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Abstract

Statically typed languages with Hindley-Milner polymor-
phism have long been compiled using inefficient and fully
boxed data representations. Recently, several new com-
pilation methods have been proposed to support more ef-
ficient and unboxed multi-word representations. Unfortu-
nately, none of these techniques is fully satisfactory. For ex-
ample, Leroy’s coercion-based approach does not handle re-
cursive data types and mutable types well. The type-passing
approach (proposed by Harper and Morrisett) handles all
data objects, but it involves extensive runtime type analysis
and code manipulations.

This paper presents a new flezible representation anal-
ysis technique that combines the best of both approaches.
Our new scheme supports unboxed representations for re-
cursive and mutable types, yet it only requires little runtime
type analysis. In fact, we show that there is a continuum of
possibilities between the coercion-based approach and the
type-passing approach. By varying the amount of boxing
and the type information passed at runtime, a compiler can
freely explore any point in the continuum-choosing from
a wide range of representation strategies based on practi-
cal concerns. Finally, our new scheme also easily extends to
handle type abstractions across ML-like higher-order mod-
ules.

1 Introduction

Statically typed languages with Hindley-Milner polymor-
phwm [8] have long been compiled using inefficient and jtdiy
bozed data representations. Under these implementations,
all program variablea, function closures, function parame-
ters, and record fields are uniformly represented in exactly
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one word. If the natural representation of a value does not
fit into one word, the value ia boxed (e.g., allocated on the
heap) and the pointer to this boxed object is ueed instead.
For example, in the following ML code,

fun quad (f ,x) =
let val z = f(f(f(f(x))))

in (z: :z::nil)
end

Val p = (1.7, 3.1)
fun rnv (x, y) = (x + 3.1, y + 2.7)

function quad is a polymorphic function with type Va.(((a ~
a) *a) ~ CYlist); ~ of the four calls to f inside quad must
use the most conservative calling conventions—passing z as
a single-word object. Vrdue p is a pair of floats, but since
it might be passed to polymorphic functions and treated as
objects of type a x a, its entire data structure ia fully boxed
at each layer (see Figure 1a). Similarly, tbough function
mv has monomorphic type (real* real) ~ (real x real), it
cannot use any special calling conventions; not only it is rep
resented w a boxed closure. but its ariruments and return
results must be assumed as fully boxed as well (see Fig-
ure 1a). Uniform full boxing does implement polymorphism
correctly, but it has two major drawbacks: first, because of
the boxing, monomorphic code runs much slower than those
written in C or assembly languages; second, since all data
objects must be fully boxed, the interoperability with low-
level C or assembly code is difficult and inefficient.

Xavier Leroy [19] recently presented a representa-
tion analysis technique that does not always require vari-
ables be boxed in one word. In his scheme. monomorphic
objects such as p and mv can use efficient unbozed represen-
tations (see Figure lb): value p can stay in two floating-
point (FP) registers and function rnvcan freely pass the ar-
guments and return the results in two FP registers. When
monomorphic objects are passed to polymorphic contexts
(ss in quad(mv, p)), they are coerced back into fully boxed
representations. Leroy’s technique, unfortunately, does not

handle recursive datatypes and mutable types well. Coer-

cions on large data structures are impractical because the

cost of the copying often outweighs the benefits of unboxed

represent at ions [19, 14]. More seriously, mutable data st ruc-

tures such as arrays cannot be copied or coerced; if we make

a copy of the value to box the components, then updates
to the copy will not be reflected in the original array and

vice versa. As a result, values such as lists and arrays must

still use fully boxed representations, even when they are not
inside polymorphic contexts.

Harper and Morrisett [14, 24] later solved this problem on
recursive and mutable types using a type-passing approach.
Under their scheme, data objects (including lists and arrays)
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We use boxed type trees to illustrate boxing for complicated type structures (e.g., MV’S). Each box refers to
one boxing layer. ML type real is abbreviated as the symbol r.

Figure 1: Comparison of Various Data Representations.

are kept “unboxed” all the time, even inside polymorphic
contexts. Polymorphism is not implemented through coer-
cions, but by using runtime type analysis and code manip
ulations. For example, function quad is implemented with
an extra runtime type parameter a; all primitive operations
inside quad (e.g., function call f (x), list cons z: :nil) must
anaIyze the type (a) at runtime in order to select and dis-
patch to the appropriate code to manipulate unboxed ob-
jects. The type-passing approach is still not satisfactory, for
the following reasons:

●

●

Although monomorphic code can fully take advantages
of the unboxed representations, polymorphic code be-
comes much slower than the full-boxing approach. In
fact, all primitive operations inside polymorphic con-
texts are no longer primitive: simple function calls (or
returns) and record operations (e.g., creation, selec-
tion, list cons) now become either indirect procedure
calls or large typerec switches [24]. Compiler opti-
mization such as type specialization may eliminate
part of these overheads, but they can lead to code ex-
plosions or excessively long compile time.

A more severe problem, also called the varatw vrob-
lern (see [24, page 216 and 175] for details), is ~h~ im-
plementation of function definitions and function calls
with arguments of unknown types (e.g., the applica-
tion of f inside quad). The challenge is to simulate
the advanced calling conventions baaed on the runtime
type information (since the actual f may use any call-
ing conventions). For machines with k argument reg-
isters (including FP registers), this would require 2k
cases (e.g., entrant code, coercions) to deal with all
the possible calling conventions [24]. Actually, mod-

ern compilers often use even more elaborate calling
conventions [5, 17]—making the above simulation vir-
tually impossible. Of course, one could always resort
to runtime code genemtion [18, 4, 9] or simply use a
very restricted set of calhng conventions [24], but then,
either the cost is too expensive or the interoperability
suffers.

This paper presents a new flexible representation analysis

technique that combines the best of both the coercion-based
and the type- psssing approaches. Our new scheme supports
unboxed representations for recursive and mutable types, yet
it only requires little runtime type analysis. Our idea is sim-
ple: we avoid the heavy-weight runtime type manipulations
by boxing all polymorphic values; however, instead of doing
full boxing se in the coercion-baeed approach [19], we use the
simpl~ boxed representation (see Figure lc) or other partially
boxed representations (see Figure Id). Intuitively, a simply
boxed object just boxes the top layer of the data structure
so that the entire object can be referenced aa a single-word
pointer. Simple boxing is generally much cheaper than full
boxing, and most of the time, it is just an identity function
because the natural representations of many “unboxed” ob-
jects (e.g., lists, closures, records, arrays) are already simply
boxed. Simple boxing solves the problem of recursive and
mutable types because any simply boxed object can be ese-
ily unboxed (at the top layer) before being cons-cd onto lists
or put inside arrays.

Simple boxing is trickier to implement than full boxing
because the coercion may also rely on runtime type informa-
tion. For example, coercing an object of type /3* ~ into type
w would involve first unboxing the @ and Y fields, and then
pairing them up based on the actual types /3 and y have at
runtime.

