
ROPAS

Research On Program Analysis System

National Creative Research Initiative Center

Korea Advanced Institute of Science and Technology

ROPAS MEMO

2000-7

October 4, 2000

Program Logics Made Easy

Nikolay V. Shilov and Kwangkeun Yi
Department of Computer Science

KAIST
{shilov, kwang}@ropas.kaist.ac.kr

October 4, 2000

Abstract

In spite of the importance of Formal Methods for development of a reliable hard- and
software this domain is not well acquainted to non-professionals. In particular, many
students consider Formal Methods either too poor for their pure mathematics, either too
pure for their poor mathematics. We suppose that a deficit of a popular papers on Formal
Methods is the main reason for this ignorance. In the paper we would like to present
in a popular (but mathematically sound) form a Program Logics tributary creek of a
powerful stream called Formal Methods. From the application viewpoint, the paper is
oriented on model checking of program logics in finite models. The basic ideas, definitions
and theorems are illustrated by game examples usually presented as puzzles. Only some
knowledge of propositional calculus, elementary set theory and theory of binary relations
is prerequested.

1 Story Began

1.1 A Hard Puzzle

Once upon a time a program committee for a regional middle school contest on mathematics
discussed problems for a forthcoming competition. The committee consists of a professor, sev-
eral holders of Ph.D. degree and a couple of Ph.D. students. All were experienced participants
or organizers of mathematical contests on the regional and national level, several had successful
international experience. A thunder-storm was unexpected, but it came. Suddenly (when a set
of problems was just complete) one of the youngest suggested another problem to be included.
It was the following puzzle about a false coin among valid ones:

A set of coins consists of 14 valid and 1 false coin. All valid coins have one and
the same weight while the false coin has a different weight. One of the valid coins
is marked while all other coins (including the false one) are unmarked (i.e. it is
known that the unique marked coin is valid). It is required to identify the false
coin with use of a balance not more then 3 times.

“If it is known that the false coin is heavier then the valid one then the problem is relevant
for 11-13 years old school-children” the professor said1. “Yes, sir!” immediately replied one of
Doctors of Philosophy and then suggested: “If it is known that the false coin is lighter then the

0This work is supported by Creative Research Initiatives of the Korean Ministry of Science and Technology.
1Professors are for making absolutely correct while absolutely unuseful remarks.

October 4, 2000 ROPAS-2000-7 2

valid one then the puzzle is relevant for children also!”2 “Sorry, but it is not known whether
the false coin is heavier or lighter then the valid one” interrupted them the youngster and
added: “To the best of my knowledge it is really a hard problem. I did not solve it during
the national contest several years ago and I do not know a solution till now”. “In this case it
would be better not to include the puzzle into the problem list for the forthcoming contest”
the professor summarized.

Problem 1 Solve the original puzzle.

One of the committee members was a computer scientist specializing in program logics and
their applications. He agreed to exclude the puzzle from the problem list, since he did not
solve it also. Nevertheless he was concerned and decided to try his luck. The day passed
without real progress while the coins and balance became his nightmare... Next morning the
computer scientist decided to overcome the trouble and adopted the the following plan with
two concurrent approaches for finding a solution:

• human-aided,
• computer-aided.
The computer-aided approach and its relation to program logics are topics of next sections

of the paper. As far as concerns the human-oriented approach, then it was designed very simple
but had unexpected implications. The puzzle was offered (with a special bonus for the first
solution3) for students and faculty of the Mathematics Department. But the first who solved
the puzzle was the wife of the computer scientist4. She spent approximately 3 hours for it
tonight. A week later the computer scientist got several correct (and very similar) solutions
from students and found that a ratio of a number of students which succeeded to a number of
students who tried to solve is 1/10, and all lucky students spent around 3 hours also solving
the puzzle. Then several weeks later 2 professors solved the puzzle correctly also...
The University where the computer scientist is employed is situated in a cozy scientific

town5 not in a political, neither an industrial nor a financial center. So there was no surprise
that several months later a street retail book dealer began to offer a special deal for textbooks:
if a customer can find in one hour a strategy how to identify a unique false among 39 coins with
using a marked valid coin6 and a balance 4 times at most, then the customer get his money
back; if the customer can find a strategy in one day then he get 50% of his money back.

Problem 2 Solve the retailer puzzle.

1.2 Put It for Programming

Let us turn to computer-aided approach and realize how both puzzles can be put for program-
ming. In both cases the problem is not to find a false coin but to find a strategy how to identify
this coin. A natural model for a strategy is a program which choice the next step with respect
to the information available after previous steps. The difference between puzzles is

• a number of coins N under question,

• a limit of balancing K.
2Do you guess that the doctor was a research fellow of the professor?
3The bonus was a photocopy of 100$.
4So the bonus left at home.
5Can you guess the name of the town and where is it?
6Valid coins have one and the same weight while the false coin has a different weight.

October 4, 2000 ROPAS-2000-7 3

In both puzzles a marked valid coin is given but in principle it is possible to consider

• a number M of marked valid coins

as another variable.
After above preliminaries let us to consider the following programming problem as a natural

formalization of the puzzles:
• Write a program with 3 inputs

• a number of coins N under question,

• a number M of marked valid coins,

• a limit of balancing K
which outputs either impossible either another executable interactive program ALPHA (in the
same language) with respect to existence of a strategy to identify a unique false coin among N
coins with use of M marked valid coins and balancing K times at most. Your initial program
should output impossible iff there is no such strategy. Otherwise it should output the program
ALPHA which implement a strategy in the following settings.
All (N +M) coins are enumerated by consequent numbers from 1 to (N +M), all marked

valid coins are enumerated by initial numbers from 1 up to M and enumeration is fixed7.
Each interactive session with ALPHA begins from user choice of a number of the false coin

and weather it is lighter or heavier. The user can choose any number between (M + 1) and
(N +M) and must fix the number in the mind till the end of the session.
Then the session consists of a series of rounds and general amount of rounds in the session

can not exceed K. On each round i (1 ≤ i ≤ K) the program ALPHA output two disjoint subsets
of numbers of coins to be placed on the left and the right pans of the balance and the request
? for user reply. The user in his/her turn replies by <, = or > in accordance with his initial
choice of the number of the false coin and its weight.
The session finishes with the the final output of ALPHA – false coin number is – followed

by the number of the false coin.
Here the programming problem is over. Since the problem is to write a program which

produce another program then we would like to refer to the first program as the metaprogram
and to the problem as the metaprogram problem respectively. For the first time the problem
was designed and offered by the computer scientist for training university students for 1999
regional ACM Collegiate Programming Contest [1].

Problem 3 Solve the metaprogram problem.

Let us illustrate the metaprogram problem8 by examples of inputs and outputs presented
in PASCAL. A triple 5, 1 and 2 is an example of possible inputs for a metaprogram. The
semantics of this particular input is a request for a strategy which can identify a unique false
coin among five coins (N = 5) under question with use of a special marked additional valid coin
(M = 1) and balancing coins at most twice (K = 2). All 6 = (N +M) coins are enumerated
by consequent numbers from 1 to 6, and the unique marked valid coin got the number 1. The
following PASCAL program ALPHA (presented on Fig. 1) is a possible corresponding output
of the metaprogram. Below is a summary of four sessions with this program ALPHA:

7M = 0 is acceptable also.
8In accordance with the style of the ACM contests.

October 4, 2000 ROPAS-2000-7 4

program ALPHA
var R: ’<’,’=’,’>’;
begin
writeln(1,2); writeln(3,4); writeln(’?’); readln(R);
if R=’=’

then
begin
writeln(1); writeln(5); writeln(’?’); readln(R);
if R=’=’

then writeln(’false coin number is 6’)
else writeln(’false coin number is 5’)

end
else
if R=’<’

then
begin
writeln(3); writeln(4); writeln(’?’); readln(R);
if R=’=’

then writeln(’false coin number is 2’)
else if R=’<’

then writeln(’false coin number is 4’)
else writeln(’false coin number is 3’)

end
else

begin
writeln(3); writeln(4); writeln(’?’); readln(R);
if R=’=’

then writeln(’false coin number is 2’)
else if R=’<’

then writeln(’false coin number is 3’)
else writeln(’false coin number is 4’)

end
end.

Figure 1: A PASCAL program which identifies a unique false coin among five coins with aid
of a special marked valid coin and balancing coins at most twice.

October 4, 2000 ROPAS-2000-7 5

user: 2nd is heavier 3rd is lighter 4th is heavier 5th is lighter
prog: {1,2} {3,4} {1,2} {3,4} {1,2} {3,4} {1,2} {3,4}
user: > > < =
prog: {3} {4} {3} {4} {3} {4} {1} {5}
user: = < < >
prog: 2 3 4 5

9, 1 and 2 is another example of possible inputs for a metaprogram. The semantics of this
input is a request for a strategy which can identify a unique false coin among nine coins under
question with use of a special marked additional valid coin and balancing coins at most twice.
The output of the metaprogram for this particular input is impossible.

2 Games with Dynamic Logic

2.1 Game Interpretation

The above examples of sessions naturally lead to a game interpretation for both puzzles and
metaprogram problem.
• Let M and N be non-negative integer parameters and let (N +M) coins be enumerated by
consequent numbers from 1 to (N +M). Coins with numbers in [1..M] are valid while there
is a unique false among coins with numbers in [(M + 1)..(M +N)]. The GAME(N,M) of two
players user and prog consists of a series of rounds. On each round a move of the prog is a pair
of disjoint subsets (with equal cardinalities) of [1..(M + N)]. A possible move of the user is
either <, = or >, but his reply must be consistent with all previous rounds in the following
sense: some number in [1..(M + N)] and weight of a unique false coin satisfy all constraints
induced on the current and previous rounds. The prog wins the GAME(N,M) as soon as a
unique number in [1..(M +N)] satisfies all constraints induced during the game.
Now problems 1-3 can be reformulated as follows.

