Y3=p3nY2up3n(prn(p5n(anY3ub)Ud5)Ud7)Ud3. 

After loop breaking and simplification, 

Ys = pzn Yzudm,os 

= cn Y2Ud. 

Equations in G’: 

YI =pln(plon(psn(on(cnY,ud)ub)Uds)Udto)Udl, 

Y? =pznYIup2n(psn(psn(on(cnY,Ud)Ub)Uds)Ud9)Udz. 

After loop breaking and simplification, 

Y2 = pzn Yl~d298,375~d298,65 

= en Y,Uf. 

Equations in G5: 

YI =pln(plon(psn(on(cn(enY,uf)ud)Ub)Ud,)Ud,,)Ud,. 

After loop breaking and simplification, 

YI = pln(plon(psn(ancnfuandub)Uds)Udlo)Udl 

Figure 22. Allen-Cocke algorithm on REACH problem for Figure 20. 
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4. TARJAN INTERVAL ANALYSIS 

In this section we present our model of 
Tarjan interval analysis, which we contrast 
with Allen-Cocke interval analysis and 
Hecht-Ullman Tl-T2 analysis. The node 
order for variable substitutions in Tarjan 
interval analysis is similar to that of the 
Allen-Cocke algorithm; however, the defi- 
nition of a Tarjan interval as a single-entry, 
strongly connected subgraph [Reingold et 
al. 19771 of the dependency graph of the 
original system of equations is more restric- 
tive than the definition of an Allen-Cocke 
interval and more closely models the loop 
structure of the underlying flow graph 
[Tarjan 19741. The key elements of the 
Tarjan algorithm are the order of variable 
substitution and the judicious delay of cer- 
tain substitutions until a time when com- 
mon factors can be detected, calculated 
once, and used. 

Tarjan interval analysis consists of three 
phases: interval finding, elimination, and 
propagation. For clarity we explain these 
as distinct, although the first two can be 
intermingled. Interval finding defines a 
node order, reduction order, closely con- 
nected to the depth-first spanning tree con- 
struction. Variable elimination occurs in 
each interval according to the reduction 
order. Some substitutions are delayed, as 
in the Hecht-Ullman algorithm, enabling 
the Tarjan algorithm to take advantage of 
common substitution sequences in the 
equations. The propagation phase performs 
back-substitutions of known solutions 
into reduced equations of variables depen- 
dent on them. Tarjan interval analysis is 
applied to programs with reducible flow 
graphs; once again, this is not a restriction 
in practice. 

We first present the node order used by 
Tarjan interval analysis to order the vari- 
able substitutions during elimination. We 
then consider the elimination phase, defin- 
ing the T3 graph transformation and its 
corresponding equation manipulations. 
Several examples illustrate how the Tarjan 
algorithm achieves the same delayed cal- 
culation savings as the Hecht-Ullman al- 
gorithm. We next discuss the propagation 
phase of the algorithm. The Tarjan interval 

analysis algorithm is stated formally, and 
finally the three algorithms modeled so far 
are compared. 

4.1 Reduction Order and Finding Intervals 

Tarjan interval analysis assumes a data 
flow problem described by a system of equa- 
tions of the form of eq. (3) with an associ- 
ated dependency graph. Like the Allen- 
Cocke algorithm, the Tarjan algorithm uses 
subgraphs of the dependency graph called 
intervals to direct its elimination phase. 
An interval here is a single-entry, strongly 
connected subgraph, differing from an 
Allen-Cocke interval, which need not even 
contain a cycle; the Tarjan interval more 
closely reflects the loop structure of the 
flow graph. The term “interval” in this 
section refers to Tarjan intervals unless 
otherwise indicated. I,, represents the inter- 
val headed by h. If n E I,,, then the reduced 
equation calculated for X,, is a linear func- 
tion of Xh. By definition the source node 
is the interval head node of the outer- 
most interval, which need not be strongly 
connected. 

In calculating intervals, Tarjan interval 
analysis defines a linear order on the nodes 
called a reduction order. Reduction order 
determines the order in which reduced 
equations are calculated in an interval as 
well as the relative order among the inter- 
vals themselves. The determination of a 
reduction order for a reducible flow graph 
is fairly straightforward using a depth-first 
spanning tree (DFST) [Schwartz and 
Sharir 1978; Tarjan 1972,1974]. 

We first form a DFST on the flow graph 
G, rooted at the source node of G, and 
number the nodes by a preorder traversal. 
We obtain the set of all back edges in G; 
back edge targets become interval head 
nodes. For each back edge target x in re- 
verse preorder, we then repeat the following 
procedure. We calculate the set reachun- 
der(x), where a node n is a member of this 
set if there is a simple path from n to x for 
which the final edge is a back edge 
[Schwartz and Sharir 19781. Reachunder 
U (x) is the interval I,. All the nodes in 1, 
are removed from G and represented by 
node x in a newly derived flow graph. We 
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set HIGHPT(y) = x for all nodes y in 
reachunder and continue to form 
reachunder sets using the newly derived 
graph. If the original flow graph is reduci- 
ble, the graph transformation process re- 
sults in a final graph consisting of one 
interval, Isource. This final interval contains 
all nodes that are not within any strongly 
connected subgraph of the flow graph, and 
some nodes representing intervals not 
nested within any other intervals. 

After all the intervals are calculated, we 
number the nodes according to an ancestor- 
first, rightmost-first traversal of the DFST, 
calling this numbering SNUMBER. If 
(y, u) is a tree or cross edge, then 
SNUMBER(y) < SNUMBER(u). We 
associate the tuple 

WIGHPT(y), SNUMBER(y)) = (YI,Y~), 

with every node y, sorting the tuples so that 
x precedes y in reduction order if and only 
if xi > y1 or x1 = y1 and x2 < y2.16 From the 
derivation we see that each DFST has a 
unique associated reduction order. 