More interestingly, there is a continuum of freedom be-
tween the coercion-based and the type-passing approaches:
by varying the amount of boxing and the type information
passed at runtime, a compiler can freely explore any point
in the continuum, choosing from a wide range of representa-
tion strategies as the canonical bozedform. This flexibilityy is
particularly nice because one can trade boxing with runtime
type manipulations on the per-tycon (i.e., type constructor)
basis. For example, using the partially boxed representation
shown in Figure Id, we can completely elirrinate the vararg
problem in the type-passing approach (see later sections for
more details).

The main contributions of this paper are:

● Among all the known coercion-based approaches [19,
26, 27, 15, 33, 36], our scheme is the first to successfully
solve the open problem on recursive and mutable types.
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val z : (real * real) list = [(4.51,3.14),(4.51,2.33),.... (7.81,3.45)]

Figure 2: Comparison of Various List Representations

Unlike the type-passing approaches [25, 14, 24, 34], our
scheme requires little runtime type analysis, even for
the heavily polymorphic programs.

Our scheme is very flexible because a compiler can
trade boxing with runtime type analysis on the per-
tycon baais. In Section 3, we present a formal frame-
work and a set of axioms that precisely characterize
this trade-off.

By choosing partially boxed representations (e.g., Fig-
ure Id) as the canonical boxed form, our scheme can
completely eliminate the nasty vararg problem.

We extend Leroy’s representation analysis to a predica-
tive variant of the polymorphic ,1-calculus FW[10, 28].
We show that our technique works for both the ML-
style polymorphism and the Fw-like higher-order poly-
morphism.

We show how easily our scheme can be extended to
handle type abstractions across ML-like higher-order
modules [22, 21, 11, 20].

We show that with a simple twist based on the para-
metricity property, most runtime type manipulations
in our scheme can be eliminated.

We have implemented our scheme (with partially
boxed representations) in an experimental version of
the SML/NJ compiler [3, 33]. Preliminary measure-
ments show that code involving recursive and mutable
types gets significant speedup while normal polymor-
phic code remains almost as efficient as before.

In the rest of this paper, we first give an informal presen-
tation of the main idea. We then formalize the presentation
and give several major theorems about our flexible approach.
We also show how to extend our scheme to handle the en-
tire ML language [22]. Finally, we discuss the experimented
results, the related work, and then conclude.

2 Informal Development

In this section, we present a series of examples in which we il-
lustrate both previous approaches and our flexible approach
to the implementation of polymorphism.

2.1 Canonical boxed form

The key to the implementation of polymorphism lies on how
to define the canonical bozed form given a polymorphic ob-
ject of type a (a single type variable), what should its rep
resentation be like ? Of course, the representation depends
on the actual instantiation of W. So assume a is instantiated
into type r, how do we represent such a value of type r ?

Canonical boxed form used in all the coercion-based ap
preaches is indeed always boxed. That is, it can be handled
as a single-word object. This dramatically simplifies the im-
plementation of polymorphism, because all objects of type
a can be manipulated in the same way regardless of what
a really is. For example, primitive operations such as func-
tion applications and record operations can all be inlined at
compile time: a value of type a * @ can be built by simply
creating a two-word record, each containing the correspond-
ing boxed value, and so on. In type-passing approaches, the
“canonical boxed form” is not always boxed, so it may not fit
in one word; this makes all polymorphic primitive operations
dependent on runtime types.

Once the canonical boxed form is decided, two primitive
coercion functions can be defined: urap[r] converts a value of
type r from its natural unboxed form into the correspond-
ing canonical boxed form—simulating a value of type a;
unwrap[r] does the reverse,

Coercions for more complicated types can be inductively
defined based on these two primitive coercions (see Sec-
tion 3.5 or Leroy [19] for more details). For example, to im-
plement the function application quad(mv, p) defined ear-
lier, w is coerced from (real* real) -+ (real * real) to
a + a as follows (assuming a call-by-value semantics):

mu’ = ,4v : cr.urap[r*r](rnv( unvra~r*r]( ~)));

then p is coerced into p’ = urap[r*r](p), and the function
call to quad( mv’,p’) is performed.
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Figure 3: Coercion Must Commute with Type Instantiations

Coercion-based approaches would have worked nicely if
all data objects were coercible. Unfortunately, many com-
monly used objects are incoercible. Coercions on large data
structures are impractical because the cost of the copying of-
ten outweighs the benefits of unboxed representations [19].
More seriously, mutable data structures such as arrays can-
not be copied or coerced; if we make a copy of the value to
box the components, then updates to the copy will not be
reflected in the original array and vice versa. Therefore, all
coercions on recursive and mutable objects must be treated
aa identity functions.

In the earlier example, the result of quad( mu’,p’) should
be coerced from a list to (real *real) list. But since this
is too expensive, the list is not coerced. This forces all lists
of type (real * real) list to use same representations as
those for a list, (/3* y) list, or (/3* real) list, etc., since
they can all possibly be instantiated into (real* real) list.

For this reason, all previous coercion-b=ed approaches
use full boxing as the canonical boxed form. Unlike other
monomorphic values, monomorphic lists such as (real*
real) 1ist and arrays must always use the fully boxed rep-
resentations es shown in Figure 2a.

2.2 Simply boxed representations

Our main idea is to use the simply boxed or partially boxed
representations as the canonical boxed form. Simple boxing
just boxes the top layer of a data structure. For example,
simple boxing of the value p would just build a flat vector
of floats (see Figure lc). Under simple boxing, application
of quad( mu‘,p’ ) would return a simply boxed list as shown
in Figure 2b.

It is easy to simply box monomorphic values such as
real * real, but what about polymorphic values such es
~ *7, or ~ *real, or real*y ? More generally, how to define
urap[r] and unurap[r] if r contains type variables ?

One could attempt to box /3* real by treating @ as a sin-
gle word. This does not go very far. Consider the following
ML code:

fun foo(x, y) = (x, y+3.0): :nil
fun bar(x, y) = (x+3.0, y): :nil

Here, foo has type VP.( /3 * real) ~ ((3 * real) list and
bar has type V~.(real * ~) ~ (real* y) list. The list cons
operation :: has type VcY.(cv*cr list) ~ a list, so the pairs
inside foo and bar will be coerced by either urap[~ * real]
or vrap[real * y] before being cons-cd onto the empty list.
Figure 3 shows the corresponding coercions inserted when
we apply foo and bar to p.

Clearly, neither produces the simply boxed list. The cor-
rect definition of vrap~ * real] (or imap[real * y]) is, of
course, to first uncouer (unbox) the ~ or y field and then
build the exact same vector as in Figure lc. The “uncover”
operation does not have to be done recursively because by
invariant, ~ is already in the simply boxed form. Uncover-
ing does require the use of runtime type information (the
actual type of L?); this is realized in the same way as in the
type-passing approach [14].

One important insight we get here is that a boxing scheme
can serve as a vaiid canonical boxed form only if it commutes
with the type instantiation relations. A type variable CYcan
be instantiated into either ~ * real or real *y, then further
into real * real; whichever path it takes, the two resulting
boxed forms (and their corresponding coercions) must be
equivalent (see Section 3.5 for the details).

