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Abstract

In our previous work[SYY03] we have shown that it is possible to automatically con-
struct Hoare proofs of programs by using the abstract interpreters to approximate the
programs’ invariants. The next question is: would the proposed technique be effective?
Because the automatic proof construction is motivated by the Proof Carrying Code frame-
work, we are keen to minimize the generated proofs.

We observed that when an abstract interpreter is used to verify a specific safety prop-
erty, it often computes invariants that are not needed for the verification. The reason is
that the abstract interpreter does not know what the safety property is, so it simply tries
to find as strong invariants as possible. These useless invariants result in an unnecessarily
big proof. Unless the proof-construction phase is notified which invariants are useless, it
cannot help but proving all the computed invariants.

In this paper, we present an algorithm that slices out useless invariants from the ab-
stract interpretation results. This algorithm works as a post-processor to an abstract inter-
preter in the whole proof-construction process, and notifies to the next proof-construction
phase which invariants it does not have to prove. In our experiment with Miné’s abstract
interpretation, the algorithm identified 63%− 84% of the computed invariants as useless,
and resulted in 56%− 88% reduction in the size of constructed proofs.

1 Introduction

The Proof-Carrying Code(PCC) technologies [NS02, NR01, App01, HST+02] have been a
convincing approach for certifying the safety of mobile code, yet how to achieve the code’s
safety proof is still open for alternatives. The existing proof construction process is either not
fully automatic, assuming that the program invariants should be provided by the program-
mer [Nec97, NL97, NR01], or limited to a class of properties that are automatically inferable
by the current type system technologies [HST+02, AF00, MWCG98].

In our previous work [SYY03], we have shown that by combining static analysis and pro-
gram logic, we can automatically construct proofs for a wider class of program properties. We
use Hoare logic [Hoa69] for representing the proofs of program properties, and the abstract
interpretation [CC77, Cou99] for computing the program properties. In this combination, an
abstract interpretation automatically estimates program properties (approximate invariants)
of our interests, and our proof-construction method constructs a Hoare proof for those approx-
imate invariants.
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This paper is motivated by one problem with our proof-construction method. When a
Hoare proof of a property is constructed by our method, the substantial parts of the proof
are often useless; they do not contribute to the verification of the property. As a result, the
constructed Hoare proof is unnecessarily big.

The main reason for this problem is that the abstract interpreter computes approximate
invariants stronger than what are needed for verification. When we use an abstract interpreter
to prove a specific safety property of a program, the interpreter does not know what the
property is; it simply tries to discover as strong invariant as possible. As a result, it usually
finds some (approximate) program invariants that are not needed to prove the safety property.
Note that this existence of useless invariants becomes a bottleneck for all the efforts to reduce
the size of a proof; if the proof construction does not know which invariants are of no use, it
cannot help but proving all the invariants that the abstract interpreter found.

To see this problem more clearly, let’s consider the following insertion sort program anno-
tated with the results of Miné’s abstract interpretation [Min01a]:
sort(int n, int A[1..n])
{ int i,j,pivot;

// true
i:=2; j:=0;
// inv: (2≤i) ∧ (0≤j≤i+2)
while (i<=n) {

// (2≤i≤n) ∧ (0≤j≤i+2)
pivot:=A[i]; j:=i-1;
// inv: (2≤i≤n) ∧ (0≤j≤n−1) ∧ (2≤n) ∧ (j≤i−1)
while (j>=1 and A[j]>pivot) {

// (2≤i≤n) ∧ (1≤j≤n−1) ∧ (2≤n) ∧ (j≤i−1)
A[j+1]:=A[j]; j:=j-1;

}
// (2≤i≤n) ∧ (0≤j≤n−1) ∧ (2≤n) ∧ (j≤i−1) --- *
A[j+1]:=pivot; i:=i+1;

}
}

This program takes an array A and the size n of the array as an input, and sorts the array.
Suppose that we ran the abstract interpreter in order to verify the absence of array index errors
in the program. The annotations in the program prove this safety property,1 but they also
contain unnecessary information. For instance, i≤n in the annotation marked by * neither
shows that the following array access A[j+1] is within bounds, nor is used to imply the loop
invariant (2≤i) ∧ (0≤j≤i+2). Thus, it can be eliminated without breaking the proof. In
fact, half of the annotations in the program are not needed. If all such useless invariants are
eliminated, the program becomes:

// true
i:=2; j:=0;
// inv: 2≤i
while (i<=n) {

// 2≤i≤n
pivot:=A[i]; j:=i-1;
// inv: (2≤i) ∧ (0≤j≤n−1)
while (j>=1 and A[j]>pivot) {

// (2≤i) ∧ (1≤j≤n−1)
A[j+1]:=A[j]; j:=j-1;

}
// (2≤i) ∧ (0≤j≤n−1)

1Here we assume that in “B1 and B2”, B2 is evaluated only when B1 is true.
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A[j+1]:=pivot; i:=i+1;
}
In this paper, we present an algorithm that slices out such useless invariants from the results

of an abstract interpreter. Our algorithm works as a post-processor to the abstract interpreter.
Given an annotated program and a property of interests, the algorithm approximates all the
annotations further, until all the information in each annotation contributes to the verification
of the property.

The main merit of our solution is that it does not require any changes from an abstract
interpreter. An alternative approach for this problem of useless invariant is to modify an ab-
stract interpreter, so that the interpreter becomes the goal-oriented backward one; the modified
interpreter computes an under-approximation of “safe” initial states, the states from which a
program always achieves the given goal. However, such an approach needs a complete redesign
of the analysis, because most forward abstract interpreters are not straightforward to have
their backward versions, and some of them cannot be used to model under-approximation. For
example, Miné’s abstract domain M [Min01a] does not have an “under-approximation” map
δ: there are no monotone functions δ : M→ P(States) such that

∀S ∈ P(States), ∀m ∈M. m vM δ(S) ⇐⇒ γ(m) ⊆ S.

where γ is the concretization map for M. The reason is that the existence of such an under-
approximation implies that γ preserves all joins, but there are some joins that γ does not
preserve.

In this paper, we first explain our solution with Miné’s abstract domain[Min01a]. In Sec-
tion 2 and 3, we review his abstract interpretation, and propose an abstract-value slicing
algorithm that eliminates useless invariants from the abstract interpretation results. In Sec-
tion 4, we explain the experimental results from our prototype implementation. The results
show that our algorithm sliced out the 63%−84% of the computed invariants, so that it induced
from 56% to 88% reduction in the size of the constructed proofs. Then, we propose a general
framework for abstract-value slicing in Section 5, and conclude the paper in Section 6.

2 Miné’s Abstract Interpreter

Miné’s abstract interpreter[Min01a] estimates, at each program point, the upper and lower
bounds of the “distance” between two program variables (i.e., xi − xj). In this section, we
review this abstract interpreter.

2.1 Programming Language

We assume that the abstract interpreter is given programs in a simple imperative language
with integer variables. The syntax of the language is given below:

Boolean Expressions B ::= x−y ≤ c | ∗ | B ∧B | B ∨B
Commands C ::= x := y+c | skip

| C; C | ifB thenC elseC | while B do C

Note that the language allows only very limited forms of assignments and boolean expressions.
The right-hand side of an assignment should be the c increment of a variable y; and the atomic
boolean expression should have the form of x− y ≤ c. We consider only these special forms of
assignments and boolean expressions in order to focus on the key aspects of Miné’s abstract
interpreter; his interpreter can handle such assignments and boolean expressions well, but for
other more general forms of assignments and boolean expressions, it merely uses the standard
interval domain [CC77].
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Another feature of the language is that it includes a boolean expression ∗ that nondeter-
ministically evaluates true or false. This ∗ expression normally fills in the place where an
expression has been sliced out before the analysis is applied.

We frequently use a syntactic sugar ¬B. It is defined inductively using the usual de-Morgan
laws2 and the following equivalence:

¬(x− y ≤ c) ⇔ y − x ≤ −c−1.