Nodes within the same interval occur as 
contiguous subsequences in the reduction 
order, since all HIGHPT values within an 
interval are its interval head node. There- 
fore, if reduced equations in the system are 
calculated in reduction order, all the equa- 
tions in one interval are reduced before any 
equations in the next interval. Reduction 
order is an ancestor-first order on each 
interval; this is similar to Allen-Cocke 
interval order. When the equation for 
X,,, n E I,,, is reduced to a linear function 
of X,,, this ancestor-first property ensures 
that every term on the right-hand side of 
the equation for X,, already has a reduced 
equation that is a linear function of Xh. 

The selection criterion on HIGHPT en- 
sures that the equations for variables in 
inner, nested intervals are reduced before 
the equations for variables in outer, syn- 
tactically surrounding intervals, another 
property shared with Allen-Cocke interval 
analysis. Nestings of intervals can be traced 

I6 An exception is that the source node always is last 
in reduction order. The sort is performed by an O(n) 
radix sort [Knuth 1968, Tajan 19741. 

Figure 23. Example of SNUMBER values. 

by following reverse sequences of HIGHPT 
values corresponding to interval head 
nodes. For example, if 3c E Ih c 14, then 
(HIGHPT(x) = h, HIGHPT(h) = q}. The 
HIGHPT function yields loop-nesting 
information for the program represented 
by the flow graph, since Tarjan intervals 
directly correspond to loops. 

We can show that SNUMBER values 
for nodes within the same interval guaran- 
tee that if there is a path from y to v of 
tree and/or cross edges in the DFST, then 
y > u in reduction order, substantiating 
our claim that reduction order within an 
interval is an ancestor-first order. If only 
tree edges appear on the path, finite induc- 
tion on the definition of SNUMBER yields 
this result. Figure 23 illustrates the case 
in which tree and cross edges are in- 
volved, here u, y E I,,, and there is a path 
of tree edges from y to x represented by a 
solid line and one cross edge from x to v 
represented by a dotted line. By finite in- 
duction on the definition of SNUMBER, 
we have SNUMBER( y) < SNUMBER(x). 
Also, SNUMBER is defined as a right- 
most-first order on the DFST, and so 
SNUMBER(x) < SNUMBER(u). There- 
fore SNUMBER( y) < SNUMBER(u). 

These reduction-order and interval-find- 
ing calculations can be accomplished in 
time bounded by O(ea(e, n)), where cr(e, n) 
is related to the inverse of Ackermann’s 
function and cr(e, n) I 3 virtually always 
[Schwartz and Sharir 1978; Tarjan 1981a]. 
For a flow graph where e is O(n) this re- 
duces to O(na(n)). Schwartz and Sharir 
[1978] give a SETL procedure for optimiz- 
ing of the reduction-order calculation. A 
simpler O(n log n) algorithm for computing 
the Tarjan intervals of a flow graph is also 
available, using path compressed trees 
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Node HIGHPT(node) SNUMBER(node) Intervals 

1 0 1 4 = (1, {2,3,4, (9, 10, 121, (596981, 71,111 
2 0 2 Zz = (2, 394, 19, 10,12l, 1596,819 71 
3 2 3 
4 2 8 
5 2 9 1s = kX6,8l 
6 5 10 
7 2 12 
8 5 11 
9 2 4 19 = 19, 10, 12) 

10 9 5 
11 0 7 
12 9 6 

Reduction order: (10, 12, 6, 8, 3, 9, 4, 5, 7, 2, 11, 1) 

Figure 24. Example of Tajan interval-finding algorithm. 

rather than the balanced, path compressed 
trees needed to achieve the almost linear 
bound [Tarjan 19791. It is the implemen- 
tation suggested by Tarjan [1981a] for 
practical use. 

Figure 24 shows a reduction-order cal- 
culation. In the flow graph, the DFST edges 
are solid lines, the back edges are dashed 
lines, and the cross edge appears as a dotted 
line. The table lists the HIGHPT and 
SNUMBER values for the nodes, the set of 
intervals on the flow graph with their nodes 
listed in interval order, and the reduction 
order for this DFST. The appearance of 
{9, 10, 12) in Iz indicates that when I9 is 
collapsed to node 9, that node is an internal 
interval node in 12. 

4.2 T3 Transformations and Elimination 

We now discuss how the reduction order 
defined here directs variable substitution 
during elimination, as do the interval order 
in the Allen-Cocke algorithm and the parse 
in the Hecht-Ullman algorithm. The basic 
elimination step of Tarjan interval analysis 
is the application of a T3 transformation, 
which corresponds to the calculation of the 
reduced equation of a variable as a linear 
function of its interval head variable. 

A T3 transformation is the composite of 
a Tl and a T2 transformation; that is, T3 = 
T2 . Tl (see Section 3.2). Figure 25 illus- 
trates the transformation T3(u, w, El, I&). 
Edge (u, w) in the partially collapsed flow 
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u. u 

A3 A 
V W V Y 

1 

Y 

Figure 25. T&J, w, El, I&) = T&, UJ, &J . TI(w, EJ. 

graph represents a set of original flow graph 
edges E2. Likewise, edge (w, w) represents 
a set of original flow graph edges El. The 
graphical interpretation of the T~(u, w, El, 
E2) transformation is the merger of node w 
into I, (represented in the partially col- 
lapsed flow graph by u). 

The equation manipulations correspond- 
ing to the T3 transformation in Figure 25 
first apply a loop-breaking rule to eliminate 
any self-dependency in the equation for X, 
and then apply a sequence of substitution 
transformations to eliminate the variable 
X,,, from the current system of partially 
reduced equations. The former occurs only 
when w itself is an interval head node; the 
latter is accomplished by substitution of 
the right-hand side of the reduced equation 
for X,, 

X, = a fl X, U b, 

where a and b are constants, for any occur- 
rence of X, in the system of equations. 