1. Find a 3-rounds at most winning strategy for prog in the GAME(14,1).

2. Find a 4-rounds at most winning strategy for prog in the GAME(39,1).

3. Write a metaprogram which for all N ≥ 1, K ≥ 0 and M ≥ 0 generates (iff possible) a
K-rounds at most wining strategy for prog in the GAME(N,M).

The above game interpretation is still too complicated for analysis9. So let us introduce
and analyze another simpler game first.
•On the eve of New 2000 Year Alice and Bob played the millennium game. Positions in the
game were dates of 2000 and 2001 years. The initial position was a random date of the year
2000. Then Alice and Bob made moves in their turn: Alice, Bob, Alice, Bob, etc. Available
moves were one and the same for both Alice and Bob: if a current position is a date then the
next calendar date and the same day of the next month are possible next positions. A player
won the game iff his/her counterpart was the first who launched the year 2001.

Problem 4 Find sets of all initial positions where (a)Alice and, respectively, (b)Bob had win-
ning strategy. What is the union of these sets?

A mathematical model for the millennium game is quite obvious. It is a special labeled
graph G2000/2001. Nodes of this graph correspond to game positions — dates of years 2000

9In particular, it is not clear what are game positions.

October 4, 2000 ROPAS-2000-7 6

and 2001. All dates of the year 2001 are marked by fail while all other dates are unmarked.
Edges of the graph correspond to possible moves and are marked by move. We would like to
consider fail and move as variables for collections of nodes and sets of edges and call them
propositional and action variables respectively. The model fixed interpretation (i.e. values) of
these variables in the manner described above.

2.2 Elementary Propositional Dynamic Logic

Let {true, false} be boolean constants, Prp and Act be disjoint finite alphabets of propositional
and action variable respectively. (In the previous section they are {fail} and {move}.)
The syntax of the classical propositional logic consists of formulae and is constructed from

propositional variables and boolean connectives ¬ (negation), ∧ (conjunction) and ∨ (disjunc-
tion) in accordance to standard rules:

1. all propositional variables and boolean constants are formulae;

2. if φ is a formula then (¬φ) is a formula;
3. if φ and ψ are formulae then (φ ∧ ψ) a formula,
4. if φ and ψ are formulae then (φ ∨ ψ) a formula.

Elementary Propositional Dynamic Logic (EPDL)[2] has additional features for constructing
formulae — modalities which are associated with action variables:

5. if a is an action variable and φ is a formula then ([a]φ) is a formula10,

6. if a is an action variable and φ is a formula then (< a > φ) is a formula11.

We would like to use several standard abbreviations → and ↔ in the usual manner: if φ and
ψ are formulae then (φ → ψ) and (φ ↔ ψ) are abbreviations for formulae (¬φ) ∨ ψ) and
((φ → ψ) ∧ (ψ → φ)) respectively. Then we would like to avoid extra parenthesis and use a
standard priorities for connectives and modalities: ¬, <>, [], ∧, ∨, →,↔. We also would
like to use a meta-symbol ≡ for syntactical equality.

Problem 5 Are formulae of EPDL a context-free language?

The semantics of EPDL is defined in models, which are called Labeled Transition Systems by
computer scientists and Kripke Structures by mathematicians. A model M is a pair (DM , IM)
where the domain DM is a nonempty set, while the interpretation IM is a pair of special
mappings (PM , RM). Elements of the domain DM are called states. The interpretation maps
propositional variables into sets of states and action variables into binary relations on states:

PM : Prp→ P(DM) , RM : Act→ P(DM ×DM)

where P is a power-set operation. We write IM (p) and IM (a) instead of PM (p) and RM (a)
frequently. Whenever it is implicit that p and a are propositional and action variables respec-
tively.
Models can be considered as labeled graphs with nodes and edges marked by sets of proposi-

tional and action variables respectively. For a modelM = (DM , IM) nodes of the corresponding
graph are states of DM . In this graph a node s ∈ DM is marked by a propositional variable

10which is read as “box a φ” or “after a always φ”
11which is read as “diamond a φ” or “after a sometimes φ”

October 4, 2000 ROPAS-2000-7 7

p ∈ Prp iff s ∈ IM (p). A pair of nodes (s1, s2) ∈ DM × DM is an edge of the graph iff
(s1, s2) ∈ IM (a) for some action variable a ∈ Act; in the last case the edge (s1, s2) is marked
by this action variable a. Vice versa, labeled graphs with nodes and edges marked by sets
of propositional and action variables respectively can be considered as models also. In this
setting the graph G2000/2001 of the millennium game is really a model for EPDL, i.e. Labeled
Transition System or Kripke Structure if you like.
For every model M = (DM , IM) the validity relation |=M between states and formulae can

be defined inductively with respect to the structure of formulae:

1. for every state s |=M true and not s |=M false;
for all state s and propositional variables p: s |=M p iff s ∈ IM (p) ;

2. for all state s and formula φ: s |=M (¬φ) iff it is not the case s |=M φ ;

3. for all state s, formulae φ and ψ: s |=M (φ ∧ ψ) iff s |=M φ and s |=M ψ ;

4. for all state s, formulae φ and ψ: s |=M (φ ∨ ψ) iff s |=M φ or s |=M ψ ;

5. for all state s, action variable a and formulae φ:
s |=M (< a > φ) iff (s, s′) ∈ IM (a) and s′ |=M φ for same state s′ ;

6. for all state s, action variable a and formulae φ:
s |=M ([a]φ) iff (s, s′) ∈ IM (a) implies s′ |=M φ for every state s′.

Moreover, an experienced mathematician can remark that EPDL is just a polymodal variant
the classical and basic modal logic K [13]

2.3 Finite Games in EPDL

First let us illustrate the above definition by several examples in the model G2000/2001. The
formula fail is valid in those states where the game is lost. Then the formula [move]fail is
valid in those states from which all possible moves lead to the lost game. Hence the formula
¬fail∧ [move]fail is valid in the states where the game is not over but all possible moves lead
to the lost game. Consequently, the formula < move > (¬fail ∧ [move]fail) is valid iff there
is a move after which the game is not lost while then all possible moves always lead to the lost
game. Finally we get: the formula

¬fail∧ < move > (¬fail ∧ [move]fail)

is valid in those states where the game is not over, where exists a move after which the game is
not lost while then all possible moves always lead to the lost game. So the last EPDL formula
is valid in those states of G2000/2001 (i.e. dates of years 2000 and 2001) where Alice has a
1-round wining strategy where Bob loses the game12. So it is natural to denote this formula
by win1. A 1-round wining strategy for Alice is just a move to a position where Bob always
loses the game after his move, i.e. to a position where the formula ¬fail ∧ [move]fail is valid.
It becomes quite clear from the above arguments that the following formula

¬fail∧ < move >
(¬fail ∧ [move](fail ∨ win1)

)
is valid in those states of G2000/2001 where Alice has a wining strategy with 2-rounds at most.
So it is natural to denote this formula by win2. A 2-round at most wining strategy for Alice is

12Alice has all odd moves while Bob has all even moves.

October 4, 2000 ROPAS-2000-7 8

just a move to a position where the formula ¬fail∧ [move](fail∨win1) is valid. Let us define
formulae wini for all i ≥ 1 similarly to win1 and win2: for every i ≥ 1 let wini+1 be

¬fail∧ < move >
(¬fail ∧ [move](fail ∨ wini)).

Let win0 be false in addition. After the above discussion about win1 and win2 it becomes
quite simple to prove by induction the following assertion.

Assertion 1 For every i ≥ 1 the formula wini is valid in those states of G2000/2001 where Alice
has a wining strategy with i-rounds at most. A first step of a corresponding i-rounds at most
wining strategy for Alice is just a move to a position where the formula ¬fail ∧ [move](fail ∨
wini−1) is valid.

Then let us introduce a new propositional variable win and interpret it to be valid in those
dates of years 2000 and 2001 where Alice has a wining strategy, i.e. as

⋃
i≥1{ s : s |=G2000/2001

wini }. Let us refer to this new model a special extended model G2000/2001.

Assertion 2 The formula win ↔ ¬fail∧ < move >
(¬fail ∧ [move](fail ∨ win)) is valid in

all states of the special extended model G2000/2001.

In general, a finite game of two plays A and B is tuple (P, MA, MB , F) where

• P is a nonempty finite set of positions,

• MA,MB ⊆ P × P are (possible) moves of A and B,

• F ⊆ P is a set of final positions.

A session of the game is a finite sequence of positions s0, ... sn (n > 0) where all even pairs
are moves of one player (ex., all (s2i, s2i+1) ∈ MA) while all odd pairs are moves of another
player (ex., all (s2i+1, s2i+2) ∈MB). A pair of consequentive moves of two players in a session
comprises three consequentive positions (ex., (s2i,s2i+1,s2(i+1)) is called a round. A player loses
a session iff after a move of the player the session enters a final position for the first time. A
player wins a session iff another player loses the session. A strategy of a player is a subset of
the player’s possible moves. A winning strategy for a player is a strategy of the player which
always leads to the player’s win: the player wins every session which he/she begins and in
which he/she implement this strategy instead of all possible moves. The millennium game is
just an example of a finite game.
Finite games of two players can be presented as labeled graphs easily. Nodes correspond

to game positions, all nodes which correspond to final positions are marked by fail while all
other nodes are unmarked. Edges of these graphs correspond to possible moves of players and
are marked by moveA and moveB respectively. Let us denote by G(P,MA,MB ,F) the labeled
graph corresponding to a game (P,MA,MB , F). We would like to consider fail, moveA and
moveB as a propositional and action variables respectively. In this setting the graphs of finite
games become models for formulae of EPDL. The following proposition is just a generalization
of the above assertions 1 and 2.