In most compilers, data structures like lists often use the
simply boxed form as their default monomorphic represen-
tations. This fits extremely well with simple boxing because
most common list functions (e.g., cons, map, fold, length,
append) remain aa efficient as they could be. For example,
in the following ML code:

fun mapf 1 = let fun ❑ (a::r) = (f a) :: (m r)
I ❑ nil = nil

inml
end

val z = [(4.5, 3.1), (4.3, 2.0), . ..]
val nz = map mv z

Here map has type Vcr/3.(cY+ /3) + (a list + @ list),
so function MVis coerced into mu’ (defined before in Sec-
tion 2.I ). List z is incoercible, so it is not coerced. When
the internal loop IIItraverses the list, the only invariant it re-
quires is that every element be a single-word pointer. Simple
boxing does satisfy this invariant, so no extra coercions or
runtime type analysis are necessary.

There are cases where simple boxing requires more coer-
cions than full boxing. These situations are often less com-
mon, and when they occur, the coercions are always kept
at the minimum. For example, when applying the follow-
ing function unzip, which has type Vex@.(a * ~) list ~

o list * /3 list, to the simply boxed list z in Figure 2b,

fun unzip 1 =
let fun h((a, b)::r, u, U) = h(r, a::u, b::u)

I h(nil, u , u) = (rev u, rev W)
in h(l, nil, nil)

end

the only coercion necessary occurs when applying the :: pro-
jection to (a ,b) :: r where each list element (a flat float vec-
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tor) is coerced into a standard boxed record of type a * 6.
(through urmrap[cr * ~]).

Simple boxing also supports flat lists as shown in Fig-
ure 2C and flat arrays easily because any simply boxed ob-
ject can be uncovered at the top layer only 1 and then be
cons-cd onto lists or put inside arrays. Of course, all poly-
morphic list and array primitives will now become partially
dependent on the runtime types.

2.3 Partially boxed representations

One problem with simple boxing is that their primitive co-
ercions, urap[r] and unvrap[r], may also run into the nsst y
vararg problem encountered in the type-paesing approach.
Fortunately, by using the partially boxed representations
(such as the one in Figure Id) as the canonical boxed form,
we can completely avoid this problem. Partial boxing here is
similar to simple boxing, except it also maintains the invari-
ant that all function arguments and results are also partiallg
bozed into a single word.

Under partial boxing, coercions on unknown function
types never depend on runtime types. For example, un-
der simple boxing, vrap[a + /3] would need to uncover a
and /3; this is not necessary under partial boxing because by
invariant, a and /3 should already be in the partially boxed
form.

The effect of using partial boxing on the rest of the code
is very minor. Data structures such as (real* real) list are
represented exactly same = those under simple boxing. Flat
lists or flat arrays can still be built through the simple uncov-
ering. AU monomorphic functions such as (real * real) -+
real can stiIl use the special calling conventions (passing
arguments in FP registers, etc); they will be partially boxed
only if they are put inside data structures such as liits and
arrays.

Bv

Variant A Variant B

EA-h E(il-h
Figure 4: Two Variants of Partial Boxing

2.4 Other valid boxing schemes

Simple boxing and partial boxing are not the only possible
boxing schemes. In fact, one of our main contributions is to
give the precise conditions (in Section 3) about what kind
of boxing schemes can serve as the valid canonical boxed
form. There is actually a continuum of possibilities between
full boxing and no boxing. For example, Figure 4 gives two
interesting variants of the partial boxing scheme, each with
different trade-offs on the vararg problem:

● In variant A, instead of boxing the entire arguments
or results into a single word, we box each individual
argument and return result only. This means that

1~lly box~ ~bj=ts are recursively boxed at e~h laYer, so they

cannot be easily uncovered.

multi-argument (or multi-return-result ) functions can
pass each argument (or result) in designated general-
purpose registers. The vararg problem is not com-
pletely eliminated because coercing a boxed value into
a function of type a ~ ~ requires examining the run-
time type of a and /3.

c Variant B is same as variant A except we let the entire
return results be boxed as in the standard partial box-
ing approach. Since most functions have a single re-

turn result (always true in C and assembly) this might
be a good compromise. Of course, we could limit the
number of arguments also (e.g., allow 5 boxed args
maximum); doing so would further simplify the imple-
mentation of the vararg coercions.

This kind of flexibility is very useful when we compile
languages with a richer set of type constructors. One can
imagine to have several different record or function tycons:
all would work in any contexts, but some perform better on
the monomorphic code and others do better on the polymor-
phic ones. The flexible framework also gives us finer control
on the boxing degrees, making it easier to interoperate effi-
ciently with lower-level C and assembly code.

3 Formalization

In this section, we present a formal framework to explain
our flexible representation analysis techniques. Instead of
performing the analysis directly on the ML source language
(SRC), we use a predicative variant of the polymorphic A-
calculus FW [10, 28, 14] as the intermediate language (IL).
Representation analysis is then expressed as a type-directed
program transformation that automatically inserts coercions
and translates IL programs into the target implementation

‘~ [14]). The benefit ofCalCUIUS (TGT—also known ss Ai

doing it this way is to show that our analysis works not only
on the ML-like polymorphism [8] but on the more general
higher-order polymorphism aa well.

The rest of this section is organized m follows: we first
give the syntax and semantics of the three languages: SRC,
IL, and TGT; we show how to embed the SRC language
into IL, and then presents the IL-t~TGT translation algo-
rithm that does the representation analysis; we prove the
type correctness and the semantic correctness of our trans-
lation, and then give a set of axioms that characterize the
valid canonical boxing schemes; finally, we formally define
simple boxing and partial boxing, and show why they all
satisfy these axioms.

3.1 Source language: SRC

We use a variant of Mini-ML [7] as our source language
(SRC). Its syntax is defined by the following grammar:

(monotypes) r ::= tlintlreallrl*m
I rl+r21r pack

(Jxdytps) a ::= ‘rIW.a
(terrn9) e ::= zlil~[(el,ez)lrlelmze

I elez [ k.e I pke Iupke
I letz=vine

(values) v ::= zlilfl(ul,tiz)l~z.elpkv

Here, monotypes r are either type variables (t), int, real,
binary product types, arrow types, or pack types. Poly-
types (i.e., type schemes) o are either monotypes or prenex
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quantified types. Terms e consist of identifiers (z), inte-

ger constants (i), float constants (~), pairs, first and second
projections, abstractions. applications, let expressions, and
packing and unpacking expressions. Values (v) are a subset
of terms and include identifiers, constants, pair of values,
abstractions, and packed values.

The static and dynamic semantics for SRC are all stan-
dard and same as those for Mini-ML (see [7, 14, 24]). The
type inference rule (given later as part of the translation
from SRC to IL in Figure 6) is in the form of A; r F e : r
where A is a set of free type variables, and r is a type envi-
ronment mapping identifiers to polytypes. We also restrict
the let-bound expressions to values [37] so that type abstrac-
tions can be made explicit in the translation. The natural
(cdl-by-value) dynamic semantics for SRC can be defined
as e -. u where e is a closed expression and v is a closed
value.