2.2 Abstract Domain

The abstract domain for Miné’s abstract interpreter consists of difference-bound matrices
(in short, DBMs). Let N be the number of the program variables in a given program,
and x1, . . . , xN an enumeration of all those variables. A DBM m for this program is an
(N + 1) × (N + 1) matrix with integer values, −∞ or ∞. Intuitively, each mij entry denotes
the upper bound of xj−xi (that is, xj−xi ≤ mij). A DBM m means the conjunction of all
these constraints mij and x0 = 0; because of this additional constraint about x0, the range of
a variable can be expressed by a DBM. For example, a DBM

x0 x1 x2

x0 ∞∞ ∞
x1 ∞∞ −1
x2 0 ∞ ∞

means x0−x2≤0 ∧ x2−x1≤−1 ∧ x0=0, which is equivalent to −x2≤0 ∧ x2−x1≤−1.
Let States be the set of states (i.e., States = Ints{x1,...,xN}). Formally, the abstract domain is

defined by the latticeM = (M,v,⊥,>,t,u) of DBMs, concretization map γ : M → P(States),
and abstraction map α : P(States) → M :

M
∆= {m | m is a DBM} m v m′ ∆⇐⇒ ∀ij. mij ≤ m′

ij

>ij
∆= ∞ ⊥ij

∆= −∞
[m tm′]ij

∆= max(mij ,m
′
ij) [m um′]ij

∆= min(mij ,m
′
ij)

γ(m) ∆= {s ∈ States | ∀ij. s[x0→0](xi)− s[x0→0](xj) ≤ mij}
α(S)ij

∆= max({s[x0→0](xj)− s[x0→0](xi) | s ∈ S})
In the definition of γ and α, we used s[x0→0], the extension of state s with an additional
component for x0:

s[x0→0](xi)
∆= if (i = 0) then 0 else s(xi).

One special feature of this abstract domain is that it has a lower closure operator −∗ : M →
M . Miné’s domain is slightly different from other common abstract domains in that the con-
cretization is not injective: two different DBMs might mean the same set of states. Moreover,
among such DBMs with the same meaning, there is the “best representation” n: for all m, if
γ(n) = γ(m), then n v m. The closure operator −∗ transforms each DBM m to this best n.
That is, m∗ v m, γ(m∗) = γ(m), and m∗ is the smallest such DBM. More explicitly, the closure
operator works as follows. Given a DBM m, it first checks whether m has a “negative cycle”:
a nonempty sequence i1 . . . in such that i1 = in, 0 ≤ i1 . . . in ≤ N , and Σn−1

k=1mikik+1 < 0. If so,
the closure m∗ is ⊥. Otherwise, each (i, j) entry is updated by the “length” of a shortest path
from i to j in m: when i = j, the (i, j) entry of m∗ is 0; and when i 6= j, the (i, j) entry is

min
{

Σn−1
k=1mikik+1 | 0≤i1 . . . in≤N ∧ i1=i ∧ in=j

}
.

2¬(B1 ∧B2) ⇔ (¬B1 ∨ ¬B2) and ¬(B1 ∨B2) ⇔ (¬B1 ∧ ¬B2).
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For example, 


x0 x1 x2

x0 ∞∞ ∞
x1 ∞∞ −1
x2 0 ∞ ∞




∗

=




x0 x1 x2

x0 0 ∞ ∞
x1 −1 0 −1
x2 0 ∞ 0


 .

Note that in the closed DBM, all the diagonal entries became 0 by definition (i = j case); and
the value of the x1x0 entry has changed to −1, because there is a path x1x2x0 from x1 to x0

whose “length” is −1.
In the abstract interpreter, we use the closure operator −∗ in order to improve the accuracy

of the analysis.

2.3 Abstract Interpreter

Given a program, the abstract interpreter computes an invariant DBM at each program point,
and outputs an annotated program A of the following form:

A ::= [m]R[m]
R ::= xi:=xj+c | A;A | ifB thenA elseA | [inv m]while B do A

The computed DBM annotations in A satisfy a set of constraints that imply the correctness
of the annotations: if the constraints hold, then the annotations in A approximate program
invariants. Figure 1 shows the algorithm C that generates such constraints. We note the two
cases: one for the assignment of the form xi:=xj+c with i 6= j, and the other for a while loop.
Given an assignment of the form [m]xi:=xj+c[n], the algorithm C first abstractly executes the
assignment xi:=xj+c: it first transforms m so that the DBM has the best representation m∗;
then, it eliminates all the information in m∗ involving the old value of xi; finally, it adds a fact
that xi−xj≤c and xj−xi≤−c. Once finishing this abstract execution, C outputs a constraint
which means that the result of the abstract execution should be approximated by n. For a
while loop

[m]
(
[inv ι]while B do ([m1]R[n1])

)
[n],

the algorithm produces the four constraints besides those for the loop body:

m∗ v ι, (n1)∗ v ι, [[B]]ι v m1, and [[¬B]]ι v n.

The first two constraints express that ι abstracts the loop invariant. The DBM ι should
approximate all the initial states (i.e., m∗ v ι) as well as all the states at the end of the
loop (i.e., (n1)∗ v ι). The other constraints are about the states that pass or fail the test B.
The third constraint prunes some states in γ(ι) that do not pass B, and asks that m1 should
approximate all the remaining states in γ(ι) (i.e., [[B]]ι v m1). Note that this constraint implies
that γ(m1) includes all the states in γ(ι) that pass the test B. Similarly, the fourth constraint
implies that n approximates all the states in γ(ι) that fail the test B.

Figure 2.(a) shows an annotated program A whose DBMs satisfy the constraints generated
by C. Among those generated constraints, we note the following two for the loop invariant
DBM:




x0 x1 x2

x0 ∞ 0 ∞
x1 0 ∞∞
x2 ∞∞∞




∗

v




x0 x1 x2

x0 ∞∞∞
x1 0 ∞∞
x2 ∞∞∞







x0 x1 x2

x0 ∞∞ ∞
x1 ∞∞ −1
x2 0 1 ∞




∗

v




x0 x1 x2

x0 ∞∞∞
x1 0 ∞∞
x2 ∞∞∞




The same DBM on the right-hand side of both constraints is a (approximate) loop invariant
of the program, and it means that −x1 ≤ 0. The first constraint ensures that the invariant
holds before the loop gets executed, and the second that it holds right after the loop body.
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Pruning Algorithm [[B]] : M → M

[[xi − xj≤c]]m = m[(j, i)→min(mji, c)] [[∗]]m = m

[[B0 ∧B1]]m = [[B0]]m u [[B1]]m [[B0 ∨B1]]m = [[B0]]m t [[B1]]m

Constraint Generation Algorithm C

C([m]xi:=xj+c[n])

= if (i = j) then {
(
m

[
(k, i)→mki + c, (i, k)→mik + (−c)

]
0≤k(6=i)≤N

)
v n}

else {
(
m∗([(k, i)→∞, (i, k)→∞]0≤k(6=i)≤N

)
[(j, i)→c, (i, j)→−c]

)
v n}

C([m]skip[n]) = {m v n}

C([m]
(
ifB then ([m1]R1[n1]) else ([m2]R2[n2])

)
[n]

)
=

{
([[B]]m) v m1, ([[¬B]]m) v m2, (n1)∗ v n, (n2)∗ v n

} ∪ C([m1]R1[n1])
∪ C([m2]R2[n2])

C([m]
(
[inv ι]while B do ([m1]R[n1])

)
[n]

)
=

{
m∗ v ι, (n1)∗ v ι, ([[B]]ι) v m1, ([[¬B]]ι) v n

} ∪ C([m1]R[n1])

C([m]([m1]R1[n1]; [m2]R2[n2])[n])
=

{
m v m1, n1 v m2, n2 v n

} ∪ C([m1]R1[n1]) ∪ C([m2]R2[n2])

Figure 1: Constraints for Abstract Interpretation Results

Both of these constraints hold; whenever an entry of the DBM on the left is bigger than the
corresponding entry of the other DBM, the closure operator changes it to a smaller value. For
instance, in the second constraint, the x1x0 entry of the DBM on the left is ∞, which is bigger
than the corresponding entry of the DBM on the right. The closure −∗ fixes this “problem”,
by computing a shortest path x1x2x0, and replacing the value ∞ of the x1x0 entry by −1, the
“distance” of this path.

In this paper, we will not specify a particular strategy to obtain annotations satisfying
the constraints. It is because the correctness of the abstract-value slicer in the paper does
not depend on such a strategy; it only needs that the computed DBM annotations satisfy the
constraints. If a reader is interested in a particular strategy, we refer to Miné’s original pa-
per [Min01a], where he computes the correct annotations with specific widening and narrowing
operators.

3 Abstract-value Slicer

When the abstract interpreter in Section 2 is used for verification, it usually computes stronger
invariants than what are needed. The abstract interpreter does not know what properties we
want to verify, so it simply tries to find as stronger invariants as possible. In this section, we
present the abstract-value slicer that weakens the computed invariants until all the information
in the invariants is necessary for verification.