Figure 26 presents the Tarjan algorithm 
elimination phase. The variables have T3 
transformations applied to them in reduc- 
tion order within each interval. Nested 
intervals are processed in reduction 
order, from innermost to outermost. The 
final Ti(source, E1) transformation in 
Figure 26 handles those flow graphs for 
which the source node is the outermost 
loop head.17 

The actual calculations in Tarjan inter- 
val analysis are performed somewhat dif- 
ferently than in our interpretation. When 
Ta(u, w, El, E2) is performed, the substi- 
tution of a linear function of X, for an X, 
term is accomplished only in the equations 
of those variables that precede X, in the 

I7 These graphs violate our definition of source node, 
but they can be accommodated. 

reduction order. For other dependencies on 
X, the variable substitution is delayed, 
much as in the Hecht-Ullman algorithm. 
The delayed substitution takes place when 
the reduced equation for the variable 
dependent on X, is calculated. 

For example, if there is a back edge 
(w, u) in the flow graph such that w E 
I,!G **- G I”, then (w, u) will be in the E1 
set of the T3 transformation of u. The sub- 
stitution for the X, term in the equation 
for X, will not occur when a T3 transfor- 
mation is applied to w; it will be delayed 
until the reduced equation for X, is calcu- 
lated. The actual substitution will occur 
in step (iiia) of the Tarjan algorithm in 
Section 4.4. At the time the delayed substi- 
tution is performed, the current reduced 
equation for X, is a linear function of X,. 
It is possible that other delayed substitu- 
tions involve the same interinterval control 
flow paths on the flow graph from v to u 
or subpaths of these. These common sub- 
paths correspond to the common inter- 
regional paths referred to in Section 3.2. 

4.3 Propagation 

The propagation phase of Tarjan interval 
analysis is fairly straightforward and simi- 
lar to that of the Allen-Cocke algorithm. 
The initial conditions of the data flow prob- 
lem expressed in the original equation for 
X source enable us to solve the reduced equa- 
tion for X,,,,,. This solution is substituted 
into the reduced equations of all variables 
dependent on X,,,,,. Some of these vari- 
ables are interval head variables. Solutions 
for variables in an interval are obtained by 
substituting the interval head variable 
solution into the reduced equations of 
variables in that interval. This process 
continues until all solutions are obtained. 

4.4 Algorithm Statement 

Tarjan interval analysis consists of the 
same three phases as Allen-Cocke interval 
analysis: interval finding, elimination, and 
propagation. Interval finding requires the 
establishment of a reduction order on 
the flow graph using a DFST (see Section 
4.1). The elimination phase performs 
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/* H is queue of interval head nodes, ordered in reduction order */ 
while H # null do 

Destructively select first element from H, h; 
for a reduction order pass through all nodes n in Ih do 

Apply T3(h, n, El, G): 
endfor; 

endwhile ; 
Apply T, (source, E,) if necessary; 

Figure 26. Reduction order variable substitution. 

coefficient/constant substitutions in the 
equations in reduction order, within inter- 
vals that themselves are ordered in reduc- 
tion order. At the end of elimination, the 
reduced equation for each variable X,, is 
a linear function of an interval head vari- 
ableXh,wherenEIP,C . . . CI,,,G&for 
k L 0. The propagation phase obtains the 
solution for the source variable and per- 
forms back substitutions in the reduced 
equations. 

(c) By a sequence of substitution 
transformations, substitute the 
right-hand side of eq. (11) for an 
X,, term wherever necessary, 
changing any dependence on X,, to 
a dependence on X,,, for the equa- 
tions of nodes that precede n in 
reduction order. Delay all other 
substitutions for X,. 

4.4.1 Model of Tarjan Interval Analysis 
Algorithm 

Interval Finding 

Propagation Phase 

(iv) Determine the solution of X,,,,,. 
(Note: If X,,,,, is in a loop, apply a 
loop-breaking rule to the reduced 
equation for X,,,,,.) Let S = (X,,,,). 

Iterate until all solutions are obtained: (i) Using a DFST construction, find a (v) 
reduction order and the intervals of 
the flow graph (see Section 4.1). 

Elimination Phase 

(ii) In reduction order, for each interval 
1, and each n E I,, perform T&n, n, 
EI, Ed: 

(iii) (a) For each edge (z, n) E El apply a 
substitution transformation, re- 
placing the X, term in the equa- 
tion for X,, by the right-hand side 
of the reduced equation for X,. 
Apply the relevant loop-breaking 
rule (see Section 1). 

(b) For each edge (w, n) E E2 apply a 
substitution transformation re- 
placing the X, term in the equa- 
tion for X, by the right-hand side 
of the reduced equation for X,. 
The reduced equation for X,, 

X,=anX,ub (11) 

is obtained for constants a and b. 

For each unsolved variable X, for 
which the reduced equation is a linear 
function of Xk E S, substitute the value 
of the solution of Xk into that equa- 
tion, obtaining the value of X,,. Add 
x, to s. 

4.5 Comparison with the Allen-Cocke 
and Hecht-Ullman Algorithms 

In this section we compare the definitions 
of intervals used in the Allen-Cocke and 
Tarjan algorithms, using an interval de- 
pendency tree or id-tree to illustrate the 
source of common substitution factors used 
by the Tarjan and Hecht-Ullman algo- 
rithms. We then show the solution of the 
REACH example of Figure 20 by the Tar- 
jan algorithm and comment on the data 
structures used by the Tarjan and the 
Hecht-Ullman algorithms to remember 
common factors. 

Figure 27 illustrates some differences be- 
tween Tarjan and Allen-Cocke intervals, 
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Tarjan intervals: 

4 = (6, 71, 

13 = 13, 41, 

42 = (2, 13, 411, 

4 = 11, 12, (3, 411, (6, 71, 51. 