To show how our techniques apply to arbitrary recursive
or mutable types, we introduce a special type constructor
named pack in SRC. The typing rules and the operational
semantics for packing and unpacking are defined as foUows:

A;rke:r A; I’1-e:r pack

A;rl-pke:r pack A;rkupke:r

e-au e-, pkv

pke~spkv upk e -~ v

We divide all type constructors into two categories: co-
ercible tycons are those type constructors whose values can
be readily coerced at runtime; incoercible tycons are those
whose values cannot be coerced because either it is too ex-
pensive or it violates the semantics. For example, int, real,
binary product, and arrow tycons are usually coercible ty-
cons; alI recursive and mutable tycons (e.g., lists, arrays) are
incoercible tycons. To simplify the presentation, we use pack
to serve as a representative for incoercible tycons; however,
all techniques described here easily carry to other incoercible
tycons.

3.2 Intermediate language: IL

We use a predicative variant [12, 14] of the polymorphic ~-
calculus FU [1O, 28] as our intermediate language. The four
syntactic classes for IL, kinds (K), constructors (p), types
(u), and terms (e), are defined as follows:

(kinds) K ::= Q / KI + IG2
(con’s) p ::= t I Int I Ileal I Pack(#) la (PI, M)

I X(P1,P2) I Jt :: ~.p IM[P21
(type9) u ::= T(p) I al + C7zI UI x U2 I Vt :: fc.a
(terms) e ::= zliljl Pkl Upkl{el, e2)l r1el~2e

I Az : cr.e I @ele2 I At :: x.e I e[p]

(vaiues) v ::= i ! $ I Pk I Upk I PKu(v) I (vi, v2)
I AX : u.e I At :: ~.e

and application forms. The values defined here are closed
and used by the operational semantics; to account for the
packed values, we use PKP(v) to denote the result of applying
term Pk[p] to vafue v. This calculus is predicative because
term expressions can only be applied to constructors (~) but
not arbitrary polymorphic types (u).

The static semantics of IL, given in Figure 5, consists
of a collection of rules for constructor formation, construc-
tor equivalence, type formation, type equivalence, and term
formation. The term formation rules are in the form of
A;r 1- e : u where A is a kind environment mapping
type variables to kinds, and I’ is the type environment.
Apart from the standard language constructs [14], the pack-
ing primitives have the following types:

Pk : W :: Q.T(t) ~ T(Pack(t))
Upk : W :: Q T(Pack(t)) ~ T(t)

The natural (cafl-by-vslue) dynamic semantics for IL, also
given in Figure 5, is defined as a set of axioms in the form
of e -, v where e is a closed term and v is a closed value.
Because IL is very much like Harper and Mitchell’s ,4‘L [12],
we can show in the similar way that type-checking for IL is
decidable, and furthermore, its typing rules are consistent
with the operation semantics.

3.3 Translation from SRC to IL

In Figure 6, we give a type-directed embedding of SRC into
IL. This is very similar to the translation from Cor~ML to
XML, given by Harper and Mitchell [12]. The translation is
defined as a relation A; r 1- e, : r ~ e, that carries the
meaning that A; r F e. : r is a derivable typing in SRC
and that the translation of the SRC term e. determined by
that typing derivation is the IL term e,. Here, the (oar) rule
turns the SRC implicit instantiation of type variables into
the IL explicit type application; the (pk/upk) rule shows the
pack/unpack terms in SRC are implemented by polymorphic
primitives Pk and Upk in IL; the (let) rule converts the SRC
let expressions into normal IL function applications; the
rest of the rules are all straight-forward.

The translations from SRC monotypes to IL construc-
tors (writ ten as rm ) and from SRC polytypes into IL types
(written as a’) are defined as follows:

t“’ = t
intro = Int

real”’ = Real

(rI * T2)”’ = x(r~, r~)

(7I ~ rz)m = + (r~,r~)
(r pack)m = Pack(rm)

= T(rm)
(Vt.a;: = Vt :: $2.U’

Here, kinds classify constructors, and types classify terms.
We write AP for the kind assignment mapping tto the kind

Constructors of kind Q name monotypes. The monotypes
Q for each tc A, and I’p for the type environment mapping

are generated from variables, Int, Real through the con-
z to (r(z))’ for each x E l)om(r’). The following standard

structors ~, x, and Pack; here, Pack is the counterpart of
type preservation theorem can be proved by structural in-

the pack tycon in SRC. The application and abstraction con-
duction on the translation rules:

structors correspond to the function kind K1 ~ KZ. Types Theorem 3.1 l.. A;I’ !- e, : r~ ei, then AP; I” 1- e: : r’.
in IL include the monotypes, and are closed under prod-
ucts, function spaces, and polymorphic quantification. Like
Harper and Morrieett [14], we use T(p) to denote the type A semantic correctness theorem about this embedding can
corresponding to the constructor p. The terms are an explic- also be stated and proved using the standard logical-relations
itly typed A-calculus with explicit constructor abstraction technique [24, 19].
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Constructor Formation and Constructor Equivalence:

( tuar/tcon) Av{t::K}Dt::tc AD Int::~ A D Real :: Q

(pk/fi/pair)
ADp::fl A~pl::fl Abpz::fl ADpl::Q AD I.Q::Q

A D Pack(p) :: ~ A D X( PI, P2)::~ AD ~(pl,pz)::fl

(cequiv)
AIiI{t::K’}DpI::K ADp2::K’

A D (At :: /c’./.4I)[P2] E [/L2/t]#l :: K

Type Formation and Type Equivalence:

(tjorm)
ADp::fl APUI ADOZ ADUI A~uz Aw{t::K}ou

A D T(p) ADISIXOZ ADC1-CZ A D Vt::K.U

Term Formation:

(const/uar) A;~ 1- i:Int A;r 1- j: Real Air t-Z:r(z)

(pk/upk) A;r 1- Pk : Vt :: Q.T(t) ~ T(Pack(t)) A; r 1- Upk: W:: $2.T(Pack(t)) ~ T(t)

A;rl-el:ul A;rl-ez:az
(pair/ith)

A;rt-e:olxuz

A;r 1- (el, ez):ul xuz A;rl-xle:ml
(1=1,2)

(Wwp)
A;r M{z: al} F e:crz A;rt-el:a’4a A;rl-es:u’

A;r i- ~z:al.e:al~crz A;r i- Qelez :U

Aw{t:x}; rt-e:a
(tjn/tapp)

ADp:; IC A;rl-e:Vt::~.u

A;r 1- At :: ice : Vt :: K.U A; I’ i- e[p]: [p/t]@

Natural Dynamic Semantics:

e] +, .4z : u’.e ez +, v’ [v’/z]e ‘i V ea +i At :: K.e’ [p/t]e’ Q, w
V+, v

@ele2 ‘i W e[p] ‘i V

e+; v e Qi PKP(V) el f-+, V1 e2 +1 v2 e ‘i (7M,v2)
@(Pk[p])(e) -i PK~(v) @(Upk[p])(e) ~~ v (e~,ez) ‘1 (v~,vz) rle -, vJ (j= 1,2)