Proposition 1 Let (P,MA,MB , F) be a finite game of two players, a formula WIN0 be false
and for every i ≥ 1 let WINi+1 be a formula ¬fail∧ < moveA >

(¬fail ∧ [moveB](fail ∨
WINi)

)
. Let win be a new propositional variable and let extend the model G(P,MA,MB ,F) by

interpretation of win as
⋃

i≥1{s : s |=G(P,MA,MB,F) WINi}.
• For every i ≥ 0 the formula WINi is valid in those states of G(P,MA,MB ,F) where the
player A has a wining strategy with i-rounds at most.

October 4, 2000 ROPAS-2000-7 9

• For every i ≥ 0 a first step of a corresponding i-rounds at most wining strategy for the
player A consists in a move to a position where ¬fail∧ [moveB](fail∨WINi−1) is valid.

• The formula win ↔ ¬fail∧ < moveA >
(¬fail ∧ [moveB](fail ∨ win)

)
is valid in all

states of the extended model G(P,MA,MB ,F).

2.4 Puzzle Corner

Now we are ready to discuss a mathematical concrete model for the GAME(N,M) (N ≥ 1,
M ≥ 0). Positions in this parameterized game are tuples (U, L, H, V, Q) where

• U is a set of coin numbers in [(M + 1)..(M + N)] which are under question but which
were not tested against other coins;

• L is a set of coin numbers in [(M + 1)..(M + N)] which are under question but which
were tested against other coins and turned to be lighter;

• H is a set of coin numbers in [(M + 1)..(M + N)] which are under question but which
were tested against other coins and turned to be heavier;

• V is a set of coin numbers in [1..(N +M)] which are known to be valid;

• Q is a balancing query, i.e. a pair of disjoint subsets of [1..(N +M)] of equal cardinality.

Three constraints are natural:

1. U , L, H and V are disjoint,

2. U ∪ L ∪H ∪ V = [1..(N +M)],

3. U ∪ L ∪H �= ∅.
In addition we can claim that

4. U �= ∅ iff L ∪H = ∅
since a unique false is among untested coins iff all previous balancings gave equal weights, and

5. if Q = (S1, S2) then either S1 ∩ V = ∅ either S2 ∩ V = ∅
since it is not reasonable to add extra valid coins on both pans of a balance. A possible move
of the player prog is a query for balancing two sets of coins, i.e. pair of positions

(U, L, H, V, (∅, ∅)
|

moveprog↓
(U, L, H, V, (S1, S2))

where S1 and S2 are disjoint subsets of [1..(N +M)] with equal cardinalities. A possible move
of the player user is a reply <, = or > for a query which causes position change

(U, L, H, V, (S1, S2))
|

moveuser↓
(U ′, L′, H ′, V ′, (∅, ∅)).

October 4, 2000 ROPAS-2000-7 10

in accordance with the query and a reply: if S1 = U1∪L1∪H1∪V1 and S2 = U2∪L2∪H2∪V2

respectively with U1, U2 ⊆ U , L1, L2 ⊆ L, H1,H2 ⊆ H, V1, V2 ⊆ V , then

U ′ =

∅ if the reply is < ,
(U \ (U1 ∪ U2)) if the reply is = ,
∅ if the reply is > ,

L′ =

(L1 ∪ U1) if the reply is < ,
(L \ (L1 ∪ L2)) if the reply is = ,
(L2 ∪ U2) if the reply is > ,

H ′ =

(H2 ∪ U2) if the reply is < ,
(H \ (H1 ∪H2)) if the reply is = ,
(H1 ∪ U1) if the reply is > ,

V ′ = [1..(N +M)] \ (U ′ ∪ L′ ∪H ′).

A final position is a position (U, L, H, V, (∅, ∅)) where |U | + |L| + |H| = 1.
We suppose that positions, moves of the player prog and final positions are modeled in an

obvious way and additional comments are not required while some auxiliary intuition on moves
of the player user are essential. Since U �= ∅ iff L ∪H = ∅ then there are two disjoint cases:
U = ∅ XOR L ∪H = ∅. Let us consider the first one only since the second is similar. In
this case U1 = U2 = U ′ = ∅. Then

L′ =

L1 if the reply is < , since in this case a false coin is
either in L1 and is lighter either it is in H2 and is heavier;

(L \ (L1 ∪ L2)) if the reply is = , since in this case a false coin is
neither in L1 or L2 neither it is in H1 or H2;

L2 if the reply is > , since in this case a false coin is
either in L2 and is lighter either it is in H1 and is heavier;

H ′ =

H2 if the reply is < , since in this case a false coin is
either in L1 and is lighter either it is in H2 and is heavier;

(H \ (H1 ∪H2)) if the reply is = , since in this case a false coin is
neither in L1 or L2 neither it is in H1 or H2;

H1 if the reply is > , since in this case a false coin is
either in L2 and is lighter either it is in H1 and is heavier.

The above model is quite good from mathematical viewpoint but too large from viewpoint of
the computer scientist since amounts of possible positions and possible moves is an exponential
function of N . Really, for all possible U , L and H the number of enable queries ranges from 1
(at least one query (∅, ∅) is enable) up to at least

Q(N) =
i=[N

2]∑
i=0

(CN
i × CN−i

i)

where all Cl
k are binomial coefficients. Since there are 2

N possible values for U and 3N possible
values for disjoint L and H, then the total amount of positions is

(2N + 3N) ≤ P (N) ≤ (2N + 3N)×Q(N).

The amount of possible moves of the player prog is P (N) too, while the amount of possible
moves of the player user is bounded by the same number and triple P (N). So the total amount
of possible moves is

2× P (N) ≤ M(N) ≤ 4× P (N).

October 4, 2000 ROPAS-2000-7 11

In particular, a concrete model GAME(14, 1) for the GAME(14,1) (i.e. the original puzzle) is
on the edge of abilities of modern personal computers.

3 Model Checking and Abstraction

3.1 Model Checking

Model checking is a testing a model against a formula. Let us be more concrete. Models
for logics which are under consideration in the paper are Labeled Transitions Systems or
Kripke Structures where states of a system are presented as nodes of a graph but transitions
between states are presented as labeled edges. The global (model) checking problem consists
in a calculation of the set of all states of a model where a formula is valid, while the local
(model) checking consists in testing the validity of a formula in a state of a model. Thus
the corresponding model checking algorithms as well as their implementations (called model
checkers) can be characterized by there inputs and outputs as follows:

global checking

inputs: a model and a formula;

output: a set of all states of the model where the formula is valid;

local checking

inputs: a model, a formula, and a state;

output: a boolean value of the formula in the state of the model.

We are especially interested in model checking problem for finite models, i.e. models with
finite domains. For these models both model checking problems are algorithmically equivalent:

• for global checking just check locally all states and then collect states where a formula is
valid,

• for local checking just check globally and check whether a state is in the validity set of a
formula.

Of course, the above reduction of global checking to local one leads to changes of time com-
plexity: the global checking complexity is less then or equal to the local checking complexity
multiplied by amount of states. We would like to concentrate on global model checking only
since this complexity difference is not important for logics presented in the paper. More im-
portant topic are parameters used for measuring this complexity. IfM = (DM , (RM , PM)) is a
finite model then let dM , rM and mM be amount of states in DM , amount of edges in RM and
(dM + rM) respectively. If a model M is implicit then we would like to use these parameters
without subscripts, i.e. just d, r and m. If φ is a formula then let fφ be amount of variables,
connectives and modalities instances in φ. If a formula φ is implicit then we would like to use
this parameter fφ without subscript, i.e. just f .

Proposition 2 Model checking problem of EPDL formulae in finite models is decidable with
time complexity O(m× f)

As follows from the Proposition 1, if identify players A and B with prog and user then
model checking of the formulae WIN3 and WIN4 in models GAME(14, 1) and GAME(39, 1)
answers whether is it always possible to identify the number of a unique false coin among

October 4, 2000 ROPAS-2000-7 12

coins with numbers [2..15] and [2..40] balancing 3 and 4 times at most respectively. In both
case it is enough to check whether these formulae are valid in “initial” positions of these
models ([2..15], ∅, ∅, {1}) and ([2..40], ∅, ∅, {1}). As far as concern corresponding identification
strategies, it is sufficient to model check formulae ¬fail∧ [moveB]fail, ¬fail∧ [moveB](fail∨
WIN1), ¬fail ∧ [move](fail ∨WIN2) in both GAME(14, 1) and GAME(39, 1) and then the
formula ¬fail∧[move](fail∨WIN2) in GAME(39, 1) only. A complexity of the model checker
(Proposition 2) is linear on the size of a model and the size of a formula, so “Plug and play”!
— Sorry, the first model is too large for modern computer while the second is just a huge! So
a problem how to put both puzzles for programming remains...

3.2 Abstraction in Puzzle Corner

A hint how to put both puzzles for programming and solve the metaprogram problem is quite
easy: to consider amounts of coins instead of coin numbers. This idea is natural: when
somebody is solving puzzles he/she operates in terms of amounts of coins of different kinds13

not in terms of their numbers!
Now we are ready to discuss a new mathematical abstract model game(N,M) for theGAME(N,M)

(N ≥ 1, M ≥ 0). Positions in this parameterized game are tuples (u, l, h, v, q) where
• u is an amount of coins in [1..N] which are under question but which were not tested
against other coins;

• l is an amount of coins in [1..N] which are under question but which were tested against
other coins and turned to be lighter;

• h is an amount of coins in [1..N] which are under question but which were tested against
other coins and turned to be heavier;

• v is an amount of coins in [1..(N +M)] which are known to be valid;

• q is a balancing query, i.e. a pair of quadruples ((u1, l1, h1, v1) , (u2, l2, h2, v2)) of
numbers of [1..(N +M)].

Five constraints are closely relate to constraints 1-5 for the GAME(N,M):

1. u+ l + h ≤ N ,

2. u+ l + h+ v = N +M ,

3. u+ l + h ≥ 1,
4. u �= 0 iff l + h = 0,

5. v1 = 0 or v2 = 0.