Reduction order: (7,4,3,6,2,5, 1) 

Allen-Cocke intervals: 

G’ G2 G3 G’ 

11 = Ill Z, = {l, 61 Zl = (1,2,5) Zl = (1) 
12 = 64 12 = 12,31 
16 = 151 Is = I51 
13 = 13941 
1s = IS,71 

Figure 27. Comparison of Tajan and Allen-Cocke 
intervals. 

defined on the same flow graph. Again 
DFST edges are solid lines, back edges are 
dashed lines, and cross edges are dotted 
lines. Since Tarjan intervals correspond 
to the loop structure of the flow graph, 
nested loops in Figure 27 appear as explicit 
nested intervals. For example, loop 3 
is nested within loop 2, which is nested 
within loop 1, and HIGHPT(3) = 2, 
HIGHPT(2) = 1. The same information is 
found by the Allen-Cocke algorithm, but it 
must be determined by examination of the 
derived sequence, and so it is less explicit. 

In both algorithms the set of interval 
head nodes of a reducible flow graph is 
unique, depending only on the underlying 
flow graph, not on its representation. We 
showed this for Allen-Cocke intervals in 

Section 2.1; for Tarjan intervals it follows 
since 

(1) a flow graph is reducible if and only if 
it has a unique decomposition into a 
set of back edges plus a directed acyclic 
graph (DAG) [Hecht 19771, and 

(2) the set of back edges of a reducible flow 
graph is the set of backward arcs of any 
DFST on that flow graph [Hecht 19771. 

Both an interval order and a reduction 
order of nodes impose an ancestor-first or- 
der within an interval; each is nonunique. 
An interval order partially depends on the 
order of the edges in the representation of 
the flow graph. A reduction order depends 
on the DFST constructed starting at the 
source node, which is similarly dependent 
on the graph representation. 

To further illustrate the common substi- 
tution sequences found by the Tarjan al- 
gorithm, we define an interval dependency 
tree or id-tree to be a directed tree rooted 
in the source node, with nodes that are the 
nodes of the flow graph and edges that 
reflect the interval structure of the flow 
graph. A directed edge (h, y) in the id-tree 
signifies that h is an interval head node in 
the flow graph and y E Ih. Clearly, the id- 
tree for a reducible flow graph is unique 
because the set of interval head nodes of 
the flow graph is unique. All internal nodes 
in the tree are interval head nodes. 

Each node y in the id-tree has associated 
with it the reduced equation for X, as a 
linear function of Xh for h the parent of y 
in the id-tree. A path (pl . - - pk) in the id- 
tree represents a set of interinterval paths 
in the dependency graph. It follows from 
the association of a reduced equation with 
each node in the id-tree that such paths 
represent variable substitution sequences 
in the system of equations for the data flow 
problem. If we traverse the reverse id-tree 
path (pk - -. pl), successively substituting 
the right-hand side of the reduced equation 
for X,,, for the X,,, term in the equation 
for Xpi for i = k, k - 1, . . . , 3, we obtain 
an equation for X,, as a linear function 
of X,,. If subpaths are common to two or 
more equation calculations, Tarjan interval 
analysis will accrue savings over the 
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1 

0 
2 

15 
3 

15 
4 

A 
5 2 7 

1 1 1 
6 3 8 

1 
4 

Figure 28. Flow graph and its id-tree. 

straightforward Allen-Cocke approach by 
identifying these common factors and 
using delayed substitutions to take advan- 
tage of them. 

Our first example of common substitu- 
tion factors involves two transfers out of a 
nested loop as shown in Figure 28. Edges 
(4, 5) and (4, 7) appear in the T3 trans- 
formations that add nodes 5 and 7 respec- 
tively to interval I1. The interinterval path 
(1 2 3) in the id-tree is shared by both 
reduced equation calculations, as X4 ap- 
pears in the equation for X5 and XT. Again, 
the substitution path in the flow graph is 
represented by the identical path (12 3) in 
the id-tree. In the Tarjan algorithm, the 
reduced equation for X, as a linear function 
of X1 is calculated once and used in a de- 
layed substitution in both the X5 and XT 
equations. In Allen-Cocke interval analysis 
the X4 term in the equations for X5 and X7 
would be transformed in turn into a term 
in X3, X2, and X1 by explicit successive 
substitutions in each equation separately. 

In our second example we assume there 
are back edges in the flow graph that share 
variable substitution subpaths. Figure 29 
shows Ullman’s worst case graph for Allen- 
Cocke interval analysis for the case of n = 
10 (see Figure 20) and its id-tree [Ullman 
19731. The data flow effect of back edge 
(9, 2) is calculated when TJl, 2, ((9, 2)}, 
((1, 2))) is performed. A corresponding 
substitution path in the flow graph is (2 3 
4 8 9 2). Likewise, the data flow effect of 

1 

l\ 
2 10 

llhA 
3 89 

l\ 
4 7 

11 
5 6 

Figure 29. Graph from Figure 20 and its interval 
dependency tree. 

(10, 1) is calculated when Tl( 1, ((10, 1))) is 
performed; the corresponding substitution 
pathintheflowgraphis(12348101).‘8 
These two calculations share interinterval 
subpath (2 3 4) in the id-tree. By coinci- 
dence, (2 3 4) in the id-tree represents the 
same path (2 3 4) in the flow graph. Thus, 
if the coefficient/constant substitutions 
that obtain X, as a linear function of X2 
are performed once, they can be used in 
two different variable substitutions: for the 
X, term in the reduced equation for X2 
and for the Xi0 term in the reduced equa- 
tion for X1. Figure 30 shows the simpli- 
tied reduced equations calculated at 
each step of the Tarjan algorithm. After 
T3(2, 8, ((4, 8))) the shared computation 
of X, as a linear function of X2 is calculated. 
In Section 4.5 we applied the Allen-Cocke 
algorithm to this example; comparison will 
show the duplicate variable substitutions 
avoided. 