Figure 5: The Static and Dynamic Semantics for IL
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(const)

(uar)

(pk/upk)

(patr/ith)

(fn/aPP)

(let)

A:rl-i:int+t A;rkf:real+f

r(z) = w, .,. tn. r p={t, wr, [i=l,. ... n} FTV(p(T))CA

A;r 1- z : p(r)* Z[rr] [r:]

A;r Ee:r~e’ f3; l_’1-e:rpack*e’

A;r 1- pk e : r pack ~ @(Pk[#’’])(e’) A; r 1- upk e : r ~ @(Upk[rm])(e’)

A; I’1-el:rlaej A;rl-ez:rz~e\ A;rl-e:rl*~z~e’

A;r 1- (el, ez) :T1 *r2* (e~, ej) A;r R x,e : ~1+ ifle’
(i= 1,2)

A;r M{z:rl}Fe:rz~e’ A;rl-el:r’~r~e{ A;ri-ez:r’~e~

A;r t- Az.e : n ~ T2~ Az : r~.e’ A;r 1- elez : r~@eje~

Au{il, ....~n}.r~ v:ro~e~ UO=VtI,... ,tTOTO A;rkl{z:ao] 1- e:r~e~

A;r 1- let z = v in e : r + @(Az : u~.e~)(Atl :: fl,..., At~ :: fl.ej)

Figure 6: Translation from SRC to IL

3.4 Target language: TGT

The target language (TGT) for our representation analysis
‘L [14]. In fact,is very similar to Harper and Morrisett’s ~i

because our IL is much like A‘~ TGT is essentially the
previously defined IL plus Harper’ and Morrieett’s typerec
forms [14]. The four syntactic classes for TGT, kinds (K),
constructors (p), types (a), and terms (e), are defined as
fouows:

[khnd~) ~ ::= . .. same as in IL ...
7

P
..—..—. .. IL constructors .. . I Boxed(p)

1 Typerec# of (flil#rlfl-l#xl#p!P~)
(types) u ::= . . . same as in IL ...
(terms) e ::= .. . IL terms ... I box Iunbox

I typerec p of [t.u](eile,le-le ~lePle~)
(values) v ::= ... IL vaiues .. . [ box I unbox IBX~(v)

Here, the Typerec and t yperec forms are the keys for in-
tensimal type anai@ [14]. They provide the abfity to de-
fine new constructors and terms by structural induction on
monotypes. Also, Boxed is a new special primitive boxing
constructor; box and unbox are two new term-level boxing
primitives with the following types:

box : W ::Q.T(t)+ T(Boxed(t))
rmbox : Vt ::0. T(Boxed(t)) ~ T(t)

Intuitively, Boxe~fl] denotes the boxed version of a given
constructor (monotype) p. We intentionally treat these as
primitives because how they are actually implemented does
not affect the correctness of our representation analysis.

As in IL, the values defined here are closed and used
in the operational semantics; we use BXX(V) to denote the
boxed value of applying term box[p] to value v. The static
semantics for TGT is almost identical to those for IL in
Figure 5 (the TR version of this paper [30] contains the
details); the additional rules for Typerec and typerec are
same as those in Harper and Morrisett [14]. The operational
semantics for TGT, written u e -~ v, is similar to those for
IL also. Harper and Morrisett [14, 24] have shown that type-
checking for APL is decidable, and furthermore, its typing
rules are consistent with the operation semantics. Similar
results hold for our target language TGT.

3.5 Translation from IL to TGT

Now that we have translated SRC into IL and given the
syntax and semantics of TGT, representation analysis can
be expressed as a type-directed transformation from IL prc-
grams to TGT programs. This translation is defined as a
relation A; r 1- ea : r +- et that carries the meaning
that A; I’ 1- ei : r is a derivable typing in IL and that
the translation of the IL term el determined by that typing
derivation is the TGT term et.

We begin by introducing a special constructor Wrap ::
Cl~ Q and a pair of primitive operations:

wrap : Vt :: Q. Z’(t) a Z’(ilrap[t])
unwrap: Vt :: Q. T(Hra~t]) ~ T(t)

Intuitively, Ura~p] denotes the canonical boxed form of a
given constructor (monotype) p; wrap and unwrap are ex-
actly those primitive coercion operations mentioned in Sec-
tion 2.1. We intentionally delay their definitions in order to
show that the representation analysis framework described
here does not depend on any particular wrapping schemes.
Both the constructor and the primitives will be defined later
in Section 3.6, using Typerec, typerec, and the basic boxing
primitives box and unbox.

The translation from IL constructors to TGT construc-
tors, written ss IAu,is defined as follows:

t“
Int”

RealU
(X(p,, p,))”

(+ (M , P2))”
(Pack(p))”
(At :: K.IJ)”

(M [P21)U

t
Int
Real
X(p; ,p;)

+ (P:$P;)
Pack(Urap[p])
At :: IC.pu
IA’[P:]

Notice this translation is almost a trivial identity mapping
except that incoercible tycons such as Pack are treated spe-
cially: the element type p is translated into a ‘wrapped”
version of itself, Incoercible data structures (in TGT) will
not change its representations when switching between the
monomorphic and polymorphic contexts.
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(base)

A;rl-el:ul+e\ A;rl-e2:u2+e~
(P@) A;r 1- (el, ez):ul xuz+(e(,e~)

A;r Lc:-+c (c= i, f, Pk, Upk)

A;ri-e:ulxm. +e’

A;rF~ie:~i+~i
(i= 1,2)

A; 1’w{z:ul}l-e:u2 *e’
(fn/ap)

A;rt-el:d+a se\ A;rl-e2:u’+ej

A;r 1- Az:al.e: ul~u2*Az:u~. e’ A;r t- Qelez : u * @eiej

(tapp)
A;r 1- e : Vt :: x.u * e’ e: = CC([pw/t]u”, [p’’/t]a”)

A; r 1- e[p] : [p/t]u + @e~(e’[pw])

Figure 7: Translation from IL to TGT

Cc(x(pj, p;), X(pl,pz))
CC(+ (P; ,A),+ (Pi,P2))

Cc(p’,p)
Cc(Urap[p], p)
Cc(p, Urap[p])

cT(z’(#’), i“(p))
c7(vt :: KA7’,vt :: W)

c7(a; x aj, al x c-r2)
C7(C7;+ C7:,C71+ C72)

= c7(T(p;)x T(pj), I“(JJ,) x T(p2))
= cT(T(/.l; ) + T(/J;), T(/J, ) + T(p2))
= ident itfip] ifp~p!andA~p::fl
= unura~p]
= Wrap[p]

= Cc(/J’,V)
= Af : W ::K.u’.(At :: K.(@(CT(a’, a))(f[t])))

= AZ : aj x a!. (@(cT(a;,C7,))(Tlz),@(c7(fY4,Cr2))(T2z))
= V :d + &Az :~1. (@(c7(a:, c72))(@(f)(@(c’f (ul, u;))(z))))

Figure 8: The Coercion Generator

The translation from IL types to TGT types, written as
a“, is just a simple extension of p“:

T(p)ti = T(pti)
(Vt :: K.U)U = Vt :: Ic.u”
(IY, x a,)” = O? x u;

(al + az)” = u: - m;

Finally, to make the presentation easier, we use pw to
denote the “wrapped” version of the above translation p“.
For any IL constructor p, ~w applies the Urap constructor
to the result of pti:

P“ = Urap[p”] ifflbp::f)
= (At’:: ict[t’])w if APt::fc+fc’

(At :: K./b:; = At :: K.pW

(141[P21)W = X’[PH

Notice when ,u is a constructor with higher-order kinds,
“wrapping” is performed recursively on the body of the con-
structor.