Additional but natural constraints should be imposed for queries (since we can borrow coins
for weighing from available untested, lighter, heavier and valid ones):

6. u1 + u2 ≤ u,

7. l1 + l2 ≤ l,

8. h1 + h2 ≤ h,
13A coin can be untested, lighter, heavier or valid.

October 4, 2000 ROPAS-2000-7 13

9. v1 + v2 ≤ v,

10. u1 + l1 + h1 + v1 = u2 + l2 + h2 + v2.

A possible move of the player prog is a query for balancing two sets of coins, i.e. pair of
positions

(u, l, h, v, ((0, 0, 0, 0), (0, 0, 0, 0)))
|

moveprog↓
(u, l, h, v, ((u1, l1, h1, v1), (u2, l2, h2, v2))).

A possible move of the player user is a reply <, = or > for a query which causes position
change

(u, l, h, v, ((u1, l1, h1, v1), (u2, l2, h2, v2)))
|

moveuser↓
(u′, l′, h′, v′, ((0, 0, 0, 0), (0, 0, 0, 0))).

in accordance with the query and a reply:

u′ =

0 if the reply is < ,
(u− (u1 + u2)) if the reply is = ,
0 if the reply is > ,

l′ =

(l1 + u1) if the reply is < ,
(l − (l1 + l2)) if the reply is = ,
(l2 + u2) if the reply is > ,

h′ =

(h2 + u2) if the reply is < ,
(h− (h1 + h2)) if the reply is = ,
(h1 + u1) if the reply is > ,

v′ = ((N +M)− (u′ + l′ + h′)).

A final position is a position (u, u, h, v, ((0, 0, 0, 0), (0, 0, 0, 0))) where u+ l + h = 1. Thus a
mew model game(N,M) is over.
How big/small is the abstract model? For every possible u (0 ≤ u ≤ N) there are

i=u∑
i=0

(u− i) =
(u+ 1)× u

2

enable queries (u1, u2) at most. So there are at most

u=N∑
u=0

(u+ 1)× u

2
=

N3 + 3N2 + 2N
6

≤ (N + 1)3

6

positions (u, 0, 0, ((u1, 0, 0, v1), (u2, 0, 0, v2))). For every possible l (0 ≤ l ≤ N) there are

i=l∑
i=0

(l − i) =
(l + 1)× l

2

October 4, 2000 ROPAS-2000-7 14

possible values for (l1, l2) at most. So there are at most

l=N∑
l=0

(l + 1)× l

2
=

N3 + 3N2 + 2N
6

≤ (N + 1)3

6

consistent triples (l, l1, l2). Absolutely similar calculation gives the same upper bound for
amount of consistent triples (h, h1, h2). So an upper bound for amount of positions (0, l, h, ((0, l1, h1, v1), (0, l2, h2, v2)
is

(N + 1)6

36
.

Finally, just similar to the modal GAME(N,M), the overall amount of possible positions in
the game(N,M) is

p(N) ≤ (N + 1)6

36
+
(N + 1)3

6
≤ (N + 1)6

30
while the overall amount of possible moves in the game is

2× p(N) ≤ m(N) ≤ 4× p(N).

3.3 Checking and Abstraction

Again, if the player A is identified with prog and the player B with user then model checking
of the formulae WIN3 and WIN4 in models game(14, 1) and game(39, 1) answers whether is
it always possible to identify a unique false coin14 in the original and in the retailer puzzles.
In both cases it is enough to check whether these formulae are valid in “initial” positions
of these models (14, 0, 0, 1, ((0, 0, 0, 0), (0, 0, 0, 0))) and, respectively, (39, 0, 0, 1, ((0, 0, 0, 0),
(0, 0, 0, 0))). As far as concern corresponding identification strategies it is sufficient to model
check formulae ¬fail ∧ [moveB]fail, ¬fail ∧ [moveB](fail ∨WIN1), ¬fail ∧ [move](fail ∨
WIN2) in both game(14, 1) and game(39, 1) and then the formula ¬fail∧[move](fail∨WIN2)
in game(39, 1) only. In these cases the strategies operates in terms of amounts of coins of
different kind to be put on pans of the balance, but not in terms of coin numbers. It seems
reasonable to try “plug and play” model checking since sizes of both models game(14, 1) and
game(39, 1) are small in comparison with sizes of GAME(14, 1) and GAME(39, 1). But it
does not lead to a solution of the metaprogram problem... For solving this problem we would
like to understand better relations between the abstract model game(N,M) and the concrete
model GAME(N,M) in general and how to restore winning strategies for GAME(N,M) from
winning strategies for game(N,M) in particular. For it let us consider carefully a mathematical
nature of the abstraction.
In general, let Φ be a set of formulae, M1 = (I1, D1) and M2 = (I2, D2) be two models,

and g : D1 → D2 be a mapping. The model M2 is called an abstraction of the model M1 with
respect to formulae Φ iff15 for all formula φ ∈ Φ and state s ∈ D1 the following holds: s |=1 φ
⇔ g(s) |=2 φ. In particular let us consider models Game(N,M) and game(N,M) (N ≥ 1,
M ≥ 0) and define a counting mapping count : DGAME(N,M) → Dgame(N,M) as follows:

count : (U,L,H, V, (S1, S2)) �→ (|U |, |L|, |H|, q)
where q is

((|S1 ∩ U |, |S1 ∩ L|, |S1 ∩H|, |S1 ∩ V |), (|S2 ∩ U |, |S2 ∩ L|, |S2 ∩H|, |S2 ∩ V |)).
This counting mapping can be component-withe extended on pairs of positions.

14But not the number of this coin!
15g is called an abstraction mapping in this case.

October 4, 2000 ROPAS-2000-7 15

Assertion 3 For all N ≥ 1 and M ≥ 0 the counting mapping is a homomorphism of a labeled
graph GAME(N,M) onto another labeled graph game(N,M) with the following property for
every position (U,L,H,Q) in the GAME(N,M):

1. count maps all moves of a player which begins in the position onto moves of the same
player in the game(N,M) which begins in count(U,L,H,Q);

2. count maps all moves of a player which finishes in the position onto moves of the same
player in the game(N,M) which finishes in count(U,L,H,Q).

The following assertion is an immediate consequence of the above one.

Assertion 4 For all N ≥ 1 andM ≥ 0 the game(N,M) is an abstraction of the GAME(N,M)
with respect to formulae of EPDL written with use of the unique propositional variable fail
and two action variables moveA and moveB only.

3.4 Toward Stronger Logic

As follows from the assertions 3 and 4, for all N ≥ 1, M ≥ 0, i ≥ 1 and position (U,L,H, V,Q)
of theGAME(N,M) the following holds: (U,L,H, V,Q) |=GAME(N,M) WINi iff count(U,L,H, V,Q)
|=game(N,M) WINi. As far as concern winning strategies, a move

count(U,L,H, V,Q)→ (u, l, h, v, ((u1, l1, h1, v1), (u2, l2, h2, v2)))

of the player prog is the first move of a winning strategy with i-rounds at most in the
game(N,M) iff a move

(U,L,H, V,Q)→ (U,L,H, V, ((U1 ∪ L1 ∪H1 ∪ V1), (U2 ∪ L2 ∪H2 ∪ V2)))

of the player prog is the first move of a winning strategy with i-rounds at most in the
GAME(N,M) where

• U1 and U2 are the first u′1 and the next u
′
2 consequentive elements of U ,

• L1 and L2 are the first l′1 and the next l
′
2 consequentive elements of L,

• H1 and H2 are the first h′1 and the next h
′
2 consequentive elements of H,

• V1 and V2 are the first v′1 and the next v
′
2 consequentive elements of V .

Hence a high-level design of a solution of the original and retailer puzzles can looks like follows:

1. to model check formulae ¬fail ∧ [moveB]fail, ¬fail ∧ [moveB](fail ∨WIN1), ¬fail ∧
[move](fail∨WIN2) in both models game(14, 1) and game(39, 1), and ¬fail∧[move](fail∨
WIN2) in game(39, 1) only;

2. define 3- and 4-rounds at most winning strategy in game(14, 1) and, respectively, game(39, 1)
for the player prog as moves (if possible) to positions where at least one of these formulae
(i.e. their disjunction) is valid,

3. restore winning strategies for GAME(14, 1) and GAME(39, 1) from their scratches in
the models game(14, 1) and game(39, 1).

October 4, 2000 ROPAS-2000-7 16

Nevertheless several disadvantages of the above approach remain. First, we can not solve
the metaprogram problem on base of the acquainted mathematical background! Second, the
formulae are too large for handling them. Really, the formula ¬fail ∧ [move](fail ∨WIN2) is
unfolding as{

¬f ∧ [u]
{
f ∨

(
¬f∧ < p >

(
¬f ∧ [u]

(
f ∨ (¬f∧ < p > (¬f ∧ [u]f)))))}}

where f , p and u are abbreviations for fail, moveA and moveB respectively16 Third, it is not
clear how to express a property that there is a winning strategy. Really the property can be
expressed by an infinite disjunction

WIN0 ∨ WIN1 ∨ WIN2 ∨ WIN3 ∨ WIN4 ∨ ... =
∨
i≥0

WINi

but this expression is illegal formula in EPDL. The following arguments proves formally that
EPDL is too weak for expressing it. Let us consider all non-positive integers as a domain and
interpret fail to be valid on 0 only while moveA and moveB to be interpreted as the successor
function +1 on negatives. Let us denote the resulting model by NEG. Then let us define an
action nesting an for EPDL formulae by induction on formulae structure:

1. an(fail) = an(true) = an(false) = 0,

2. an(¬φ) = an(φ),

3. an(φ ∧ ψ) = max{an(φ), an(ψ)},
4. an(φ ∨ ψ) = max{an(φ), an(ψ)},
5. an([moveA]φ) = an([moveB]φ) = 1 + an(φ),

6. an(< moveA > φ) = an(< moveB > φ) = 1 + an(φ).