The abstract-value slicer takes the output A of the abstract interpreter, and information
about “crucial DBM entries”: the entries of the DBMs in A that are used for verification. More
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x0 x1 x2

x0 ∞ 0 ∞
x1 0 ∞∞
x2 ∞∞∞


 : −x1≤0 ∧ x1≤0


inv :

x0 x1 x2

x0 ∞∞∞
x1 0 ∞∞
x2 ∞∞∞


 : −x1≤0

while (x1−x2 ≤ 0) do



x0 x1 x2

x0 ∞∞∞
x1 0 ∞∞
x2 ∞ 0 ∞


 :

( −x1≤0
∧ x1−x2≤0

)

x1:=x2+1



x0 x1 x2

x0 ∞∞ ∞
x1 ∞∞ −1
x2 0 1 ∞


 :



−x2≤0
∧ x1−x2≤1
∧ x2−x1≤−1







x0 x1 x2

x0 ∞ ∞ ∞
x1 −1 ∞ −1
x2 ∞ ∞ ∞


 :

( −x1≤0
∧ x2−x1≤−1

)




x0 x1 x2

x0 ∞∞∞
x1 0 ∞∞
x2 ∞∞∞


 : −x1≤0

{(1, 0)}

inv :

x0 x1 x2

x0 ∞∞∞
x1 0 ∞∞
x2 ∞∞∞


 :

−x1≤0
{(1, 0)}

while (x1−x2 ≤ 0) do



x0 x1 x2

x0 ∞∞∞
x1 0 ∞∞
x2 ∞ 0 ∞


 :

( −x1 ≤ 0
∧ x1−x2≤0

)

{(2, 1), (1, 0)}
x1:=x2+1



x0 x1 x2

x0 ∞∞ ∞
x1 ∞∞ −1
x2 0 ∞ ∞


 :

( −x2≤0
∧ x2−x1≤−1

)

{(2, 0), (1, 2)}



x0 x1 x2

x0 ∞∞∞
x1 0 ∞∞
x2 ∞∞∞


 : −x1≤0

{(1, 0)}

(a) Abstract Interpretation Results (b) Sliced Results

Figure 2: Results of Abstract Interpretation and Abstract-value Slicing

precisely, the second input component is a program T annotated with index sets:

T ::= [I]S[I]
S ::= xi:=xj+c | T ;T | ifB thenT elseT | [inv I]while B do T

Here I denotes a set of DBM indices. We assume that the two components A and T in an
input are about the same program, so that their underlying programs are identical. Each index
set I in T indicates that among all the entries in the corresponding DBM m, only those in
I are directly used to verify a safety property. For example, suppose that we have used the
annotated program A in Figure 2.(a) to prove that x1 ≥ 0 holds at the end of the program. In
this case, only the x1x0 entry of the last DBM annotation is crucial, so we use the following
Tex as an input to the slicer:

[∅]
(
[inv : ∅]while (x1−x2≤0) do [∅]x1 := x2 + 1[∅]

)
[{(1, 0)}]

The result of the abstract-value slicer is an index-set annotation T ′ that records which DBM
entries are used to compute the “crucial DBM entries.” Suppose that the slicer is given a DBM
annotation A and an index-set annotation T . The slicer returns an index-set annotation T ′

that satisfies the following three properties:

1. The underlying program T ′ is identical to the underlying program T .
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2. Every index set I in T is included in the corresponding index set I ′ in T ′.

3. For an index set I and a DBM m, let prj(m, I) be the projection of m by I:

prj(m, I)ij =
{

mij if (i, j) ∈ I
∞ otherwise

If we project every DBM m in A by the corresponding index set I ′ in T ′, then the
annotations in the resulting program satisfy the constraints generated by C.

The third property ensures that we can safely “eliminate” all the matrix entries not in T ′, and
the second property means that even when we eliminate such entries, the remaining ones are
still strong enough to obtain all the “crucial” information. For instance, suppose that we ran
the slicer with the annotated program A in Figure 2.(a) and the index-set annotation Tex in the
previous paragraph. Then, the slicer computes, at each program point, which DBM entries are
used to prove that x1 ≥ 0 holds at the end of the program. Figure 2.(b) shows the computed
index-set annotation T ′, and the projection of each DBM in A by the corresponding index set
in T ′. Note that these results identify three invariants in the original annotation A as “useless”:
x1 ≤ 0 in the first DBM, x1−x2 ≤ 1 in the DBM right after x1:=x2+1, and x2−x1 ≤ −1 in
the last DBM. The first x1 ≤ 0 is not necessary, because the other invariant −x1 ≤ 0 in the
first DBM is strong enough to imply the approximate loop invariant −x1 ≤ 0. By the same
reason, the second is not needed either. Note that the arguments for these two invariants do
not depend on the input Tex . On the other hand, the reason that we can eliminate x2−x1 ≤ −1
comes from Tex . Since x2−x1 ≤ −1 is the property of the final state, but it does not “belong”
to Tex , we can eliminate x2−x1 ≤ −1.

Figure 3 shows the definition of the abstract-value slicer slice in an imperative style. The
second input component to slice is a program annotated with variables for index sets. The
algorithm slice updates these index-set variables directly, so that when slice terminates, the
variables contain which DBM entries are used to compute crucial DBM entries (i.e., the initial
values of the variables).

Algorithm slice uses two subroutines clsr and bslice. For an index set I and a pair of DBM
matrices m and n such that m∗ v n, the first subroutine clsr(m,n, I) discovers which entries
of m are needed to get the I entries of n by the closure and the order v. Let (i, j) be an index
in I. If mij ≤ nij , the (i, j) entry of m (i.e., xj−xi ≤ mij) alone implies the (i, j) entry of
n (i.e., xj−xi ≤ nij). The subroutine, therefore, simply puts (i, j) to the resulting index set.
On the other hand, if mij > nij , the (i, j) entry of m is not strong enough; in order to get the
(i, j) entry of n, we need to chain several entries in a “shortest path” from i to j in m. Thus,
in this case, the subroutine calls mPath to obtain a shortest path from i to j, and adds all the
entries in the path to the result index set.

The other subroutine bslice is about the case pruning. Given a boolean expression B, DBMs
m,n, and an index set I such that [[B]]m v n, it computes which entries of m are needed to
get the I entries of n. For instance, when B is xi−xj ≤ c, subroutine bslice checks whether B
“implies” the xjxi entry of n (i.e., xi−xj ≤ c ⇒ xi−xj ≤ nji). If so, bslice removes (j, i) from
I. Otherwise, it keeps the (j, i) entry in I. Note that this case exploits the value of nji, which
is available only after the abstract interpreter computes approximate invariants.

The definition of slice is given inductively on the structure of the arguments. We note the
case for the assignment xi:=xj+c with (i 6= j). Given [m]xi:=xj+c[n] and [X]xi:=xj+c[Y ],
algorithm slice backtracks the abstract execution of the assignment. Recall that the abstract
execution of xi:=xj+c first replaces m by a better representation m∗, and then modifies (i,−)
and (−, i) entries of m∗: it eliminates (i,−) and (−, i) entries, and updates (j, i) to c, and (i, j)
to −c. The first step of the slicer slice is to roll-back the last updates. For all k, the slicer
slice removes (k, i) and (i, k) from Y , and replaces the values of (k, i) and (i, k) entries of n by
∞. This backtracking of the updates reflects that the abstract interpreter computed (k, i) and
(i, k) entries without reading any entries of the initial DBM m. The next step of the slicer is
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clsr(m, n, I) = if (m∗=⊥) then ∅
else

⋃
(i,j)∈I

(
if mij ≤ nij then {(i, j)} else mPath(m, (i, j))

)

bslice(xi−xj≤c, m, n, I) =
{

I − {(j, i)} if (nji ≥ c)
I otherwise

bslice(B1 ∨B2, m, n, I) = bslice(B1, m, n, I) ∪ bslice(B2, m, n, I)

bslice(B1 ∧B2, m, n, I) = let I1 = {(i, j) ∈ I | ([[B1]]m)ij ≤ nij}
I2 = {(i, j) ∈ I | ([[B2]]m)ij ≤ nij}

in bslice(B1, m, n t [[B1]]m, I1)
∪ bslice(B2, m, n t [[B2]]m, I2)

slice([m]skip[n], [X]skip[Y ])
∆= X := X ∪ Y

slice([m]xi:=xj+c[n], [X]xi:=xj+c[Y ])
∆= if (i = j)

then X := X ∪ Y
else X := X ∪ clsr

(
m, (n[(i, k)→∞, (k, i)→∞]0≤k≤N ), Y−{(i, k), (k, i) | 0≤k≤N})

slice([m]([m1]R1[n1]; [m2]R2[n2])[n], [X]([X1]S1[Y1]; [X2]S2[Y2])[Y ])
∆= (Y2 := Y ∪ Y2); slice([m2]R2[n2], [X2]S2[Y2]);