Given a substitution p mapping t to IL constructors,
we write p“ and pw as the new substitutions mapping t to
(p(~))” and (p(t))w for each tE Dom(p). We also write A“
for the kind assignment mapping t to the same kind A(t) for
each t E Dom (A), and I’” for the type environment mapping
z to (17(z))” for each z c ~om(r).

We define a set of axioms that characterize the valid
canonical boxing schemes and give two propositions about
the type translation. Both propositions can be proved by
inductions on the syntactic structures of the IL constructors
and types.

Definition 3.2 (valid canonical boxed form) Given a
constructor definition for Wrap in TGT, we say it is in the
valid canonical boxed form it it commutes with substitution
and the following constructor equivalence rules can be de-
rived in TGT:

Urap[p] S Urap[Urap[p]]
Wra~x(jtl, p2)] E Urap[x (Wra~pl], Wrap[p2])]

Hrap[+ (flI, p2)] ~ Urap[+ (Urap[p~], Urap[p2])]

J40re generall~, if SRC contains more coercible constructors
such as x with arity k (k > 0), and ,y’ is its counterpart in
IL and TGT, then Urap[x’(pl, . . . . ~k)] must be equivalent
tO hkap[x’(wrap[pl], . . . . wrap[~k])].

Proposition 3.3 Ij Hrap is in the valid canonical bozed
form, then both p“ and u“ commute with substitution. More
specifically, suppose p is a substitution mapping t to IL con-
structors, g is an IL constructor, and u is an IL type, then

(P(P))Us P“(PU) and (P(u))”s PU(C+’).

Proposition 3.4 If Wrap is in the valid canonical boxed
form, then p“’ commutes with substitution. More specifically,
suppose p is a substitution mapping t to IL constructors and
p is an IL constructor, then (p(u))w s pw(pw).

The term translation rules are given in Figure 7 as a series
of inference rules that parallel the typing rules for IL. Most
of these rules are straight-forward. The only interesting case
is the ( tapp) rule; this is the place where representation co-
ercions are inserted. Notice we always ‘wrap” the argument

constructor p before doing the type application; this reflects
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the invariant that all TGT values with unknown type are
always wrapped. The coercion term e; is generated at cotn-
pde time by the coercion generators CC and Gr defined m
Figure 8. Here, identity is the polymorphic identity func-
tion. Given a pair of TGT types u’ and u, the result of
C-T(U’,o) is a TGT term that coerces values of type u’ into
those of type a; similarly, given a pair of TGT constructors
p’ and p, Cc(p’, p) returns a TGT term that coerces values
of type T(p’) into those of type Z’(p). In essence, our co-
ercion generator plays the same role as Leroy [19]’s S and
G transformations. The following proposition shows that
the coercions generated above remedy the type mismatches
caused by constructor wrapping during type application:

Proposition 3.5 Suppose Wrap is in the valid canonical
bozed jorm, p is a substitution mapping t to IL con-
structors, c is an IL type. If A;r 1- z : pw(u”), then
A; r 1- KI(C7(P”’(U”),Pa”)) : PU(U”); Similarly, ij
A;r 1- z : P“(a”), then A; r 1- @(CT(p’’(U’’), pw()))(r)(r) :
p“’(a”);

Theorem 3.6 (type preservation) If Urap is in the valid
canonical bozed jorm and A; r 1- ei : u * et, then A“; r“ F
et: a”.

The type preservation theorem can be proved by structural
inductions on the translation rules, using Proposition 3.3–
3.5. A semantic correctness theorem about the transla-
tion can also be stated and proved using the same logical-
relations technique used in Morrisett [24] and Leroy [19].

3.6 Valid canonical boxing schemes

A boxing scheme is valid if its underlying constructor Wrap
is in the valid canonical boxed form. Intuitively, the set
of axioms in the Definition 3.2 guarantees that coercions
baaed on the Iirap will commute with the type instantiation
relations.

The boxing schemes described in Section 2, simple box-
ing, partial boxing, and full boxing, can be formally mod-
elled by defining the constructor Urap and the primitives
wrap and umrrap. More soph~ticated partial boxing schemes
such as those described in Section 2.4 can be defined in the
similar way.

Definition 3.7 (simple boxing) The constructor Urap
for simple boxina is defined as follows (here we use the
pattern-match clauses to”

Urap[fl]

Uncv[Int]
Unc@teal]

Unc~Pack(p)]
Uncv[Boxed(p)]
Uncv[x (p], pz)]

Uncv[-+ (P1 , p2)]

express the Typerec form):

= Boxed(Uncv[p])

= Int
= Real
= Pack(p)

= ; (Uncv[yl], Wcv[P21)
= ~ (Uncv[pl], Uncv[pz])

Definition 3.8 (partial boxing) The constructor Wrap
jorpartial boxing is dejined in the same way as simple boxing,
ezcept that the rule for ~cv[+ (PI, u2)] is replaced by the
following:

Uncv[~ (AI, ,uz)] =+ (Boxed(Uncv[pl]), Boxed(Uncv[pz]))

Definition 3.9 (full boxing) The constructor Hrap
for full boxing is dejined in the same way as partial boxing,
ezcept that the rule for Uncv[x(pl, PZ)] is replaced by the
following:

Uncv[x (P1, pz)] = x (Boxed(Uncv[pl]), Boxed(Uncv[pz]))

Proposition 3.1o The simple-boxing constructor wrap is
in the valid canonical boxed form.

Proof First, Wrap[p] commutes with substitutions because
Wrap[p] = Boxed(Uncv[#] ), and both Boxed and Uncv com-
mute with substitutions; Boxed is a primitive constructor,
and Uncv is a simple Typerec-form constructor (which can
be shown to commute with substitutions using structural
inductions, foUowing from the constructor equivalence rules
on Typerec defined in Harper and Morrisett [14, 24]).

Second, we prove Wrap[p] s Urap[tfrap[p]]. From the
definition of Uncv, we have Uncv[Boxed(p)] = p for any p,
therefore:

14rap[Urap[p]]
- Boxed(Uncv[Boxed(Uncv[p] )])
= Boxed(Uncv[#])
S Urap[p].