In this setting, for every EPDL formula φ, for all k > an(φ) and l > an(φ) the following
can be trivially proved by induction on formulae structure: (−k) |=NEG φ ⇔ (−l) |=NEG φ.
So for every formula of EPDL there exists a non-positive number prior to which the formula
is a boolean constant, while the infinite disjunction

∨
i≥0WINi is valid in all even negative

integers.
So it seems reasonable to have another logic with stronger expressive power. For it we are

going to describe below a so-called µ-Calculus [3] as an extension of the EPDL. Both syntax
and semantics of this logic are more complicated then EPDL ones.

4 Propositional µ-Calculus

4.1 µ-Calculus Syntax

Let us extend the syntax of EPDL by two new features:

7. if p is a propositional variable and φ is a formula then (µp.φ) is a formula17,

16Let us remind that we identify the player prog with A and the player user with B.
17which is read as “mu p φ” or “the least fixpoint p of φ”

October 4, 2000 ROPAS-2000-7 17

8. if p is a propositional variable and φ is a formula then (νp.φ) is a formula18.

Informally speaking µp.φ is an “abbreviation” for an infinite disjunction

false ∨ φp(false) ∨ φp(φp(false)) ∨ φp(φp(φp(false))) ∨ ... =
∨
i≥0

φip(false)

while νp.φ is an “abbreviation” for another infinite conjunction

true ∧ φp(true) ∧ φp(φp(true)) ∧ φp(φp(φp(true))) ∧ ... =
∧
i≥0

φi(true),

where

- φp(ψ) is a result of substitution of a formula ψ on places of p in φ,

- φ0
p(const) is a boolean constant const ∈ {false, true},

- φi+1
p (const) is φp(φip(const)) for i ≥ 0.

In particular, if φ is a formula

¬fail∧ < moveA >
(¬fail ∧ [moveB](fail ∨ win))

where win is a new propositional variable, then the formula WIN0 is just φwin(false), the
formula WIN1 is equivalent to

φ1
win(false) ≡ ¬fail∧ < moveA >

(¬fail ∧ [moveB](fail ∨ false))
since WIN1 is defined as ¬fail∧ < moveA > (¬fail ∧ [moveB]fail), while WINi+1 (i ≥ 1) is
equivalent to

φi+1
win(false) ≡ ¬fail∧ < moveA >

(¬fail ∧ [moveB](fail ∨ φiwin(false))
)

since it is defined as ¬fail∧ < moveA >
(¬fail∧ [moveB](fail∨WINi)

)
. Finally, the infinite

disjunction
∨

i≥0WINi should be equivalent to

µ win.φ ≡ µ win.
(
¬fail∧ < moveA >

(¬fail ∧ [moveB](fail ∨ win))).
Let us denote the last formula by WIN .
The above definition of formulae is too wide. We would like to impose two context-sensitive

restrictions on the set formula for getting formulae of the µ-Calculus19. The restrictions are
listed below.

• In formulae (µp.φ) and (νp.φ) the range of µp and νp is the formula φ and all instances
of the variable p are called bounded in (µp.φ) and (νp.φ). An instance of a variable in a
formula is called free iff it is not bounded. No propositional variable can have free and
bounded instances in a sub-formula of a formula.

• In a formula (¬φ) the range of negation is the formula φ. An instant of a propositional
variable in a formula is called positive/negative iff it is located in an even/odd number of
negation ranges. No bounded instance of a propositional variable can be negative.

18which is read as “nu p φ” or “the greatest fixpoint p of φ”
19The first is for syntactical convenience while the second is essential.

October 4, 2000 ROPAS-2000-7 18

These restrictions finish the definition of the syntax of the µ-Calculus formulae. As usual
we would like to avoid extra parenthesis and extend a standard list of priorities: ¬, <>
, [], µ, , ν, ∧, ∨, →,↔.
Let us illustrate how the above restrictions work. The first restriction prohibits the formula

p ∧ νq.
(
[a]q ∧ µq.(p∨ [a]q)) to be a formula of the µ-Calculus since a propositional variable q

has free and bounded instances in a sub-formula [a]q ∧ µq.(p∨ [a]q). In contrast the following
formula FAIR1

p ∧ νq.
(
[a]q ∧ µr.(p ∨ [a]r))

is a correct formula of the µ-Calculus. The second restriction prohibits the formula νq.
(
p ∧

[a]µr.(¬q ∨ [a]r)) to be a formula of the µ-Calculus since a propositional variable q has a
bounded negative instance. In contrast the following formula FAIR2

νq.
(
p ∧ [a]µr.(q ∨ [a]r))

is a correct formula of the µ-Calculus. The above formula WIN is also a correct formula of
the µ-Calculus. This formula play a special role in metaprogram problem as is shown below.
Finally let us remark that the above restrictions do not prevent formulae of EPDL to be
formulae of µ-Calculus since EPDL formulae do not contain bounded instances of variables.

Problem 6 Are formulae of µ-Calculus a context-free language?

4.2 µ-Calculus Semantics

The semantics of µ-Calculus is defined in the same models as EPDL (i.e. Labeled Transition
Systems or Kripke Structures) in terms of sets of states where formulae are valid. For every
model M = (DM , IM) let us denote by M(formula) a set of all states of the model where a
formula is valid. The first 6 closes of the definition deal with EPDL features:

1. for boolean constants M(true) = DM and M(false) = ∅;
for every propositional variable p, M(p) = IM (p);

2. for every formula φ, M(¬φ) = DM \M(φ);
3. for all formulae φ and ψ, M(φ ∧ ψ) = M(φ) ∩M(ψ);
4. for all formulae φ and ψ, M(φ ∨ ψ) = M(φ) ∪M(ψ);
5. for all action variable a and formula φ, M(< a > φ) =

{s ∈ DM : (s, s′) ∈ IM (a) and s′ ∈M(φ) for same state s′ ∈ DM};
6. for all action variable a and formula φ, M([a]φ) =

{s ∈ DM : (s, s′) ∈ IM (a) implies s′ ∈M(φ) for every state s′ ∈ DM}.
As far as concern new features µ and ν then let us define their semantics for finite models
only since it is the case of interest of the paper and the major domain for model checking
applications:

7. for every formula φ, M(µp. φ) =⋃{ Li ⊆ DM : L0 = ∅ and Li+1 =MLi/p(φ) for all i ≥ 0 },
8. for every formula φ, M(νp. φ) =⋂{ Ki ⊆ DM : K0 = DM and Ki+1 =MKi/p(φ) for all i ≥ 0 },

October 4, 2000 ROPAS-2000-7 19

where MS/p is a model which differs from M by interpretation of p as S (i.e. DMS/p
= DM ,

IMS/p
(a) = IM (a) for every action variable a, IMS/p

(q) = IM (q) for every propositional
variable q other then p, while IMS/p

(p) = S). Finally let us define the validity relation |=′
M

for all formula φ and state s in a natural way: s |=′
M φ iff s ∈ M(φ). Let us remark that we

can use in the framework of the µ-Calculus the same notation |=M as in a framework of EPDL
since the following holds:

Proposition 3 The µ-Calculus is a conservative extension of EPDL, that is s |=′
M φ iff s |=M

φ for all EPDL formula φ, model M and state s.

Let us also to compare the informal semantics of fixpoints with the formal one. Let M be
a finite model and φ be a formula. We have

φ0
p(false) ≡ false L0 = ∅

... ...
φi+1
p (false) ≡ φp(φip(false)) Li+1 =MLi/p(φ)

... ...

Hence M(φip(false)) = Li. Then we have

K0 = DM true ≡ φ0
p(true)

... ...
Ki+1 =MKi/p(φ) φi+1

p (true) ≡ φp(φi+1
p (true)

... ...

Hence M(φip(true)) = Ki for every i ≥ 0. So in finite models µp. φ(p) is really an “abbre-
viation” for an infinite disjunction

∨
i≥0 φ

i
p(false) while νp. φ(p) is an “abbreviation” for an

infinite conjunction
∧

i≥0 φ
i(true). In particular the formula WIN is really equivalent to the

infinite disjunction
∨

i≥0WINi. Hence, this formula of the µ-Calculus is not equivalent to any
formula of EPDL. Simultaneously all formulae of EPDL are formulae of the µ-Calculus. These
arguments prove the next proposition.

Proposition 4 The µ-Calculus is more expressive then EPDL.

The above formula WIN is not the unique formula of interest. Let us consider FAIR1

for example. Where a sub-formula φ ≡ µr.(p ∨ [a]r) of this formula is valid in a model?
– Just in those states where every infinite a-path eventually leads to p. Really, φ0

r(false) ≡
false is always invalid, φ1

r(false) ≡ (p ∨ [a]false) is valid iff p holds or a does not halts,
φ2
r(false) ≡ (p∨ [a]φ1

r(false) is valid iff p holds or a does not halts after at most 1-step of a,...
φi+1
r (false) ≡ (p∨ [a]φir(false) is valid iff p holds or a does not halts after at most i-steps of
a, etc. Where a sub-formula νq.([a]q ∧ φ) of FAIR1 is valid in a model? – Just in those states
where every a-path always leads to φ. Really, let us consider a formula ψ ≡ νq.([a]q ∧ r) and
remark that ψr(φ) is νq.([a]q ∧ φ). In this case ψ0

q (true) ≡ true is always valid, ψ1
q (true) ≡

([a]true∧ r) is equivalent to r, i.e. is valid iff r holds, ψ2
q (true) ≡ ([a]ψ1

q (true) ∧ r) is valid iff
r holds now and after 1-step of a,... ψi+1

q (true) ≡ ([a]φiq(true) ∧ r) is valid iff r always holds
during at most i-steps of a, etc. So, in general, νq.([a]q ∧ r) is valid iff every a-path always
leads to r, and, in particular, νq.([a]q ∧ φ) is valid in those states of a model where every
a-path always leads to φ. But φ itself is valid in those where every infinite a-path eventually
leads to p. So νq.([a]q ∧ φ) ≡ νq.