(Y1 := Y1 ∪X2); slice([m1]R2[n1], [X1]S1[Y1]);
X := X ∪X1

slice

(
[m]

(
ifB then [m1]R1[n1] else [m2]R2[n2]

)
[n],

[X]
(
ifB then [X1]S1[Y1] else [X2]S2[Y2]

)
[Y ]

)

∆= (Y1 := Y1 ∪ clsr(n1, n, Y )); slice
(
[m1]R1[n1], [X1]S1[Y1]

)
;

(Y2 := Y2 ∪ clsr(n2, n, Y )); slice
(
[m2]R2[n2], [X2]S2[Y2]

)
;

X := X ∪ bslice(B, m,m1, X1) ∪ bslice(¬B, m,m2, X2)

slice
(
[m]

(
[inv ι]while B do [m1]R[n1]

)
[n], [X]

(
[inv K]while B do [X1]S[Y1]

)
[Y ]

)
∆= do { K := K ∪ bslice(¬B, ι, n, Y ) ∪ bslice(B, ι, m1, X1);

(Y1 := Y1 ∪ clsr(n1, ι, K)); slice([m1]R[n1], [X1]S[Y1])
} until nothing changes;
X := X ∪ clsr(m, ι, K)

Figure 3: Abstract-value Slicing



September 21, 2004 ROPAS-2004-22 10

to backtrack the closure operator. Let (n0, I0) be the result of the first slicing step. The slicer
calls the subroutine clsr(m,n0, I0) to find out how the closure of m is used to show that the I0

entries of n0 are implied by m. For instance, suppose that slice is given annotated loop body in
Figure 2.(a) and [X]x1:=x2+1[Y ] with X = ∅ and Y = {(2, 0), (1, 2)}. Then, it first eliminates
(1, 2) from {(2, 0), (1, 2)}, and modifies the x1x2 entry of the “post-DBM” by ∞. Then slice
calls clsr with the pre-DBM, the modified post-DBM and the index-set {(2, 0)}. The x2x0

entry of the modified post-DBM has value 0, while the corresponding entry of the pre-DBM
has value ∞. Thus, clsr concludes that the closure has been used in this implication, so it finds
a shortest path x2x1x0 from x2 to x0 in the pre-DBM and returns the set {(2, 1), (1, 0)} of
entries in this path.

Suppose that mPath(m, (i, j)) correctly calculates a shortest path from i to j in m: when m
does not contain a negative cycle, mPath(m, (i, j)) returns a sequence i1 . . . in such that i1 = i,
in = j, 0 ≤ i1 . . . in ≤ N , and

(Σn−1
k=1mikik+1) = (m∗)ij .

Under this supposition, all of clsr, bslice, and slice are correct.

Lemma 1 For all DBMs m,n and index sets I, if m∗ v n, then
(
prj

(
m, clsr(m,n, I)

))∗ v prj(n, I).

Proof: Let J be clsr(m,n, I), and let p and q be, respectively, prj(m,J) and prj(n, I). We only
need to show that for all indices (i, j), if qij 6= ∞, then (p∗)ij ≤ qij . Consider an index (i, j)
such that qij 6= ∞. Then, (i, j) is in I. So, qij = nij . We now do the case analysis based
on whether mij ≤ nij or not. If mij ≤ nij , the index (i, j) is in J by the definition of clsr,
and mij = pij . Hence, pij ≤ qij . Moreover, by the definition of −∗, we have (p∗)ij ≤ pij .
Therefore, (p∗)ij ≤ qij , as required. On the other hand, if mij > nij , by the definition of clsr,
J contains all the indices in a shortest path from i to j. Thus, (m∗)ij = (p∗)ij . Since qij = nij

and (m∗)ij ≤ nij , we have the required (p∗)ij ≤ qij . ¤

Lemma 2 For all DBMs m and n, boolean expressions B, and index sets I, if [[B]]m v n,
then (

[[B]]prj
(
m, bslice(B, m, n, I)

)) v prj(n, I).

Proof: Let J be bslice(B, m, n, I). We will use induction on the structure of B to prove
(
[[B]]prj

(
m, bslice(B, m, n, I)

)) v prj(n, I).

1. Case B ≡ xi−xj≤c: In this case, we only need to show that

∀(k, l) ∈ I.
(
[[xi−xj≤c]]prj(m,J)

)
kl
≤

(
prj(n, I)

)
kl

.

Let (k, l) be an index in I. If (k, l) = (j, i) and nkl ≥ c, then (k, l) 6∈ J , and so,
(
[[xi−xj≤c]]prj(m,J)

)
kl

= min(∞, c) = c ≤ nkl =
(
prj(n, I)

)
kl

.

On the other hand, if (k, l) 6= (j, i) or m′
kl < c, then (k, l) ∈ J , and so, ([[xi−xj≤c]]prj(m,J))kl

and ([[xi−xj≤c]]m)kl are equal. Thus,
(
[[xi−xj≤c]]prj(m,J)

)
kl

=
(
[[xi−xj≤c]]m

)
kl

≤ nkl =
(
prj(n, I)

)
kl

.
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2. Case B ≡ B1 ∨B2: We prove the lemma for this case as follows:

[[B1 ∨B2]](prj(m, J)) v [[B1]](prj(m,J)) t [[B2]](prj(m,J))

v [[B1]]prj(m, bslice(B1,m, n, I)) t [[B2]]prj(m, bslice(B2,m, n, I))

v prj(n, I) t prj(n, I) (∵ induction hypo.)

= prj(n, I)

3. Case B ≡ B1 ∧B2: Define DBMs m1,m2, and the sets I1, J1, I2, J2 of indices as follows:

m1 = [[B1]]m I1 = {(i, j) ∈ I | (m1)ij ≤ nij} J1 = bslice(B1,m, n tm1, I1)
m2 = [[B2]]m I2 = {(i, j) ∈ I | (m2)ij ≤ nij} J2 = bslice(B2,m, n tm2, I2)

Then, J = J1∪J2. Hence, prj(m,J) v prj(m,J1) and prj(m,J) v prj(m,J2). We also note that
I = I1 ∪ I2, because m1 um2 v n. Using these facts, we prove the required order relationship
as follows:

[[B1 ∧B2]](prj(m,J)) v [[B1]](prj(m, J)) u [[B2]](prj(m, J)) (∵ the def. of u)

v [[B1]](prj(m, J1)) u [[B2]](prj(m, J2)) (∵ [[Bi]] is mono.)

v prj(n tm1, I1) u prj(n tm2, I2) (∵ ind. hypo.)

v prj(n, I1) u prj(n, I2) (∵ the def. of Ii)

= prj(n, I) (∵ I = I1 ∪ I2)

¤

Theorem 3 (Correctness) Suppose that the abstract-value slicer is given (A, T ) such that A
satisfies the constraints generated by the algorithm C, and T and A have the same underlying
program. Then, slice(A, T ) terminates, and the final value T1 of T satisfies the following
properties:

1. For each variable X in T , the final value of X includes the initial value of X.

2. When we project every annotation in A by the corresponding index set in T1, the resulting
annotated program satisfies the constraints generated by C.

Proof: All the updates of variables in slice have the form of X := X∪−. Thus, as the execution
of slice(A, T ) proceeds, the value of each variable in T gets increased. Note that this increasing
value of a variable eventually becomes stabilized, because the variable cannot have bigger than
(N +1)× (N +1). This change of variables in T shows that all the do-until loops in slice(A, T )
terminate, and so does slice(A, T ) itself; and the final value of each variable in T includes the
initial value of the variable. Let T1 be the index-set annotated program that records the final
value of each variable in T . We will now prove that when every annotation in A is projected
by the corresponding index set in T1, the resulting annotated program satisfies the constraints
generated by C. For this proof, we use induction on the structure of A.