Both the Tarjan and Hecht-Ullman al- 
gorithms use an auxiliary data structure, a 
tree, to store the common-factors infor- 
mation. The Tarjan path-compressed tree, 
with nodes that store the partially reduced 
equations of the corresponding variables, is 
easier to understand and implement than 
the height-balanced 2-3 tree of the Hecht- 

la Recall from Fig. 26 that this final TI transformation 
must be applied when the source node is in a loop in 
the flow graph. 
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Reduction order (5, 6,4, ‘7, 3, 8, 9, 2, 10, 1). After 2’3(3,4, ((6,4)), ((3,4)1): 

Intervals: 
X, =panX3udsUds5,. 

h = IL 12, (3, 14, 5, 61, 71, 6, 91, 1% After 7’3(3, 7,) ((5, 711): 

Zz = (2, (3, (4, 5, 61, 71, 6, 91, X, = p,anXaud,sud,m, 

13 = (3, (4, 5, 61, 71, x7 = pr,,~nX~udmudm. 

1, = (4, 5, 6). After T3(2, 3, ((7, 3)), ((2, 3))): 

Initially: x, =pznX*Ud2Ud,5,3Ud?s,~. 

X, = plonXloudlo, After 7’3(2, S,, ((4,S))): 

x2 =p,nx,u~~nxd~d~uds, x, = paznX2ud32ud3?6,Udss,, 

X3 = p2nX2UpYnX,UdzUd7, xs = p,32nXzud,32Ud,3~5Ud,a~. 

X, = p,nXsUp,nXsUdsUda, After T&9,, ((8, 91): 

x5 = p,nx,ud,, x9 =ps,32nX*Uds,32Uda,37~Ud~,6s. 

Xg = X, = p,nXsUda, After 7’3(1, 2, ((9, 2)), ((1, 2))): 
x8 = p,nX,ud,, X, =p,nX,ud,udss,32udss,~~~Ud~s,~~. 

X9 = Xxi, = psnX8Uds. 
After !I’&, lo,, ((8, 10))): 

Let di ,... ir = pi,n.. . npic,nd;*U 

pi,n.. . nptc2ndi,,U.. . Udi,, 

pi ,... ih = pi,n . . . npih. 

x8 = p,3zlnX,Ud,32,Ud,3t6Ud,~~Ud,~~~~, 

xl0 = p8,321 nX1Uds,321Uds,37aUds,~~Ud~,3~9. 

After Ti(1, ((10, I))): 

After 7’a(4,5,, ((4, 5))), no change in equations. 
Xl = d,osraz1ud,084375ud108465ud1o8,329. 

After T,(4, 6, ,((4,6)1): 

X6 =p5,nX,ud5,. 

Figure 30. Tarjan interval analysis on REACH problem for Figure 20. 

Ullman algorithm, which encodes the fac- 
tored reduced equations as edge labels in 
the tree. 

5. GRAHAM-WEGMAN ANALYSIS 

The Graham-Wegman algorithm is very 
similar to the Hecht-Ullman and Tarjan 
techniques. The groupings of the variables 
used by the Graham-Wegman algorithm 
are called S-sets. The elimination process 
is described using graph transformations 
similar to those of the Hecht-Ullman al- 
gorithm. The Graham-Wegman algorithm 
substitutes for each term in the system 
individually as in the Hecht-Ullman algo- 
rithm rather than substituting for the 

entire right-hand side of an equation at 
once as in the Allen-Cocke algorithm. The 
specified substitution order for terms 
in the equations results in common substi- 
tution sequences only being performed 
once. This algorithm makes explicit the 
delay in substitutions utilized in the Tarjan 
and Hecht-Ullman algorithms. A trans- 
formed version of the original flow graph is 
used to remember substitution sequences. 

We start by discussing the S-sets and 
the node order that governs substitution in 
the equations, and we describe the graph 
transformations (&, &,, &), their graph- 
ical interpretations, and the corresponding 
equation manipulations. We present the 
formal algorithm and compare it with the 
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other three. An example is given to illus- 
trate the Graham-Wegman algorithm in 
Figure 20. 

5.1 S-Sets and S,, S2, SB Transformations 

The Graham-Wegman algorithm assumes 
that a data flow problem is defined by a 
system of equations of the form of eq. (3) 
and defines a node numbering num on the 
dependency graph of the system of equa- 
tions using a depth-first spanning tree (i.e., 
DFST). The order guarantees that for any 
edge (x, y), num(x) > num( y) if it is a back 
arc in the flow graph; otherwise, num(x) < 
num(y). In deriving this node order, the 
algorithm partitions the variables into non- 
disjoint sets called S-sets. Back arc target 
nodes are S-set entry nodes. The S-set 
headed by node h is defined by starting at 
h and following, in their reverse direction, 
paths in the flow graph that end in a back 
arc to h. S-sets are analogous to Tarjan 
intervals; they are strongly connected re- 
gions of the flow graph. However, not all 
nodes in an S-set are collapsed into the 
S-set entry node as they are in Tarjan 
interval analysis; nodes in the S-set that 
still have corresponding terms in the 
system of equations after the S-set is pro- 
cessed remain in the derived flow graph. 
Thus the Graham-Wegman algorithm 
makes explicit the delayed substitutions 
in the system of equations. 

Substitutions for terms in the equations 
occur as follows. S-sets are considered in 
reverse num order of their entry nodes, 
ensuring that inner loops are processed be- 
fore outer loops. Within an S-set, variables 
are processed in num order, and so when a 
variable is processed, it always has a unique 
parent variable in the S-set. 