(
[a]q ∧ µr.(p ∨ [a]r)) is valid in a state of a model iff every

infinite a-path infinitely often visits states where p holds. An infinite sequence is said to be
fair with respect to a property iff the property holds for an infinite amount of elements of the

October 4, 2000 ROPAS-2000-7 20

sequence. For example, a scheduler of CPU time among several permanent jobs is fair with
respect to a concrete job iff it schedules this job for CPU infinitely often. Since FAIR1 is a
conjunction of p with the above formula, then FAIR1 holds in a state of a model iff p holds
and every infinite a-path is fair with respect to p.

Problem 7 Prove that formulae FAIR1 and FAIR2 are equivalent.

5 Model Checking for µ-Calculus:
Metaprogram and far Beyond...

5.1 Toward Metaprogram Problem

Now we are ready to solve the metaprogram problem but we are not going to present a solution
of the problem in the paper. In contrast we would like to discuss cornerstones and a detailed
design of a solution while a solution is left for readers.
Let N ≥ 1, M ≥ 0 and K ≥ 0 be numbers. In accordance with the assertion 4, the model

game(N,M) is an abstraction of the model GAME(N,M) with respect to formulae of EPDL
and count is a corresponding abstraction mapping. But Li = game(N,M)(WINi) for every
i ≥ 1, where L0 = ∅ and

Lj+1 = game(N,M)Li/win

(
¬fail∧ < moveA >

(¬fail ∧ [moveB](fail ∨ win)))
for every j ≥ 0. As follows from the Proposition 1, game(N,M)(WINi) comprises all
positions where prog has a i-rounds at most strategy for identification of a false coin. Hence,
a criterion which decides whether there exists a K-times balancing (at most) strategy for
identification a unique false coin among N coins under question with aid of M valid coins is
to check whether the initial position (N, 0, 0,M, ((0, 0, 0, 0), (0, 0, 0, 0))) is in LK .

Fig. 2 presents a body of PASCAL program BETA which implements the above criterion
for input values of N,M,K. In this program variables N, M and K are for the initial amounts
of coins under question, of valid coins and of balancing. A variable for a number of a current
round is i. Variables for current amounts of untested, lighter and heavier coins are u, l and h
respectively. Variables u1, u2, l1, l2, h1 and h2 are for amounts of untested, lighter and heavier
coins in a query, i.e. for different pans in a current balancing. Finally, variables preLu, nexLu
are 1-dimension and variables preLlh, nexLlh are 2-dimensional boolean arrays with indexes
range [0..N]. An array *Lu is for presenting a set of positions (u, 0, 0, ((0, 0, 0, 0), (0, 0, 0, 0)))
while another array *Llh is for presenting a set of positions (0, l, h, ((0, 0, 0, 0), (0, 0, 0, 0))). A
pair of arrays preLu and preLlh is for presenting a set of positions Li while another pair of
arrays nexLu and nexLlh is for presenting a set of positions Li+1.
Finally let us discuss a detailed design of a metaprogram. Let GAMMA(N,M, K) be be a

program which works just the same as BETA, but it treats N, M and K as constants (in particular
it does not input their values) with fixed values N , M , K and, (in addition) saves successful
moves of the player prog: for every 0 ≤ i < K and every position ∈ Li+1 the program saves a
query during calculation of Li+1 iff it is the first time when all replies on this query of the other
player user lead to positions in Li. Let DELTA(N,M,K) be another program which initially
works like GAMMA(N,M,K) and as soon as GAMMA(N,M,K) halts it begins to work in terms
of numbers of coins (i.e. positions of the GAME(N,M)) as follows. DELTA(N,M,K) adopts
([(M + 1)..(N +M)], ∅, ∅, [1..M], (∅, ∅)) as the initial current position and then executes the
following loop until it reaches a final current position (U,L,H, V, (∅, ∅)) with |U ∪ L ∪H| = 1:
1. apply a mapping count to a current position in the GAME(N,M);

October 4, 2000 ROPAS-2000-7 21

for u:=0 to N do preLu[u]:=FALSE;
for l:=0 to N do for h:=0 to N do preLlh[l,h]:=FALSE;
WriteLn(’Input N’); ReadLn(N);
WriteLn(’Input M’); ReadLn(M);
WriteLn(’Input K’); ReadLn(K);
for i:=1 to K do

begin
for u:=0 to N do nexLu[u]:=FALSE;
for l:=0 to N do for h:=0 to N do nexLlh[l,h]:=FALSE;
begin
for u:=0 to N do

for u1:=0 to u do
for u2:=0 to (u-u1) do

if (M+N)-u >= abs(u1-u2)
then nexLu[u] := preLu[u] OR (u=1) OR

(((u1+u2=1) OR preLlh[u1,u2]) AND
((u-(u1+u2)=1) OR preLu[u-(u1+u2)]) AND
((u1+u2=1) OR preLlh[u2,u1]));

for l:= 0 to N do
for h:=0 to (N-l) do

for l1:=0 to l do
for l2:=0 to (l-l1) do

for h1:=0 to h do
for h2:=0 to (h-h1) do

if (N+M)-(l-h) >=abs((l1+h1)-(l2+h2))
then nexLlh[u,h] :=

nexLlh[l,h] OR (l+h=1) OR
(((l1+h2=1) OR preLlh[l1,h2]) AND
((l-(l1+l2)+h-(h1+h2)=1) OR
preLlh[l-(l1+l2),h-(h1+h2)]) AND
((l1+h2=1) OR preLlh[l2,h1]));

for u:=1 to N do preLu[u]:=nexLu[u];
for l:=0 to N do for h:=0 to N do preLlh[l,h]:=nexLlh[l,h];
end;

if preLu[N] then writeLn(’possible’) else writeLn(’impossible’)

Figure 2: A body of a PASCAL program which checks whether is it possible to identify a
unique false coin among N coins under question with aid of M valid coins and balancing then
K times at most.

October 4, 2000 ROPAS-2000-7 22

2. get a successful query which is calculated by GAMMA(N,M,K) and corresponds to the
position count(position) in the game(N,M);

3. define (in accordance with the assertion 3) a corresponding move of the player prog in
the GAME(N,M) and output it for the user;

4. define the next position with respect to the user reply in the game(N,M);

5. restore a corresponding new position in the GAME(N,M) (in accordance with the as-
sertion 3) and adopt it as the next current position.

After that DELTA(N,M,K) outputs the unique number in the U ∪ L ∪H and halts.

Assertion 5 For all given and fixed values N , M and K DELTA(N,M,K) is a strategy of
identification of a number of a unique false coin among N coins with numbers (M+1)..(N+M)]
with use of M valid coins and balancing K times at most iff such strategy exists.

Do you now guess how a solution of the metaprogram problem looks like? It looks like the
program BETA but in contrast to BETA it has two special features. The metaprogram declares
an auxiliary string constant DELTA which is a text of the program DELTA(N,M,K) without
values for constants N, M and K. Then the metaprogram has another last operator then BETA:
writeLn(’possible’) in the last operator of BETA

if preLu[N] then writeLn(’possible’) else writeLn(’impossible’)

is replaced in the metaprogram by a subprogram which inserts symbolically values of N , M ,
K as values for constants N, M, K into string constant DELTA and output the string.

5.2 µ-Calculus Semantics Again

Semantics of formulae as well as the semantics of propositional variables are sets of states.
It gives us a new opportunity to consider formulae as functions which map interpretations
of propositional variables into sets where formulae are valid in corresponding interpretations.
Let us illustrate this new approach to the µ-Calculus semantics by a game example. Let
(P,MA,MB , F) be a finite game of two players while M = G(P,MA,MB ,F) be a corresponding
model. Let φ be a formula ¬fail∧ < moveA >

(¬fail∧[moveB](fail∨win)). An interpretation
P of propositional variables of the formula is a pair (P (fail), P (win)) of sets of positions. Let
T be a “standard” interpretation for fail as in the G(P,MA,MB ,F), let S0 = ∅ and for every
i ≥ 1 let Si be a set of all positions where the player A has a wining strategy with i-rounds at
most. For every i ≥ 0 let Pi = (T, Si). Since Si = G(P,MA,MB ,F)(WINi) (Proposition 1)
and

WINi+1 ≡ ¬fail∧ < moveA >
(¬fail ∧ [moveB](fail ∨WINi)

)
for every i ≥ 1 then MSi/win(φ) �→ Si+1 for every i ≥ 0. For every i ≥ 1 a natural inclusion
Si ⊆ Si+1 holds, since a i-rounds at most winning strategy is automatically a (i + 1)-rounds
at most winning strategy. Let us summarize it all as follows:

argument S: ∅ ⊆ S1 ⊆ S2 ⊆ ... Si ⊆ ...
λS.

(
MS/win(φ)

)
: ↓ ↓ ↓ ↓

result MS/win(φ): S1 ⊆ S2 ⊆ S3 ⊆ ... Si+1 ⊆ ...

As follows from the table, the mapping λS.
(
MS/win(φ)

)
non-decries monotonically on {Si : i ≥

0}. This mapping has another important fixpoint property: if S = ⋃
i≥0 Si then (Proposition

October 4, 2000 ROPAS-2000-7 23

1), S is a fixed point of M(φ), i.e. MS/win(φ) = S. By the way, informally speaking the above
equality is very natural: if the player A is in a position where he/she has a winning strategy
then he/she has a move prior to and after which the game is not lost, but after which every
move of another player B leads to a position where the game is lost or A has a winning strategy.
Is the above monotonicity an accidental property of special formulae in special models? –

Not at all! It is a basic property of the µ-Calculus formulae.

Proposition 5 For all model M , sets of states S′ ⊆ S′′, propositional variable p and formula
φ

• if p has not negative instances in the φ then MS′/p(φ) ⊆MS′′/p(φ),

• if p has not positive instances in the φ then MS′′/p(φ) ⊆MS′/p(φ).