Case A ≡ [m]skip[n]: In this case, there exist index sets I and J such that the final value of
T is [J ∪ I]skip[I]. Since m v n, the required constraint holds by the following reason:

prj(m,J ∪ I) v prj(m, I) (∵ prj(m,−) is anti-monotone)
v prj(n, I) (∵ prj(−, I) is monotone)
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Case A ≡ [m]xi:=xi + c[n]: In this case, there exist index sets I and J such that the final
value of T is [J ∪ I]xi:=xi + cI. Since A satisfies the constraints in C(A),

(
m

[
(k, i)→mki+c, (i, k)→mik−c

]
0≤k(6=i)≤N

)
v n.

Using this order relationship, we will show the required
(
prj(m,J ∪ I)

[
(k, i)→mki+c, (i, k)→mik−c

]
0≤k( 6=i)≤N

)
v prj(n, I).

Let p be the DBM on the left-hand side of the above order relationship, and let (k, l) be a
DBM index. If (k, l) 6∈ I, then prj(n, I)kl = ∞, and so, pkl ≤ prj(n, I)kl. Otherwise,

pkl ≤
(
m

[
(k, i)→mki+c, (i, k)→mik−c

]
0≤k(6=i)≤N

)
kl

(∵ (k, l) ∈ I)

≤ nkl (∵ A satisfies the constraints in C(A))
≤ prj(n, I)kl (∵ (k, l) ∈ I)

Case A ≡ [m]xi:=xj+c[n] where i 6= j: By the definition of slice, there exist index sets I, J
such that the final value of T is

[
J ∪
clsr

(
m,n[(i, k)→∞, (k, i)→∞]0≤k≤N , I−{(i, k), (k, i) | 0≤k≤N})

]
xi:=xj+c[I].

Let I ′ be I − {(i, k), (k, i) | 0 ≤ k ≤ N}, let n′ be n[(i, k)→∞, (k, i)→∞]0≤k≤N , and let J ′ be
clsr(m,n′, I ′). We will prove that

(
prj(m,J ∪ J ′)∗

(
[(k, i)→∞, (i, k)→∞]0≤k(6=i)≤N

)
[(j, i)→c, (i, j)→−c]

)
v prj(n, I).

Let p be the DBM on the left-hand side of the above order relationship. Pick a DBM index (k, l).
If (k, l) is not in I, then prj(n, I)kl = ∞. So, pkl ≤ prj(n, I)kl. Otherwise, prj(n, I)kl = nkl. So,
it suffices to show that pkl ≤ nkl. We do the case analysis based on whether k = i∨ l = i holds
or not. Let’s first consider the case that k = i∨ l = i. By assumption, A satisfies the following
unique constraint in C(A):

(
m∗([(k, i)→∞, (i, k)→∞]0≤k(6=i)≤N

)
[(j, i)→c, (i, j)→−c]

)
v n.

Let q be the DBM on the left-hand side of the above constraint. Then, the constraint implies
that qkl ≤ nkl. From this inequality, we can derive the required pkl ≤ nkl, because

∀(k′, l′).(k′ = i ∨ l′ = i) ⇒ (qk′l′ = pk′l′).

Now, consider the other case: k 6= i and l 6= i. In this case, we can prove the required inequality
as follows:

pkl = prj(m,J ∪ clsr(m,n′, I ′))∗kl (∵ k 6= i and l 6= i)
≤ prj(m, clsr(m,n′, I ′))kl (∵ prj(m,−) is anti-monotone)
≤ prj(n′, I ′)kl (∵ Lemma 1 and m∗ v n v n′)
= (n′)kl (∵ (k, l) ∈ I ′)
= nkl (∵ k 6= i and l 6= i)

Case A ≡ [m]([m1]R1[n1]; [m2]R2[n2])[n]: In this case, T = [X](T1; T2)[Y ] for some T1, T2, X, Y .
By the definition of the abstract-value slicer, there exist index sets I, I1, I2, J, J1, J2, and pro-
grams S1, S2 annotated with index sets such that the final value of T is

[J ∪ J1]([J1]S1[I1 ∪ J2]; [J2]S2[I2 ∪ I])[I].
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Both [J1]S1[I1 ∪ J2] and [J2]S2[I2 ∪ I] are the final values of T1 and T2, respectively, right
after the recursive calls, slice([m1]R1[m1], T1) and slice([m2]R2[m2], T2). Thus, by induction
hypothesis, all the constraints for R1 and R2 hold. We now show that the following remaining
constraints also hold:

prj(m,J ∪ J1) v prj(m1, J1), prj(n1, I1 ∪ J2) v prj(m2, J2), prj(n2, I2 ∪ I) v prj(n, I).

Since all the constraints in C(A) hold, we have

m v m1 ∧ n1 v m2 ∧ n2 v n.

These order relationships implies that the required constraints hold, because prj is anti-monotone
on the second argument and monotone on the first argument.

Case A ≡ [m]
(
ifB then [m1]R1[n1] else [m2]R2[n2]

)
[n]: In this case, there exist variables

X, Y and programs T1, T2 annotated with variables such that T = [X]ifB thenT1 elseT2[Y ].
By the definition of the abstract-value slicer, there exist index sets I, I1, I2, J, J1, J2, and pro-
grams S1, S2 annotated with index sets such that the final value of T is

[J ∪ bslice(B, m,m1, J1) ∪ bslice(¬B, m,m2, J2)]
ifB then [J1]S1[I1 ∪ clsr(n1, n, I)] else [J2]S2[I2 ∪ clsr(n2, n, I)]
[I].

By the definition of slice, for i = 1, 2, annotated program [Ji]Si[Ii ∪ clsr(ni, n, I)] is the value of
Ti right after the recursive call slice([mi]Ri[ni], Ti). Thus, by the induction hypothesis, among
the constraints in C(A), those about the true and false branches hold. We now show that the
following remaining four constraints are also true:

[[B]]prj(m, J ∪ bslice(B,m, m1, J1) ∪ bslice(¬B, m,m2, J2)) v prj(m1, J1)
[[¬B]]prj(m, J ∪ bslice(B,m, m1, J1) ∪ bslice(¬B, m,m2, J2)) v prj(m2, J2)

prj(n1, I1 ∪ clsr(n1, n, I))∗ v prj(n, I)
prj(n2, I2 ∪ clsr(n2, n, I))∗ v prj(n, I)

We use the fact that all the constraints in C(A) hold. In particular, we use the following order
relationships:

[[B]]m v m1, [[¬B]]m v m2, (n1)∗ v n, (n2)∗ v n.

From these relationships, the validity of the required four constraints follows; since prj is anti-
monotone on the second argument, the constraints are implied by the following four order
relationships:

[[B]]prj(m, bslice(B, m,m1, J1)) v prj(m1, J1)
[[¬B]]prj(m, bslice(¬B, m,m2, J2)) v prj(m2, J2)

prj(n1, clsr(n1, n, I))∗ v prj(n, I)
prj(n2, clsr(n2, n, I))∗ v prj(n, I)

and these order relationships hold because of Lemma 2 and 1.

Case A ≡ [m]
(
[inv ι]while B do [m1]R1[n1]

)
[n]: In this case, there are X, Y, K, T1 such that

T = [X]([K]while B do T1)[Y ]. By the definition of slice, there exist index sets I, I1, J, J1, L
and program S1 annotated with index sets such that

1. the final value of T is [J ∪ clsr(m, ι, L)]([inv L]while B do [J1]S1[I1])[I];

2. L = L ∪ bslice(¬B, ι, n, I) ∪ bslice(B, ι, m1, J1); and

3. I1 = I1 ∪ clsr(n1, ι, L).
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program spec. number of DBM entries
program vars.a labelsb (1)livec useful (2)useless (2)/(1) slicing time

Insertionsort 3 22 92 22 70 76% 0.19
Partitiond 3 27 120 45 75 63% 0.06
Bubblesort 4 32 217 42 175 81% 0.21

KMPe 6 45 463 133 330 72% 0.52
Heapsort 5 51 1250 203 1047 84% 0.77

anumber of variables
bnumber of program labels; the labels are given to each command
cDBM entries with value mij such that i 6= j and mij 6= ∞, −∞
dPartition function in Quicksort
eKnuth-Morris-Pratt pattern matching algorithm

Table 1: Number of Sliced DBM Entries

Then, the value of T1 right after the last recursive call is [J1]S1[I1]. Thus, [J1]S1[I1] satisfies
all the constraints generated by C. We now need to show that the following four constraints
are true:

prj(m,J ∪ clsr(m, ι, L))∗ v prj(ι, L)
prj(n1, I1)∗ v prj(ι, L)
[[B]]prj(ι, L) v prj(m1, J1)

[[¬B]]prj(ι, L) v prj(n, I)

We “simplify” these four constraints using two facts: prj is anti-monotone on the second argu-
ment, and L and I1 are solutions for the equations:

L = L ∪ bslice(¬B, ι, n, I) ∪ bslice(B, ι, m1, J1) and I1 = I1 ∪ clsr(n1, ι, L).