When a variable X,, is processed, a loop- 
breaking rule is applied to the equation for 
X,,, and a sequence of substitution trans- 
formations is applied to the equations of its 
descendants in the S-set. Descendants that 
are not in the same S-set as X,, represent 
delayed substitutions. Therefore, unlike 
Tarjan intervals, S-sets are not collapsed 
to one variable after being processed, since 
there still may be dependencies on variables 
in the S-set in the system of equations. 

Only when all dependence on a variable is 
removed from the system of equations is 
that variable also removed. The final re- 
duced equation of a variable is a linear 
function of the entry variable of the outer- 
most S-set containing that variable (see 
Section 5.4). 

The substitutions of the Graham- 
Wegman algorithm are described in terms 
of (Si, Sz, &J, the three graph trans- 
formations described below. As in the 
Hecht-Ullman algorithm, each transfor- 
mation has a corresponding sequence of 
equation manipulations. Transformations 
Si and Sz are applied to the flow graph until 
a final flow graph is obtained, whereas 
transformation SB is a technical device nec- 
essary to collapse the outermost S-set of 
the flow graph if the source node does not 
lie on a cycle. When the original flow graph 
is reducible, 5’3 results in a final graph of 
one node [Wegman 19811. All three trans- 
formations can only be applied to a node 
with a unique parent. They are illustrated 
in Figure 31. 

Si and Sz are closely related to Tl and 
T2, respectively, of the Hecht-Ullman al- 
gorithm. S1 and Tl are approximately 
equivalent; Tl does not require a unique 
parent node for its application. A set of 
k Sz transformations are the equivalent 
of a Tz transformation on a node with k 
descendants in the same S-set. SJu, v, w, 
(v, w)) does not eliminate X, from the sys- 
tem of equations (see Figure 31); however, 
the sequence &(u, v, w, (v, w)), &(u, v, x, 
(v, x)), &(u, v, y, (v, y)) will accomplish this 
when applied to S-set (u, v, w, x, y). Thus 
only when the node in the Sz transfor- 
mation has a unique descendant will that 
variable be eliminated from the system 
of equations by the Sz transformation. Ss 
is a degenerate Sp transformation, which 
eliminates a node without descendants, 
that is, a variable that does not appear in 
a right-hand side of any equation in the 
system. 

The similarities between (&, &, SJ and 
(Tl, T2) carry over to their interpretation 
as equation manipulations. The S1 trans- 
formation is a loop-breaking rule as was 
the Tl transformation (see Section 3.2). 
&(u, v, (v, v)) removes the self-dependence 
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Figure31. Graham-Wegman &, Sz, S3 transformations: (a) &(u, v, (v, v)). (b) &(u, v, w, (v, w)). 
(c) Wu, v, z, (u, ~1). (d) S,, (u, v, (u, u)). 

on X, from the equation for X,; that is, 

X,=anX,ubnX,uc 

becomes 

obtain their corresponding solutions, and 
iterate this process until solutions for all 
variables are obtained. 

X, = a n X, u C. 5.3 Algorithm Statement 

The &(u, u, w, (IJ, w)) transformation is 
a substitution transformation that corre- 
sponds to substitution of the right-hand 
side of the equation for X, into the equation 
of X,; that is, if 

then 

X, = a n X, U C, 

x, = enX,ud 

becomes 

X,=enanX,uencud, 

Graham-Wegman analysis consists of 
three phases: S-set finding, elimination, 
and propagation. Forming S-sets and es- 
tablishing a num node order require the use 
of a DFST (see Section 5.1). The elimina- 
tion phase performs coefficient/constant 
substitutions in the equations of variables 
in num order within S-sets considered in 
reverse num order of their entry variables. 
The propagation phase obtains a solu- 
tion for the source variable and performs 
the back substitutions in the reduced 
equations. 

removing dependence on X, from the equa- 
tion for X,. If XV appears only in the X, 
equation (i.e., u has only one descendant 
node w), then this transformation removes 
X, from the system of equations. 

5.2 Propagation 

The propagation phase of this algorithm 
resembles that of Tarjan interval analysis. 
We obtain a solution for the final S-set 
entry variable, substitute this solution into 
all reduced equations dependent upon it, 

The Graham-Wegman algorithm can 
be transformed to handle irreducible de- 
pendency graphs also. The irreducibility 
is discernible during S-set construction 
[Wegman 19811. If we encounter a node x 
such that num(x) c num(h) while we are 
performing a reverse traversal of all paths 
ending in a back arc to h, then we know we 
have a multiple entry loop by the properties 
of num, and therefore an irreducible de- 
pendency graph [Hecht 19771. This situa- 
tion can be handled by generalizing 
the definition of S-set to allow multiple 
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Figure 32. Graham-Wegmen G&, G&, GS, transformations. (a) GS,(P, v, (v, v)), P = (y w). 
(b) GSAP, v, v, (v, v)). P = lu, ~1. GSAP, v, 2, (v, d), p = b, 4. (4 GE&P, v, (u, VI), p = b, 4. 

entry regions and the transformations 
(Si, Sp, SgJ to (GS,, G&, G&j, which han- 
dle nodes with multiple parents. 

To form the generalized S-sets, we use 
the constructive definition of S-sets given 
in Section 5.1. During a reverse traversal 
of all paths ending in a back arc to h, if a 
node x such that num(x) < num(h) is en- 
countered, x is simply not added into the 
S-set being constructed. If the node imme- 
diately preceding x on the reverse traversal 
is z, then during elimination, when node z 
is processed, it will have two parent nodes, 
one within the S-set and one not. We must 
use the generalized transformations shown 
in Figure 32, to accommodate the pos- 
sibility of multiple parents for S-set 
nodes. The meaning of transformations 
(GSi, GS2, G&j in terms of the corre- 
sponding equation manipulations is similar 
to that of (Si, Sz, SSJ (see Section 5.1). 