The monotonicity property has very important semantical implications. In particular it
leads to a 8fixpoint characterization of semantics of µ and ν. (A particular example of this
characterization is discussed above.)

Proposition 6 For all propositional variable p, formula φ of the µ-Calculus without negative
and bounded instances of p, and model M = (DM , (RM , PM)) M(µp.φ) and M(νp.φ) are the
least and the greatest fixpoints with respect to inclusion of a monotone non-decreasing function(

λS ⊆ DM . MS/p(φ)
)
: P(DM) −→ P(DM)

which maps each S ⊆ DM to MS/p(φ) ⊆ DM .

5.3 Model Checking the µ-Calculus

Let us return to the millennium game which Alice and Bob played on the the Eve of the New
Year 2000. In this game (in contrast to the metaprogram problem) we are interested in a set
of positions where a winning strategy exists in principle, i.e. in states of the model G2000/2001

where the formula20 WIN ′ ≡ µ win.
(
¬fail∧ < move >

(¬fail ∧ [move](fail ∨ win)
))

holds. It is a typical model checking problem but for the µ-Calculus this time. The semantics
of the µ-Calculus defined in the section 4.2 is (in principle) a model checking algorithm for the
µ-Calculus in finite models. Let us first remind parameters used for measuring model checking
complexity and then formulate a statement about complexity of this model checking algorithm.
If M = (DM , (RM , PM)) is a finite model then dM and rM are amounts of states in DM

and edges in RM , while m = (dM + rM). If a model M is implicit then we would like to use
these parameters without subscripts, i.e. just d, r and m. If φ is a formula then fφ is an
amount of variables, connectives, modalities, µ and ν instances in φ. The last measure can
be generalized as follows: if φ is a formula and set is a collection of variables, connectives,
modalities, µ and ν, then fφ(set) is an amount of instances of elements of set in φ. So fφ is
just fφ(Act ∪ Prp ∪ {¬,∧,∨, <>, [], µ, ν}). But we are particular concerned by the amount of
instances of µ and ν in the formula φ, i.e. by (fµν)φ = fφ({µ, ν}). If a formula φ is implicit
then we would like to use this parameter fφ without subscript, i.e. just f .

Proposition 7 Model checking problem for the µ-Calculus in finite models is decidable with
an upper time bound O(m× f × d(fµν)).

20In the above the formulaWIN uses two different action variablesmoveA andmoveB . In this sectionWIN ′
is a variant of the formula with moveA ≡ moveB ≡ move.

October 4, 2000 ROPAS-2000-7 24

In particular, a computer-aided solution for the problem 4 for the millennium game, becomes
just technical: implement the above model checking algorithm for the µ-Calculus, code the
model G2000/2001 and then “plug and play”, i.e. model check the formula WIN ′. Moreover,
it is possible to generalize (or parameterize) the problem: just consider another New Year Eve
then 2000, i.e. 1999, 1998, etc. Let us denote corresponding models by G1999/2001, G1998/2001

and so on, or, in general, GN/2001. An upper bound for time complexity of finding all positions
where Alice had a winning strategy in the GN/2001 is O

(
(2001−N)3

)
in accordance with the

Proposition 7. But a constant coefficient in the above O(...) is too large: something around
2, 000, 000, 000. The main reason is the factor d(fµν) which in this case gives around 88% of
the above multiplicative coefficient21. A careful analysis of the computational complexity of
the model checking algorithm sketched in the proof of the Proposition 7 can lead to a better
upper bound O(m × f × dn) where n is a new parameter called nesting depth. Informally
speaking a nesting depth of a formula is a maximal amount of nesting µ and ν in the formula.
But nevertheless the improved upper bound remains exponential... In particular, an improved
upper bound for finding all positions where Alice had a winning strategy in the GN/2001 is
O

(
(2001 − N)2

)
A multiplicative coefficient in O(...) is now 365-times smaller then in the

above: something around 6, 000, 000 only!

5.4 Algorithmic Problems for the µ-Calculus

A problem how to leap a complexity gap between a polynomial model checking EPDL and
an exponentially hard model checking the µ-Calculus in finite models is quite natural. Un-
fortunately, best known model checking algorithms for the µ-Calculus and finite models are
exponential. For example, a time bound of Faster Model Checking Algorithm (FMC-algorithm)
[4] is roughly

O(m× f)×
(m× f

a

)a−1

where an alternating depth a of a formula is a maximal amount of alternating nesting µ and
ν with respect to the syntactical dependences and formally is defined by induction. A formal
definition is out of scope of the paper due to space limitations. We would like to point out
only that the alternating depth is always less then or equal to the nesting depth for every
formula: aφ ≤ nφ. In particular, the a complexity of model checking the formula WIN
in a model GN/2001 is O(2001 − N) at all! As far as concerns lower bounds for the model
checking problem for the µ-Calculus in finite models then it is known that the problem is in
NP ⋂

co−NP [5], i.e. it is not more complicated then checking formulae of the propositional
calculus to be a tautology and a satisfiable formula. Due to this reason it seems to be very
hard to prove an exponential lower bound for the model checking problem for the µ-Calculus
in finite models. Since it is not known whether the problem is complete in NP then it seems
to be more realistic to try to find a polynomial model checking algorithm for the µ-Calculus in
finite models. At least several expressive fragments of the µ-Calculus which have polynomial
hard model checking problem for finite models have been identified [5, 6]. As follows from the
upper bound for the FMC-algorithm, formulae with a bounded alternating nesting depth form
a fragment of this kind.

Problem 8 (a) Describe new fragments of the µ-Calculus with a polynomial model checking
in finite models. (b) Prove a polynomial upper or an exponential lower time bound for model
checking the µ-Calculus in finite models.

21Let us say that a the first factor gives pa
ab =

|a−b|
a

× 100% to the product (a × b), while the second factor

gives pb
ab =

|a−b|
b

× 100%. Of course it is nonsense to measure how much gives each factor to their product. In
particular pa

ab + pb
ab �= 100% !

October 4, 2000 ROPAS-2000-7 25

Decidability is another important algorithmic problem. The problem is how to check
whether a given formula of the µ-Calculus is valid in all models. It is known that it is pos-
sible to check the validity not in all models but in all finite models only due to a so-called
finite-model property of the µ-Calculus formulae: a formula is satisfiable22 in a model iff it is
satisfiable in a finite model [7, 10]. But this reduction does not make the problem to be trivial!
Moreover, the reduction itself is just a corollary of the decidability of the µ-Calculus with an
exponential upper bound. In principle, an exponential decidability for this logic can be proved
by means of an automata-theoretic technique [7, 8]. This and other impressive applications of
the automata-theoretic technique lead the program logic community to the opinion [9] that the
automata-theoretic approach is the unique paradigm for proving decidability for complicated
propositional program logics. In spite of this opinion, the successful applications of another
technique called Program Scheme Technique (PST) were reported several times. This tech-
nique [10] is a powerful approach for proving decidability of program logics. It is completely
self-contained, automata-free technique yielding one-exponential upper time bounds. A revised
version of the Program Scheme Technique for decidability of the µ-Calculus and a role of model
checking of the formula WIN in this framework is a topic for forthcoming paper [11].
A more complicated algorithmic problem for µ-Calculus is axiomatization in general and

how to axiomatize µ-Calculus on based on PST in particular. In this context we would like
to remark that in the paper [3] a natural sound axiomatization for µ-Calculus was proposed,
but the completeness of the axiomatization was proved for a fragment of this logic only23. The
completeness problem for µ-Calculus was an open problem during 10 years. Finally it was
solved by I. Walukiewicz in 1993 [9, 12] on base of game theory and theory of automata on
infinite trees. Nevertheless the completeness proof is very complicated and any simplification
suggestions are welcome!

Problem 9 A complete axiomatization of the µ-Calculus made easy.

6 Program Logics at All

6.1 Where Are “Program Logics”?!

Really, where they are? All above is about Elementary Propositional Dynamic Logic and the µ-
Calculus! Moreover, an experienced mathematician can remark that EPDL is just a polymodal
variant the classical and basic modal logic K [13] as well as the µ-Calculus is just a polymodal
variant of the µK, i.e. K extended by fixpoints. Really, in terms of EPDL, K is a variant of
EPDL with a unique action variable. Since in this case a name of this variable is not important
then it is possible to omit the variable in formulae and write✷ and✸ instead of [...] and < ... >
respectively. This “new” modalities are read “box” or “always” and “diamond” or “sometimes”.
In particular, the formulae wini (i ≥ 0) for positions in the millennium game where Alice had a
i-round at most winning strategy, — all these formula are formulae of K and can be rewritten
in ✷ and ✸ notation as win0 ≡ false and wini+1 ≡ ¬fail ∧✸

(¬fail ∧✷(fail∨wini)
)
for

every i ≥ 1. In this notation the following formula µ win.
(
¬fail ∧✸

(¬fail ∧✷(fail∨win)))
of the µK characterizes the set of all game positions where Alice had a winning strategy. So
it is really reasonable to consider EPDL as a polymodal variant the modal logic K and the

22A formula is said to be satisfiable in a model iff it is valid on a state of the model.
23Some mathematicians use the term calculus for systems defined syntactically by axioms, rewriting rules,

etc., not semantically like logics or algebras, i.e. by validity in models, equalities, etc. For example, λ-Calculus
is defined syntactically by means of equational axiomatization or in terms of α- and β-reductions, while the
First-Order Logic is usually defined semantically in terms of validity of formulae in models. From a viewpoint
of this conventional terminology, µ-Calculus in this paper is rather a logic then a calculus.