To prove Urap[x(pl, pz)] s hh-ap[x(wrap(pI], Ura~pz])],
we notice that

Uncv[Urap[p]] = Uncv[Boxed(Uncv[p])] z Uncv[p]

holds for any constructor p, thus

Urap[x (Urap[pl], Urap[pz])]
s Boxed(Uncv[x(Ura~pl], Urap(pz])])
s Boxed( x (Uncv[Ura~pl]], Uncv[Ura~pz]]))
s Boxed( x(Uncv[pl], Uncv[pz]))
s Boxed(Uncv[x(pl, I&I)])
S blrap[x(pl, P2)].

Finally, Urap[~ (YI, pz)] - Ura~~ (Ura~pl], Urap[Uz])]
can be proved in the same way. QED.

Proposition 3.11 The partial-bozing constructor wrap is

in the valid canonical boxed form.

Proposition 3.12 The full-bom’ng constructor wrap is in
the valid canonical boxed form.

Proposition 3.11 and 3.12 can be proved in the same way as
for Proposition 3.10. From the definition of partial boxing
and full boxing, we can eaaily derive:

Uncv[~ (Boxed(pl ), Boxed(pZ))]
~ ~ (Boxed(pl), Boxed(pZ))

This means that partial boxing and full boxing do not need
to coerce arguments or results of unknown function types,
so they completely avoid the vararg problem.

Next, we give the definitions of the coercion primitives
(wrap and unwrap) for simple boxing:

(1)
(2)

(3)
(4)
(5)
(6)

(7)
(8)
(9)

(lo)

urap[p]
unvra~p]

uncv[Boxed(p)]
Uncv[x(pl, /12)]

Uncv[+ (pl , pz)]
Lulcv[p]

cover[Boxed(p)]
cove~x(pl, pz)]

cover[- (PI, P2)]
cover[fl]

box[Uncv[p]] OUtlCV[~]
cover[p] o unbox[Uncv[p]]

unbox[p]
Uncv[pl] x uncv[p2]
cove~pl] ~ uncv[pz]
identitfip]

box[p]
cove~pl] x cove2fp2]
uncv[pl] + cove~p2]
ident itfip]
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Here, the pattern-match syntax is representing the the term-
Ievel typerec form; also, o denotes function composition,
identity is the polymorphic identity function, and product
and function spaces are extended to functions in the usual
way.

The coercion primitives for partial boxing and full boxing
can be defined in the same way. For example, the definition
for partial boxing can be obtained by replacing rule (5) and
(9) with the following:

(5’) uncv[~ (PI, M,)]= (cover[#l] o unbox[Uncv[pl]])
~ (box[Uncv[pZ]] o uncv[p2])

(9’) cover[~ (pi, PZ)] = (box[Uncv[pl]] o uncv[pl])
~ (cover[p~] o unbox[Uncv[pZ]])

Notice under partial boxing, the uncv and cover primitives
are equivalent to the identity function on constructors such
as + (Boxed(pl ), Boxed(pZ)).

4 Extensions

In this section, we present several extensions and
of our flexible representation analysis algorithm.

4.1 Modules and type abstractions

variations

The algorithm and framework in Section 3 can be extended
to handle the entire SML language [23] plus the MacQueen-
Tofte style higher-order modules [21]. In a companion pa-
per [32], we show that both the SML simple modules and
the transparent higher-order modules can all be translated
into our intermediate language IL defined in Section 3.2 (ex-
tended with product kinds). Therefore, represent ation anal-

ysis on the module languages is reduced to calling the same

algorithm described in Section 3.5.

To handle module-level type abstractions, we treat all

abstract t ycons as incoercible tycons, just like what we did

for Iiets and arrays. Coercions between concrete and ab-

stract types are inserted at the places where abstractions
are intreduced. For example, in the following ML code:

signature SIG = sig type ~a t
val p : real t
valf:>at->>at

end

functor F(S : SIG) = struct val r = S. f(S. p) end

The parameter structure for functor F contains an abstract
type constructor t of arity 1. Inside the body of the functor,
value S. p needs to be coerced from real t into >a t, but
since t is incoercible, the coercion is just identity functions.
When F is appkd to the following structure A:

structure A = struct type ‘a t = ‘a e ‘a
Val p = (3.0,3.0)
fun f (x}y) = (y, x)

end

structure T = F(A)

both p and f would first be wrapped into canonical boxed
form; later, after the functor application is done, the r field
in the result must be unwrapped back to unboxed form.

4.2 Concrete vs. abstract datatypes

Consistent datatype representations across functor bound-
ary has long been a tricky problem for ML compiler writ-
ers [2]. Flexible representation analysis offers a nice solution.
Consider the following ML structure declaration:

structure S =
struct

datatype t = FCOMSof (real -> real) ● t
I FIIL

type u = real
type s = (real -> int) ● t
val v = (fn x => x+1 .0, FEIL)
val x = FCOIS V

end

Here, t is a recursive but monomorphic datatype; because
it is monomorphic, one would not think about inserting co-
ercions when applying the injection function of constructor
FCONSto value v. This is, unfortunately, incorrect; because
when structure S is paseed to the following functor F, the
above concrete datatype t can match any similar abstract
datatype definitions:

functor F(A : sig type u
datatype t

= FCOIS of (u -> real) . t
I FIIL

end) = struct . . . end

Here, the body of functor F will not know the actusl rep
resentation of u until the functor application time. The so-
lution is to consistently apply a ‘wrapping” (or “unwrap
ping” ) operation while injecting (or projecting) the value v
into dat atype t. This wrapping ensures that all values car-
ried by the datatype (concrete or abstract) will have consis-
tent data representations (i.e., they are all in the canonical
boxed form).

The technique described above can also be used to solve
the clsssical list representation problem [2]. This problem
occurs when we apply the following functor G to structure
s:

functor G(B : sig type s
datatype t * FCOIS of s

I FIIL
end) = struct . . . end

Most existing compilers represent the cons cell as an un-
tagged record with no indirection, Here, however, because
type s is unknown, we cannot use the untagged record to
represent the cons cell. The solution is to introduce a new
type-dependent operator which checks at runtime to see if s
is indeed a record type, if that is the case, no indirection is
inserted; otherwise, an extra boxing layer is added.

4.3 Parametricity and type passing

One interesting twist about our scheme is that most of the
runtime type-passing (and also coercions that depend on
runtime types) can be eliminated based on a parametricity
property for polymorphic functions. Consider the following
example:

fun f(x) = let . . . x::nil . . .
. . . Array .update(a, i ,x) . . .

in (x, x)
end

fun g(y) = f(y, 1.0)
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Here function f has type Vu. o --+ (O* a); inside f, the argu-
ment x is cons-cd onto a list at one time and put inside an ar-
ray at another time. Function g has type V~.B + ((~*real)*
(~* real)). During the function application f (y, 1. 9), the
argument normally should be coerced by wrap[/3 * real],
which depends on the runtime type /3.