Application of G&(P, U, (u, u)) is a loop- 
breaking rule for the equation for X,. Thus, 
using the nodes in Figure 32, 

X,=anX,UbnX,ucnX,ud 

becomes 

X, = b n X, u c n X, u d. 

GSAP, u, r, (v, r)) is a substitution trans- 
formation that corresponds to the substi- 
tution of the right-hand side of the equation 

for X,, which is a linear function of the 
(X,), p E P, for the X, term in the equation 
of X,. That is, if 

X, = a n X, u b n X, u C, 

then 

X,=eflX,ud 

becomes 

X, = (e n a n X,) u (e n b n X,) 

u (e n C) u d. 

If, as in Figure 32(c), X, appears only in 
the X, equation, then this transformation 
removes X, from the system of equations. 
GSs follows similarly from S3. 

Thus the Graham-Wegman algorithm 
can easily be adapted to handle irreducible 
dependency graphs. Since the irreducibility 
is discovered during the first phase of the 
algorithm, there is no question as to which 
set of transformations is appropriate. 

5.3.1 Model of Graham-Wegman Analysis 

S-Set Finding 

(i) Using a DFST construction, identify 
back arcs of the dependency graph of 
the system of equations. Form S-sets. 
Establish the num node order on the 
DFST (see Section 5.1). 
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Elimination Phase 

(ii) Process S-sets in reverse num order of 
their entry nodes. Within an S-set 
process each node n in num order. 

(a) If necessary, perform &(n, (n, n)). 
Apply a loop-breaking rule to the 
equation for X,. 

(b) For each descendant z of n in the 
S-set perform the substitution 
transformation Sz(m, n, 2, (n, 2)). 
Substitute the right-hand side of 
the reduced equation for X,, for 
the X, term in the equation for 
X,. (If X, appears in only one 
place in the system, this elim- 
inates X, .) 

(iii) If necessary, use SB transformations 
to reduce the final graph to one node. 

Propagation Phase 

(iv) Determine the solution of X,,,,. 
(Note: If X,,,,, is in a loop, apply a 
loop-breaking rule to the reduced 
equation for X,,,,,.) Let S = (X,,,,). 
Iterate until all solutions are obtained: (VI 
For each unsolved variable X,, with a 
reduced equation that is a linear func- 
tion of X, E S, substitute the value of 
the solution of Xk into that equation, 
obtaining the value of X,,. Add X,, 
to s. 

5.4 Comparisons with the Allen-Cocke, 
Hecht-Ullman, and Tarjan Algorithms 

The Graham-Wegman algorithm is closely 
related to Tarjan interval analysis. Com- 
mon substitution sequences in the system 
of equations are recognized and used to 
avoid duplicate calculations. The substitu- 
tion sequences are shown explicitly in the 
Graham-Wegman algorithm through the 
node listing, rather than as a node order 
as in the Tarjan algorithm. The delayed 
substitutions are represented explicitly in 
the flow graph by not collapsing S-sets to 
one node. Substitutions are remembered 
in a transformed version of the original 
flow graph rather than the 2-3 tree of 
the Hecht-Ullman algorithm or the path- 

compressed tree of the Tarjan algorithm. 
The Graham-Wegman algorithm is the 
only one that handles irreducible flow 
graphs gracefully by accommodating 
such graphs rather than transforming 
them to eliminate the irreducibility or not 
handling them at all. 

In Figure 33 the Graham-Wegman algo- 
rithm is applied to the example of Figure 
20, as were the other algorithms. We show 
the four S-sets corresponding to the flow 
graph and their S1 and Sz transforma- 
tions.ig In Figure 34 we define a REACH 
problem on this flow graph with equations 
of the form of eq. (3), which facilitates 
comparison with Figure 30. The solid lines 
are edges within the S-sets; the dashed lines 
are flow graph edges not within the S-set. 
We give the equation transformations cor- 
responding to the S1 and Sz transforma- 
tions on the S-sets. Because of the ordering 
of the substitutions, calculations along the 
interregional substitution path (2 3 4) are 
only performed once and then used in the 
equations of X8, X9, and Xi,. 

The Tarjan and Graham-Wegman vari- 
able substitution orders are similar; in the 
equation transformations in Figures 30 and 
34 the order is the same. The Tarjan algo- 
rithm elimination is described in terms of 
a linear node order (reduction order), de- 
layed calculations, and a path-compressed 
tree for keeping track of delayed substitu- 
tions. In the Graham-Wegman algorithm 
the node listing is longer, with multiple 
appearances of variables representing sub- 
stitutions for individual terms in that vari- 
able; the equation calculations are kept in 
the transformed version of the original flow 
graph. The Graham-Wegman algorithm 
makes explicit the delayed calculations 
of the Tarjan algorithm. In Figure 34 the 
Graham-Wegman node listing is 

15, 6, 4, 5, 7, 3, 4, 8, 9, 2, 10, 11, 

whereas the reduction order is 

6, 6, 4, 7, 3, 8, 9, 2, 10, 11. 

I9 No SS transformation is needed here because the 
source node is the entry node of the outermost cycle 
in the flow graph. 
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Figure 33. S-sets obtained in the example of Figure 20. (a) First S-set. (b) Second S-set. (c) Third S-set. 
(d) Fourth S-set. 

6. SUMMARY worst case complexity improvement. The 
original algorithm, Allen-Cocke interval 

Our use of systems of equations to model analysis, establishes a natural partition of 
elimination algorithms enables us to com- the variables and a variable order on each 
pare them and contrast their sources of of a sequence of systems that, when used 
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Initially: 

Xl = pm r-l -%I u 40, 

Xz = plnX~upsnxsud,uds, 

X, = pznXzup7nXrUd2UdT, 

x, = p3nXauPsnXsud3u&, 

X5 = p,nX,ud,, 

X6 = X, = pbnXsud5, 

Xs = p,nX,u&, 

X9 = Xl0 = psnX,,ud.+ 

Let di,...i, = pi, fl . . npib, 

Elimination Algorithms for Data Flow Analysis l 

S-set = 12, 3,4,8,9). 