Because of the two facts, the the above four constraints are implied by the following:

prj(m, clsr(m, ι, L))∗ v prj(ι, L)
prj(n1, clsr(n1, ι, L))∗ v prj(ι, L)

[[B]]prj(ι, bslice(B, ι, m1, J1)) v prj(m1, J1)
[[¬B]]prj(ι, bslice(¬B, ι, n, I)) v prj(n, I)

Note that these are precisely the correctness statements of clsr and bslice in Lemma 2 and 1.
These correctness statements hold, because the conditions for the correctness of clsr and bslice,
namely,

m∗ v ι, (n1)∗ v ι, [[B]]ι v m1, and [[¬B]]ι v n

are satisfied by the assumption on the constraints in C(A). ¤

4 Experimental Results

We tested the efficiency of the abstract-value slicer in the context of proof construction. We
implemented Miné’s abstract interpreter, the abstract-value slicer, and the proof construction
algorithm in our previous work [SYY03]. In our experiment, we first ran Miné’s abstract
interpreter with five array accessing programs, and obtained approximate invariants which are
strong enough to show the absence of array bounds errors. Then, we ran the slicer for each
of the computed abstract interpretation results, and measured how many invariants in the
result have been eliminated. Finally, we applied the proof construction algorithm to both the
original abstract interpretation results and their sliced versions, and measured how much the
slicer reduces the size of the constructed proofs.
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number of number of FOL rulesa

program Hoare rules (1)abs. int.b (2)value slicerc (1)-(2)/(1)
Insertionsort 19 196 87 56%

Partition 24 218 94 57%
Bubblesort 32 504 137 73%

KMP 41 855 171 80%
Heapsort 53 3333 385 88%

anumber of first-order logic rules
bresults from Miné’s abstract interpretation
cresults from abstract-value slicer

Table 2: Reduction in the Proof Size

Table 1 shows how many invariants have been sliced out by the abstract-value slicer. The
fourth column, labeled by “live”, contains the number of all the nontrivial DBM entries in the
result of the abstract interpreter, and the sixth column labeled by “useless” shows how many
of those nontrivial entries the slicer found useless for verifying the absence of array bounds
errors. The experimental result shows that about 63% to 84% of computed invariants are not
needed for the verification.

The reduction in the size of constructed proofs is shown in Table 2. For each constructed
proof, we counted the number of used Hoare logic rules, and that of used first-order logic rules.
The abstract-value slicer did not reduce the number of used Hoare logic rules, because Hoare
rules are applied as many times as the number of command constructs in a program, and the
abstract-value slicer does not change the program. However, the slicer reduced the number of
used first-order logic rules. The experimental result shows that about 56% to 88% less rules
are used for showing implications between first-order logic formulas.

5 General Framework

We now generalize the results in Section 3, and propose a framework for constructing a correct
abstract-value slicer.

Consider an abstract interpreter T with the following data:

• An abstraction domain (A,v,⊥,>,t,u), which is a distributive lattice.3

• Concretization and abstraction maps, γ and α.

• An abstract semantics [[−]] for all atomic “terms”: for all assignments x := E and inequal-
ities E ≤ E′, both [[x := E]] and [[E ≤ E′]] are defined, and denote monotone functions
on A.

In order to construct an abstract-value slicer for T in our framework, we need to provide
two kinds of data. First, for each a ∈ A, we need to specify a finite sub-poset Aa of A and a
monotone mapping αa : A → Aa such that

1. Aa is a lattice such that the least element of Aa is a, and all the other lattice operations
of Aa are inherited from A;

2. when inc is the inclusion from Aa to A, the quadruple (A,Aa, αa, inc) is a Galois injection;

3A lattice (A,v,⊥,>,t,u) is distributive if and only if

∀a, b, d ∈ A. a t (b u d) = (a u b) t (a u d) ∧ a u (b t d) = (a t b) u (a t d).
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3. αa preserves the binary meet u; and

4. for all a, b ∈ A, if a v b, then for all a′ ∈ Aa,

a′ t b ∈ Ab and a′ t b = αb(a′).

Intuitively, Aa denotes the set of all “sub-information” of a, and αa(b) extracts the strongest
sub-information of a that is implied by b. For example, in the abstract-value slicer in Section 3,
the lattice Am consists of all DBMs n that can be obtained by dropping some entries in
m: ∀ij.mij 6= nij ⇒ nij = ∞. And αm(n) records which entries of m are implied by the
corresponding entries of n:

(αm(n))ij =
{ ∞ if mij < nij

mij otherwise

Second, we need to define a procedure btrack that calculates the “backtracking” of forward
abstract computation. The procedure btrack takes three parameters. The first parameter is a
monotone function f on A, and it always has one of following three forms: [[x := E]], [[E ≤ E′]],
and the lower closure (α ◦ γ). The other two parameters are abstract elements a and b such
that b approximates the result of f from a: f(a) v b. Given such f , a and b, procedure btrack
returns a monotone function of type Ab → Aa such that4

∀b′ ∈ Ab. f(btrack(f, a, b)(b′)) v b′.

Here the input b′ to btrack(f, a, b) indicates which parts of b are used for verification, and
btrack(f, a, b) denotes which parts of a are necessary to compute b′.

Figure 4 shows an abstract-value slicer gslice for T in an imperative style, and its two
subroutines order and gbslice. Note that algorithm gbslice and gslice generalize bslice and slice
in Section 3, respectively; in bslice and slice, we use index sets to represent elements in Aa. We
state the correctness of order, gbslice and gslice:

Lemma 4 For all abstract values a and b, if a v b, then λb′.order(a, b, b′) is a well-defined
monotone function from Ab to Aa such that

∀b′ ∈ Ab. order(a, b, b′) v b′.

Proof: We first show that order(a, b, b′) is a well-defined element in Aa. Since Aa is finite and
A is a lattice, there exists the join of {a′ ∈ Aa | αb(a′) v b′} in A. Thus, order(a, b, b′) is a
well-defined element in A. To show that order(a, b, b′) is indeed in Aa, we only need to show
that {a′ ∈ Aa | αb(a′) v b′} is nonempty, because the binary join of Aa is inherited from A.
By assumption, a v b, and since b is the least element in Ab, b v b′. Thus, a v b′. Now, since
b′ ∈ Ab, by the Galois injection, αb(a) v b′.

The condition about order(a, b, b′), that is, order(a, b, b′) v b′, follows from the definition of
order. Since b′ is the upper bound of {a′ ∈ Aa | αb(a′) v b′}, it should be greater than or equal
to the least upper bound order(a, b, b′).

The monotonicity of order(a, b,−) also follows from the definition of order. If b′ v b′′, then
we have {a′ ∈ Aa | αb(a′) v b′} ⊆ {a′ ∈ Aa | αb(a′) v b′′}. So, the least upper bound
order(a, b, b′) for the first set is less than or equal to the least upper bound order(a, b, b′′) for
the other set. ¤

Lemma 5 Let a, b be abstract elements and let B be a boolean expression such that [[B]]a v b.
Then, λb′.gbslice(B, a, b, b′) is a well-defined monotone function from Ab to Aa such that

∀b′ ∈ Ab. [[B]](gbslice(B, a, b, b′)) v b′.

4Here we omitted the applications of the inclusion maps.
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Proof: We use the induction on the structure of B to prove this lemma.

1. Case B ≡ E ≤ E′: This case follows from the assumption on btrack.

2. Case B ≡ B1∨B2: By the induction hypothesis, λb′.gbslice(B1, a, b, b′) and λb′.gbslice(B2, a, b, b′)
are monotone functions from Ab to Aa. Moreover, since the binary meets of Aa and A are
identical, λ(a′1, a

′
2). a

′
1 u a′2 is a monotone function from Aa×Aa to Aa. Since λb′.gbslice(B1 ∨

B2, a, b, b′) is constructed by composing these well-defined monotone functions, it is also a
well-defined monotone function from Ab to Aa. We now show that

∀b′ ∈ Ab. [[B1 ∨B2]](gbslice(B1 ∨B2, a, b, b′)) v b′.