In fact, neither f nor g really needs to know about a and
/3 at runtime; they would not take them as extra parameters,
and values of type a or /3 can be treated as single-word
black boxes (as in the full-boxing approach). The coercion
ma~~ * real] does not need to examine and uncover /3 as
welf. This is all right because we can tell from the types off
and g (which do not cent ain any list and array tycons) that
none of the polymorphic lists and arrays involving a (or /3)
wifl ever be exported outside function f (or g).

This observation can be made more precise as follows:
given a polymorphic type VCY1, . . . . cY~.T, only those a,s that
actually occurred inside the element type of the array ty-
con (or other incoercible tycons) would be treated as ex-
plicit runtime type parameters, rdl the rest type variables
can simply be considered as the single-word black boxes.

This optimization does not affect separate compilation
because all of these information can be solely deduced from
the type itself. Since many polymorphic functions do not in-
volve arrays, most runtime type manipulations can be elim-
inated.

Finally, the pararnetricity property discussed here may
not hold for compilers that use tag-free garbage collec-
tions [34]. The precise relationship between the two is out
of the scope of the current paper.

The polymorphic array tycon is implemented specially: if
the element type is real or int32, then we use the flat array,
otherwise, we use the simply boxed array.

The only operations that require runtime type analysis
are the coercion primitives (i.e., wrap and unwrap), the array
primitives, and several conrep primitives (used to determine
representations for concrete datatypes, with similar spirits
to Appel [1, section 4. l]).

We compare the new technique with Leroy’s standard
coercion-based approach. Here, Old is the type-based com-
piler described in Shao and Appel [33, 29]); New is the new
compiler that implements the flexible representation analy-
sis described in this paper. In Figure 9, we give the mea-
surement results (in seconds) of running the Old and New
compilers on twelve ML benchmarks on a Sun Sparc20 sta-
tion with 128 Mbytes memory. For each benchmark, we
measured the total execution time (including GC) and also
the time spent on garbage collection.

Our measurements show that several benchmarks involv-
ing recursive and mutable types gets from 27% - 77%
speedups. For example, the nucleic benchmark involves
large lists of type (real* real* real) list, originally it has
to be fully boxed, but with our new scheme, they use more ef-
ficient simply boxed representations; the simple benchmark
and the fit benchmark get speedup for the similar reasons
(by using flat arrays). Benchmarks involving heavy poly-
morphic code (e.g., sieve, mlyacc, vliw, and knuth-bendix
kb-comp) remain aJmost as efficient es before. We notice
that most uses of polymorphic functions are to apply them
directly to monomorphic data structures or to polymorphic
incoercitde objects. The 5% to 10~0 slowdown on kb-comp
and vliw is mostly caused by the extra runtime type passing
in the New compiler. The unzipr benchmark illustrates a
worst-case scenerio on using partiaJly (or simply) boxed rep
resentations; this benchmark calls the function unzip (de-
fined in Section 2.2) and zip upon a 10000-element list of
float pairs (e.g., p in Figure 1). Because of the extra coer-
cions on each element, the New compiler runs nearly twice
slower than the Old compiler. In the future, we plan to use
more aggressive type specializations [35] and to exploit the
parametricity described in Section 4.3 to to eliminate these

Old New Ratio
Bmark total (gc) total (gc)
boyer 0.97 (0.01) 0.97 (0.00) 1.00
m i 15.8 (2.96) ] 3.56 fO.00) 0.23

overheads.
It is worth pointing out that the .meedutr we got here is

likely similar t: those Found in the pur;typ~passi~g compil-
ers (e.g., TIL [34]). The strength of our flexible framework
lies, however, on the fact that we can achieve the speedup

Figure 9: Performance Measurements (Execution Time)

5 Implementation

We have imtiemented the flexible remesentation anaJvsis
technique ou~lined above in an experirnentaJ version of-the
Standard ML of New Jersey compiler (v109.25m) [3, 33, 31].
To simplify the implementation, we avoid the uamrg prob-
lem by using partial boxing as the canonical boxed form.
We used the standard technique of minimaf typing deriva-
tions [33, 6] to eliminate local and unnecessary polymor-
phisms. We did not exploit the parametricity property (dis-
cussed in Section 4.3) in the current implementation.

All recursive and mutable tycons are treated as inco-
ercible tycons, just like pack in SRC. Lists are represented
using the simply boxed representations shown in Figure 2b.

without paying heavy cost on the polymorphic code. We
intend to do a detailed performance comparison between
SML/NJ and TIL (on heavily polymorphic code) once the
TIL compiler is made publicly available.

6 Related Work and Conclusions

The main idea of our flexible remesentation analvsis tech-
nique is to explore the use of runtime type information to
support more efficient coercions and more powerful boxing
schemes. Previous coercion-baaed approaches [19, 26, 27,
15, 33, 36] do not take advantage of runtime type infor-
mation, so they can only use fulf boxing as its canonical
boxed form. On the other hand, previous type-passing ap
preaches [25, 14, 24, 34] do not box polymorphic objects,
so they require extensive runtime type analysis and code
manirrulations.

M“ost previous work on coercion-baaed approaches con-
centrate on how to use compile-time anaJysis to eliminate un-
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necessary coercions. Both Peyton Jones [26] and Poulsen [27]
extend the type system to tag monomorphic types with a
bozity annotation, and then statically determine when to use
boxed representations. Henglein and Jorgensen [15] present
a term-rewriting method that translates a program with
many coercions into one that contains a “formally optimal”
set of coercions. Shao and Appel [33] extended Leroy’s
scheme to the entire SM L module language and also used
minimum typing derivations [6] to decrease the degree of
polymorphism thus eliminate coercions. All these techniques
still apply to our flexible approaches because the top-level
S and G transformations in our scheme are almost identi-
cal to Leroy’s originaJ ones. What changed in our scheme
is the interpretation of the primitive coercions urap[r] and
unvra~r].

Morrison, et al. [25] described an implementation of
Napier that passed types at runtime to determine the be-
havior of polymorphic operations. The type-passing ap-

A4J2bY Harper and ‘Or-
proach was later formalized using J,
risett [14, 13, 24]; the intentional type analysis framework
they proposed is one of the main inspirations for the present
work. Very recently, Tarditi and Morrisett, et al. [34, 24]
have implemented the type-passing approach in their TIL
compiler. Their preliminary measurements showed that us-
ing unboxed representations for recursive and mutable data
structures can dramatically improves the performance of
most of their (monomorphic) benchmarks. Unfortunately,
since their compiler specialized all the polymorphic func-
tions (in their benchmarks), it is still unclear how their type-
paasing approach would perform on heavily polymorphic and
heavily functorized code. 2

We have presented a new flexible representation anaJy-
sis technique for the implementation of polymorphism and
abstract data types. Unlike any previous approaches, our
new scheme supports unboxed representations for recursive
and mutable types, yet it only requires little runtime type
analysis. Our scheme is very flexible because it allows a con-
tinuum of possibfities between the coercion-based and the
type-passing approaches. By varying the amount of boxing
and the type information passed at runtime, a compiler can
freely explore any point in the continuum, choosing from a
wide range of representation strategies baaed on practical
concerns (e.g., to avoid the vararg problem).
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