After S,(3, (3, 3)): 

Xa = p2nX2ud,3,3Ud,arsUd2. 

After &(2, 3, 4, (3, 4)), eliminating X,: 

X, = p32nX2Ud32ud3,5rUdos,. 

After &(2,4, 8, (4, 8)), eliminating X,: 

X9 = P432nX2Ud432Ud4375Ud455. 

After &(2, 8, 9, (8, 9)): 

XS = Psr32nXzUdsr32udsr37~Ud0,~~. 

After &(2,9, 2, (9, 2)), eliminating X9: -. __. 
fld;,Upi,fl . . . flpib,flUik,U.. . UU;,, 

pi,..+ = pi,ll.. . llpi*. 

S-set = (4, 5, 6). 

X, = plnx,UP98132nX2Udl 

Uds sr32udssrmu&srsa. 

After &(4, 5, 6, (5, 6)): 

X9 =p5,nX4Ud5,. 

S-set = (1, 2, 8, 10). 

After Sr(2, (2, 2)): 

X2 = PInX,ud,udss,32udss,3,6ud~~,~~. 

313 

After &(4, 6, 4, (6, 4)), eliminating X,: 

X4 =p3nX3UpssrnX~UdsarUda. 

S-set = (3, 4, 5, 7). 

After S,(4, (4, 4)): 

X, =p3nX3UdG5,Uds. 

After SJl, 2,8, (2, 8)), eliminating X,: 

Xs = p43*,nX1Ud,32saUdra7aUdlGBUd,~~,. 

After S2(3, 4, 5, (4, 5)): 

X5 =p43nX3Ud466Ud43. 

After &(3, 5, 7, (5, 7)), eliminating X5: 

XT =pwnXsudwudm 

After S,(3,7,3, (7, 3)), eliminating X7: 

After S,(l, 8, 10, (8, lo)), eliminating Xs: 

Xo = par32lnX,udsr32sUdsr375Uds,o3Ud3,32,. 

After &(l, 10, 1, (10, l)), eliminating XI,: 

XI = ~~~~~~~~~~~~~~~~~~~~ 

Ud,o*,315Ud,o8,65Ud,o*,32,. 

After S,(l, (1, 1)): 

XI = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

X3 = pznX*Up76,3nX3Ud?s,3Ud?516Ud2. 

Figure 34. Graham-Wegman algorithm on REACH problem from Figure 20. 

to order the equations, results in a highly a nondeterministic substitution order for 
structured coefficient matrix facilitating terms in the equations; the substitutions 
the equation-reduction process. The other are recorded in a height-balanced 2-3 tree 
algorithms, Hecht-Ullman T,-T2 analysis, to take advantage of possible common fac- 
Tarjan interval analysis, and Graham- tors in subsequent calculations. Tarjan in- 
Wegman analysis, avoid repeated calcula- terval analysis establishes a linear variable 
tions of common substitution sequences in order and eliminates variables from the 
the equations by delaying certain compu- system of equations in that order, delaying 
tations. Hecht-Ullman T,-T2 analysis uses some calculations; a path-compressed tree 
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is used to remember sequences of reduced 
equations for these delayed calculations. 
Graham-Wegman analysis establishes an 
order for substitution for each term in the 
system that avoids duplication of common 
substitution sequence calculations. It uses 
a transformed version of the original flow 
graph to remember previous substitutions. 

The best elimination algorithm in terms 
of worst case complexity is the Tarjan 
almost-linear interval analysis algorithm, 
which balances the path-compressed tree 
in a preprocessing operation. This algo- 
rithm is the best for doing a sequence of 
unions and finds but is not used for data 
flow analysis in practice [Tarjan 19791. 
Tarjan suggests the use of path-compressed 
trees for ease of calculation; they ensure a 
bound of O(nlogn) [Tarjan 19811. 

The four algorithms vary in their worst 
case complexity bounds for reducible flow 
graphs as shown:” 

Allen-Cocke: O(N) 
Hecht-Ullman: 0 (n log n) 
Tarjan: O(ncu(n)) 
Graham-Wegman: O(n log n) 

Here N is the total number of nodes in the 
derived sequence of graphs and is bounded 
by n2. Recall from Theorem 1 that this 
O(N) bound is 0 (n) for many reasonable 
programs. The (Y function is related 
to the inverse of Ackermann’s function; 
a(n) I 3 for all practical purposes (see 
Section 4.1). 

All of these algorithms represent a sav- 
ings on reducible flow graphs over a 
straightforward Gaussian-elimination-like 
algorithm, which is a O(n3) method. Both 
the Tarjan and Graham-Wegman algo- 
rithms identify an irreducible system of 
equations using an O(nlogn) algorithm 
for a flow graph. The Allen-Cocke and 
Graham-Wegman algorithms are applica- 
ble in this eventuality although their per- 
formance cannot be guaranteed to be better 
than the Gaussian-elimination-like tech- 
nique. All the algorithms can be used on a 
reducible flow graph. 

” Recall that for a flow graph, e is O(n). 

The use of a uniform model for these 
algorithms, reveals their similarities and 
differences. All are applicable to general 
systems of equations with coefficient struc- 
tures similar to those described here. The 
reducibility of the dependency graph is nec- 
essary to partition the problem into 
smaller, more easily solved problems. We 
are interested in discerning related struc- 
tural properties of systems of equations 
that may aid in their solution; it is hoped 
that the models described here will suggest 
an approach for improving algorithms in 
other problem domains. 
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