For all b′ in Ab, we show the required order relationship as follows:

[[B1 ∨B2]](gbslice(B1 ∨B2, a, b, b′))
= (∵ the definition of [[B1 ∨B2]])

[[B1]](gbslice(B1 ∨B2, a, b, b′)) t [[B2]](gbslice(B1 ∨B2, a, b, b′))
v (∵ gbslice(B1 ∨B2, a, b, b′) v gbslice(Bi, a, b, b′) for i = 1, 2)

[[B1]](gbslice(B1, a, b, b′)) t [[B2]](gbslice(B2, a, b, b′))
v (∵ the induction hypothesis)

b′ t b′

=
b′

3. Case B ≡ B1 ∧ B2: Let b1 be [[B1]]b and let b2 be [[B2]]b. Then, all of the following four
functions are well-defined and monotone, and have the specified type:

λb′. αbtb1(b
′ t αb(b1)) : Ab → Abtb1

λb′. αbtb2(b
′ t αb(b2)) : Ab → Abtb2

λb′. gbslice(B1, a, b t b1, b′) : Abtb1 → Aa

λb′. gbslice(B2, a, b t b2, b′) : Abtb2 → Aa

λ(a′1, a
′
2). a

′
1 u a′2 : Aa ×Aa → Aa

Since λb′.gbslice(B1∧B2, a, b, b′) is defined by composing the above functions, it is a well-defined
monotone function from Ab to Aa. Now, it remains to show that for all b′ ∈ Ab,

[[B1 ∧B2]](gbslice(B1 ∧B2, a, b, b′)) v b′.

Pick b′ from Ab. Let b′1 = αbtb1(b
′ tαb(b1)) and b′2 = αbtb2(b

′ tαb(b2)). We show the required



September 21, 2004 ROPAS-2004-22 18

order relationship as follows:

[[B1 ∧B2]](gbslice(B1 ∧B2, a, b, b′))
= (∵ the definition of [[B1 ∧B2]])

[[B1]](gbslice(B1 ∧B2, a, b, b′)) u [[B2]](gbslice(B1 ∧B2, a, b, b′))
v (∵ gbslice(B1 ∧B2, a, b, b′) v gbslice(Bi, a, b t bi, b

′
i) for all i = 1, 2)

[[B1]](gbslice(B1, a, b t b1, b
′
1)) u [[B2]](gbslice(B2, a, b t b2, b

′
2))

v (∵ the induction hypothesis)
b′1 u b′2

= (∵ the definition of b′1 and b′2)
αbtb1(b

′ t αb(b1)) u αbtb2(b
′ t αb(b2))

= (∵ b v b t bi, (b′ t αb(bi)) ∈ Ab, and the fourth condition on Aa and αa)(
b′ t αb(b1) t b t b1

) u (
b′ t αb(b2) t b t b2

)
= (∵ b′ ∈ Ab and b is the least element in Ab; so, b v b′)(

b′ t αb(b1) t b1

) u (
b′ t αb(b2) t b2

)
= (∵ (A,Ab, αb, inc) is a Galois injection; so, bi v αb(bi) for i = 1, 2)

(b′ t αb(b1)) u (b′ t αb(b2))
= (∵ A is distributive)

(b′ u b′) t (αb(b1) u b′) t (b′ u αb(b2)) t (αb(b1) u αb(b2))
= (∵ αb preserves the binary meet u)

(b′ u b′) t (αb(b1) u b′) t (b′ u αb(b2)) t αb(b1 u b2)
v (∵ b = b1 u b2 and b′ ∈ Ab; so, αb(b1 u b2) = αb(b) = b v b′)

b′

¤

Definition 6 (Slicing Domain) Let A be a program annotated with abstract elements in A.
The slicing domain AA for A consists of annotated programs A′ such that

1. A and A′ have the same underlying program; and

2. for all program point, if a and a′ are, respectively, the annotations in A and A′ at that
point, then a′ ∈ Aa.

The slicing domain AA is ordered pointwise: for A′, A′′ ∈ AA, A′ v A′′ iff for all program
point, the annotation a′ in A′ at the point is less than or equal to the annotation a′′ in A′′ at
the same program point.

Theorem 7 (Correctness) Suppose that the abstract-value slicer is given (A, T ) such that A
satisfies the constraints generated by an algorithm C(A) in Appendix A, and the initial value
A′ of T is in the slicing domain AA. Then, gslice(A, T ) terminates, and the final value A′′ of
T satisfies the following properties:

1. A′′ is in the slicing domain AA;

2. A′′ v A′; and

3. A′′ satisfies the constraints in C(A′′) in Appendix A.

Proof: All the updates of variables X in gslice have the form of X := X ua′ for some a′. Thus,
as the algorithm gslice proceeds, the values of all the variables in T get smaller. Moreover, all
the updates in gslice preserve the invariant that the value of T , which is an annotated program,
is in the slicing domain AA. Thus, as the algorithm gslice proceeds, T ’s value decreases in the
slicing domain AA. Since for each a ∈ A, Aa is finite, the slicing domain AA is finite. Thus, T
cannot decrease forever, and should become stable. This property of T ’s value shows that all
the iterations in gslice eventually terminate, so the whole algorithm gslice terminates; and that
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when gslice terminates, T ’s value is in the slicing domain AA, and it is smaller than or equal
to T ’s initial value. We will now show that T ’s final value satisfies the constraints generated
by C, by using induction on the structure of A.

Case A ≡ [a]skip[b]: Then, there exist a′ ∈ Aa and b′ ∈ Ab such that [a′uorder(a, b, b′)]skip[b′]
is the final value of T . Then,

a′ u order(a, b, b′) v order(a, b, b′) v b′ (∵ Lemma 4).

Case A ≡ [a]x := E[b]: Let T = [X](T1; T2)[Y ]. Then, there exist a′ ∈ Aa and b′ ∈ Ab such
that the final value of T is

[a′ u btrack([[x := E]], a, b, b′)]x := E[b′].

Then,
a′ u btrack([[x := E]], a, b, b′) v btrack([[x := E]], a, b, b′)

v b′ (∵ the assumption on btrack).

Case A ≡ [a]([a1]R1[b1]; [a2]R2[b2])[b]: Let T1, T2 be programs annotated with variables such
that T = [X]T1;T2[Y ]. By the definition of gslice, there exist

a′ ∈ Aa, a′1 ∈ Aa1 , a′2 ∈ Aa2 , b′ ∈ Ab, b′1 ∈ Ab1 , b′2 ∈ Ab2 ,

and R′1, R
′
2 such that such that the final value of T is

[a′ u order(a, a1, a
′
1)]

(
[a′1]R

′
1[b

′
1 u order(b1, a2, a

′
2)]; [a

′
2]R

′
2[b

′
2 u order(b2, b, b

′)]
)
[b′],

and [a′1]R
′
1[b

′
1uorder(b1, a2, a

′
2)] and [a′2]R

′
2[b

′
2uorder(b2, b, b

′)] are the final values of T1 and T2,
respectively. Here, a′, b′1, b′2, and b′ are the initial values of the variables at the corresponding
program points; and a′1 and a′2 are the final values of the corresponding variables. We can
represent the final value of T in this way, because gslice(A, T ) never modifies the last variable
in T . Since [a′1]R

′
1[b

′
1 u order(b1, a2, a

′
2)] and [a′2]R

′
2[b

′
2 u order(b2, b, b

′)] are also the values of A1

and A2 right after the recursive calls, by the induction hypothesis, their annotations satisfy all
the constraints generated by C. So, we can focus on the following three constraints:

a′ u order(a, a1, a
′
1) v a′1, b′1 u order(b1, a2, a

′
2) v a′2, b′2 u order(b2, b, b

′) v b′.

All these constraints hold by the “soundness” of order (Lemma 4).

Case A ≡ [a]
(
ifB then ([a1]R1[b1]) else ([a2]R2[b2])

)
[b]: Let T1, T2 be programs annotated

with variables such that T = [X]ifB thenT1 elseT2[Y ]. By the definition of gslice, there
exist

a′ ∈ Aa, a′1 ∈ Aa1 , a′2 ∈ Aa2 , b′ ∈ Ab, b′1 ∈ Ab1 , b′2 ∈ Ab2 ,

and R′1, R
′
2 such that such that the final value of T is

[a′ u gbslice(B, a, a1, a
′
1) u gbslice(¬B, a, a2, a

′
2)]

if B then [a′1]R
′
1[b

′
1 u btrack(γ ◦ α, b1, b, b

′)]
else [a′2]R

′
2[b

′
2 u btrack(γ ◦ α, b2, b, b

′)]
[b′],

and [a′i]R
′
i[b
′
i u btrack(γ ◦ α, bi, b, b

′)] is the final value of Ti for i = 1, 2. For each i = 1, 2,
the value of Ti does not change after the recursive call for Ti in gslice. Thus, by the induction
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hypothesis, the final values of T1 and T2 satisfy all the constraints in C([a1]R[b1])∪C([a2]R2[b2]).
We now need to show that the following four constraints hold:

[[B]]
(
a′ u gbslice(B, a, a1, a

′
1) u gbslice(¬B, a, a2, a

′
2)

)
v a′1

[[¬B]]
(
a′ u gbslice(B, a, a1, a

′
1) u gbslice(¬B, a, a2, a

′
2)

)
v a′2

(γ ◦ α)
(
b′1 u btrack(γ ◦ α, b1, b, b

′)
)

v b

(γ ◦ α)
(
b′2 u btrack(γ ◦ α, b2, b, b

′)
)

v b

The first two hold because of the “soundness” of gbslice (Lemma 5), and the other two con-
straints hold by the assumption on btrack.

Case A ≡ [a]
(
[inv i]while B do [a1]R[b1]

)
[b]: Let T1 be a program annotated with variables

such that T = [X]([inv K]while B do T1)[Y ] for some variables X, K, Y . By the definition of
gslice, there exist

a′ ∈ Aa, a′1 ∈ Aa1 , i′ ∈ Ai, b′ ∈ Ab, b′1 ∈ Ab1 , and R′1

such that

1. the final value of T is

[a′ u btrack(γ ◦ α, a, i)(i′)]([inv i′]while B do [a′1]R
′
1[b

′
1])[b

′],

2. b′1 = b′1 u btrack(γ ◦ α, b1, i)(i′), and

3. i′ = i′ u gbslice(¬B, i, b, b′) u gbslice(B, i, b1, b
′
1).

By the definition of gslice, the final value of T1 must have been obtained by the recursive call to
gslice. Thus, by the induction hypothesis, all the constraints in C([a′1]R1[b′1]) hold. It remains
to show that the following constraints also hold:

[[B]]i′ v a′1, [[¬B]]i′ v b′. (γ ◦ α)(b′1) v i′, (γ ◦ α)
(
a′ u btrack(γ ◦ α, a, i)(i′)

)
v i′,

The first two constraints hold, because gbslice is sound (Lemma 5), and i′ = i′ugbslice(¬B, i, b, b′)u
gbslice(B, i, b1, b

′
1); and the other two constraints hold, because b′1 = b′1 u btrack(γ ◦α, b1, i)(i′),

and btrack is “sound” by assumption:

∀i′′ ∈ Ai. (γ ◦ α)
(
btrack(γ ◦ α, b1, i)(i′′)

)
v i′′.

¤

6 Conclusion

In this paper, we have presented an abstract-value slicer that removes the useless parts from
the abstract interpretation results. The ultimate goal of the slicer is to improve our proof-
construction method in [SYY03], which takes the program invariants computed by an abstract
interpretation, and produces a Hoare proof for these invariants. Since the slicer reduces the
number of invariants to prove, it resulted in smaller proofs. In our experiment with Miné’s
abstract interpreter, the slicer identified 63% − 84% of the abstract interpretation results as
useless, and resulted in 56%− 88% reduction in the proof size.

Our abstract-value slicer is similar to program slicing [Tip94], because it identifies all the
irrelevant parts for achieving a given goal, and removes them. The objects that get sliced are,
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order(a, b, b′) =
⊔

a{a′ ∈ Aa | αb(a′) v b′}

gbslice(E≤E′, a, b, b′) = btrack([[E ≤ E′]], a, b)(b′)

gbslice(B1 ∨B2, a, b, b′) = gbslice(B1, a, b, b′) u gbslice(B2, a, b, b′)

gbslice(B1 ∧B2, a, b, b′) = let b1 = [[B1]]a and b′1 = αbtb1(b
′ t αb(b1))

b2 = [[B2]]a and b′2 = αbtb2(b
′ t αb(b2))

in gbslice(B1, a, b t b1, b′1) u gbslice(B2, a, b t b2, b′2)

gslice([a]skip[b], [X]skip[Y ]) ∆= X := X u order(a, b, Y )

gslice([a]x:=E[b], [X]x:=E[Y ]) ∆= X := X u btrack([[x:=E]], a, b)(Y )

gslice([a]([a1]R1[b1]; [a2]R2[b2])[b], [X]([X1]S1[Y1]; [X2]S2[Y2])[Y ])
∆= (Y2 := Y2 u order(b2, b, Y )); gslice([a2]R2[b2], [X2]S2[Y2]);

(Y1 := Y1 u order(b1, a2, X2)); gslice([a1]R1[b1], [X1]S1[Y1]);
X := X u order(a, a1, X1)

gslice

(
[a]

(
ifB then [a1]R1[b1] else [a2]R2[b2]

)
[b],

[X]
(
ifB then [X1]S1[Y1] else [X2]S2[Y2]

)
[Y ]

)

∆= Y1 := Y1 u btrack(γ ◦ α, b1, b)(Y ); gslice
(
[a1]R1[b1], [X1]S1[Y1]

)
;

Y2 := Y2 u btrack(γ ◦ α, b2, b)(Y ); gslice
(
[a2]R2[b2], [X2]S2[Y2]

)
;

X := X u gbslice(B, a, a1, X1) u gbslice(¬B, a, a2, X2)

gslice
(
[a]

(
[inv i]while B do [a1]R[b1]

)
[b], [X]

(
[inv K]while B do [X1]S[Y1]

)
[Y ]

)
∆= do { K := K u gbslice(¬B, i, b, Y ) u gbslice(B, i, b1, X1);

Y1 := Y1 u btrack(γ ◦ α, b1, i)(K);
gslice([a1]R[b1], [X1]S[Y1])

} until nothing changes;
X := X u btrack(γ ◦ α, a, i)(K)

Figure 4: Generalized Abstract-value Slicing

however, different: the abstract-value slicer works only on the results of an abstract interpreter,
while program slicing modifies a program.

Our work is also related to the proposals for combining forward and backward abstract
interpretations [CC99, Mas01]. The abstract-value slicer works backward; it backtracks each
command, and finds out what parts of the “pre-abstract-value” the abstract interpreter used
to compute the “crucial” parts of the “post-abstract-value.” Thus, adding the abstract-value
slicer as a post-processor to an abstract interpreter can be seen roughly as a forward analysis
followed by a backward analysis. However, our goal is different from existing proposals. The
proposals mainly concern about improving the accuracy of the analysis, or speeding up the
analysis time, whereas our goal is to obtain exactly the abstract interpretation results that
contribute to our verification proofs.

We currently plan to extend the abstract-value slicing algorithm in Section 3 to handle more
language features such as procedures, so that we can use the slicer for more realistic programs.
Another plan is to test the generality of the framework in Section 5 with specific abstract
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interpreters, including those for non-relational domains and the octagon domain [Min01b].
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A Constraints for the Results of an Abstract Interpreter

Pruning Algorithm [[B]] : M → M

[[E ≤ E′]]a is given [[∗]]a = a

[[B0 ∧B1]]a = [[B0]]a u [[B1]]a [[B0 ∨B1]]a = [[B0]]a t [[B1]]a

Constraint Generation Algorithm C

C([a]x:=E[b]) = {[[x:=E]]a v b}

C([a]skip[b]) = {a v b}

C([a]
(
ifB then ([a1]R1[b1]) else ([a2]R2[b2])

)
[b]

)
=

{
[[B]]a v a1, [[¬B]]a v a2, (γ ◦ α)(b1) v b, (γ ◦ α)(b2) v b

} ∪ C([a1]R1[b1])
∪ C([a2]R2[b2])

C([a]
(
[inv i]while B do ([a1]R[b1])

)
[b]

)
=

{
(γ ◦ α)(a) v i, (γ ◦ α)(b1) v i, [[B]]i v a1, [[¬B]]i v b

} ∪ C([a1]R[b1])

C([a]([a1]R1[b1]; [a2]R2[b2])[b])
=

{
a v a1, b1 v a2, b2 v b

} ∪ C([a1]R1[b1]) ∪ C([a2]R2[b2])