October 4, 2000 ROPAS-2000-7 26

µ-Calculus as a polymodal variant of the µK. Why do we write about them under the title
“Program logics made easy”? And why do we give non-mathematical names for them?
The answers are quite simple. Program logics are modal logics used in soft- and hard-

ware verification and specification for reasoning about programs. In 1980-ies program logics
comprised

• dynamic logics [14, 16],

• temporal logics [15, 17],

and their extensions by means of fixpoints. A more recent addition to the family of pro-
gram logics is logic of knowledge [18]. The utility of this logic for this application is that it
provides a language that formalizes constructs capturing notions that are used informally in
reasoning about multi-agent systems when a pure dynamic/temporal approach is not very con-
venient. The “given names” of program logics are sometimes traditional and closely related
to their mathematical names24, sometimes they are invented by their parents with respect
to their intuition about verification and specification application domain25. Situation with
“given names” is quite similar to the situation with a generic name of models for program
logics: some researchers prefer a mathematical name Kripke Structures while other prefer the
application-oriented name Labeled Transition System. What is better? – Up to you!

6.2 Why We Should Know Program Logics?

The role of Formal Methods in the development of computer hard- and software increases since
systems become more complex and require more efforts for their specification and verification.
A logical approach to the verification and specification comprises of the following choices:

• a specification language for properties presentation,
• a formal proving technique for specified properties.

Specification languages which are in use for presentation of properties rage from propositional to
high-order logics while a proving technique is either model-checking (a semantical approach)
or deductive reasoning (a syntactical approach). In spite of the importance of the logical
approach for development of a reliable hard- and software this research domain is not well
acquainted to non-professionals. In particular, many undergraduate students of departments
which are closely related to further progress of computer hard- and software (i.e. pure/applied
mathematics and electric/electronic engineering) consider Formal Methods in general to be out
of scope of their interests, since they (Formal Methods) are

• either too poor for their pure mathematics,
• either too pure for their poor mathematics.

We are especially concerned by this disappointing not-well motivated attitude and suppose
that a deficit of a popular papers on this topic is the main reason for this obscurantism. In
this particular paper we would like to present in a popular (but mathematically sound) form
a Program Logics tributary creek of a powerful stream called Formal Methods.
It is possible (in principle) to construct a complete first-order axiomatization for each

finite model and then try to prove a desired property (semi)automatically by means of any
available logical framework [19, 20, 21]. But this purely deductive approach is sometimes

24Ex., temporal is a program logic, while tense is a basic one.
25Ex., dynamic is a program logic, while K is a basic one.

October 4, 2000 ROPAS-2000-7 27

not practical for complexity reasons. Let us consider a finite model of a moderate size with
approximately 100, 000 states. If it has a “clear” structure then it is reasonable to try to “catch”
the model on the whole by means of a sound axiomatization and then to try to prove a desired
property in a (semi)automatic style. But if a model has a “vague” structure which can be
generated automatically (e.g. all possible configurations of a “small” distributed system) then
it is reasonable to apply an automatic model checker to the generated system and a desired
property, presented as a formula of a program logic. In this case decidability and complexity
issues of model checking for a particular logic arise. A choice of an efficient model checking
algorithm and an implementation problem follow. Efficiency issues become more important
as soon as model checking is applied to huge models with, say, 10100 states, since large sets
representation problem arises.

6.3 Concluding Remarks

We would like to recommend some further reading on mathematical theory of program logics26:

first [18]

[14] [15] [16] [17]︸ ︷︷ ︸
in any order.

For those who are interested in applications of program logics some reading is recommended
below also.
Temporal logic have been shown to provide a convenient framework for specifying and rea-

soning about properties of a broad class of systems which can be presented or simulated by
computer programs. A. Pnueli was the first who proposed to use temporal logic for reasoning
about programs [23]. His approach for specification of concurrent and reactive systems is now
well developed [24] as well as a manual deductive methodology for proving special properties
[25]. This approach consists in proving properties of a program from a set of axioms that
describe the behavior of the individual statements and problem-oriented inductive proof prin-
ciples. Since it is a deductive approach where proofs are constructed by hand, the technique
is often difficult to automate and use in practice.
Part of the reason for further success of temporal logic is based on automatic model checking

of specifications expressed on propositional level temporal logics for finite state systems [26].
Branching temporal logic CTL and polynomial model checking algorithms were developed as
a new mathematical background for a new verification methodology for finite state systems by
E.M. Clarke and E.A. Emerson, J.-P. Queille and J. Sifacis in the early 1980-ies. An improved
model checking algorithm for CTL was implemented in the EMC model checker which were
able to treat models with up to 100,000 states.
At fall of 1980-ies model checking researchers encouraged by polynomial complexity of model

checking for CTL in finite models, and success of model checking verification experiments for
systems of a moderate size had moved on further research topics, such that model checking for
more expressive program logics (like the µ-calculus) in finite huge (1020 states and far beyond)
and infinite models. As far as concerns a handling of huge finite models then an advantage
of Ordered Binary Decision Diagrams (OBDD) [27] was realized in 1987-92 [28]. OBDDs
provides a canonical form for boolean formulas that is often more compact then conjunctive
or disjunctive normal form, and very efficient dynamic algorithms have been developed and
implemented for manipulating them. The most popular modern model checker SMV was
implemented by combining CTL model checking algorithm with symbolic representation of

26especially for those who have not a special logical background

October 4, 2000 ROPAS-2000-7 28

finite models. The most recent versions of SMV for UNIX, Linux and Windows95 are free
available for download [29].
A complete survey of program logics was out of scope of the paper. In contrast the paper

introduces basic notions related to model checking problem for a powerful program logic called
µ-Calculus, and presents a survey of other algorithmic problems for this logic. The basic ideas,
definitions and theorems are illustrated by game examples usually presented as puzzles. All
formal statements presented in the paper are of two kinds: the first one (assertions) are about
concrete examples while the second one (propositions) are about some general facts.

References

[1] ACM International Collegiate Programming Contest.
http://acm.baylor.edu/acmicpc/default.htm

[2] D. Harel, First-Order Dynamic Logic. Lecture Notes in Computer Science, v.68, 1979.

[3] D. Kozen, Results on the Propositional Mu-Calculus. Theoretical Computer Science,
v.27, n.3, 1983, p.333-354.

[4] R. Cleaveland and M. Klain and B. Steffen, Faster Model-Checking for Mu-Calculus.
Lecture Notes in Computer Science, v.663, 1993, p.410-422.

[5] E.A. Emerson and C.S. Jutla and A.P. Sistla, On model-checking for fragments of
Mu-Calculus. Lecture Notes in Computer Science, v.697, 1993, p.385-396.

[6] S.A. Berezine and N.V. Shilov, An approach to effective model-checking of real-time
finite-state machines in Mu-Calculus. Lecture Notes in Computer Science, v.813, 1994,
p.47-55.

[7] R.S. Streett and E.A. Emerson, An Automata Theoretic Decision Procedure for the
Propositional Mu-Calculus. Information and Computation, v.81, n.3, 1989, p.249-264.

[8] M.Y. Vardi, Reasoning about the past with two-way automata’. LNCS, v.1443, 1998,
p.628-641.

[9] I. Walukiewicz, A Complete Deduction System for the µ - Calculus. Doctoral Thesis,
Warsaw, 1993.

[10] N.V. Shilov, Program schemata vs. automata for decidability of program logics. Theo-
retical Computer Science, v.175, n.1, 1997, p.15-27.

[11] N.V. Shilov, How to decide a complicated program logic without automata. Manuscript
(submitted to 25th International Symposium on Mathematical Foundations of Com-
puter Science).

[12] I. Walukiewicz, On completeness of the µ-calculus. IEEE Computer Society Press, Proc.
of 8-th Ann. IEEE Symposium on Logic in Computer Science, 1993, p.136-146.

[13] R.A. Bull and K. Segerberg, Basic Modal Logic. Handbook of Philosophical Logic, v.II,
Reidel Publishing Company, 1984 (1-st ed.), Kluwer Academic Publishers, 1994 (2-nd
ed.), p.1-88.

[14] D. Harel, Dynamic Logic. Handbook of Philosophical Logic, v.II, Reidel Publishing
Company, 1984 (1-st ed.), Kluwer Academic Publishers, 1994 (2-nd ed.), p.497-604.

October 4, 2000 ROPAS-2000-7 29

[15] C. Stirling, Modal and Temporal Logics. Handbook of Logic in Computer Science, v.2,
Claredon Press, 1992, p.477-563.

[16] D. Kozen and J. Tiuryn, Logics of Programs. Handbook of Theoretical Computer
Science, v.B, Elsilver and The MIT Press, 1990, p.789-840.

[17] E.A. Emerson, Temporal and Modal Logic. Handbook of Theoretical Computer Science,
v.B, Elsilver and The MIT Press, 1990, p.995-1072.

[18] R. Fagin and J.Y. Halpern and Y. Moses and M.Y. Vardi, Reasoning about Knowledge.
MIT Press, 1995.

[19] R.S. Boyer and J.S. Moor, A Computational Logic. Academic Press, 1979.

[20] L.S. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF. Cam-
bridge University Press, 1987.

[21] J. Crow and S. Owre and J. Rushby and N. Shankar and M. Srivas, A tutorial intro-
duction to PVS. http://www.csl.sri.com/sri-csl-fm.html

[22] E.M. Clarke and E.A. Emerson, Design and Synthesis of synchronization skeletons
using Branching Time Temporal Logic. Lecture Notes in Computer Science, v.131,
1982, p.52-71.

[23] A. Pnueli, Temporal Logic of Programs. Theoretical Computer Science, v.13, n.1, 1981,
p.45-60.

[24] Z. Manna and A. Pnueli, The temporal logic of Reactive and Concurrent Systems.
Springer-Verlag, 1991.

[25] Z. Manna and A. Pnueli, Temporal verification of reactive systems: safety. Springer-
Verlag, 1995.

[26] E.M. Clarke and O. Grumberg and D. Peled, Model Checking. MIT Press, 1999.

[27] R.E. Bryant, Graph-Based algorithms for boolean function manipulation. IEEE Trans.
on Comp., v.35, n.6, 1986, p.677-691.

[28] K.L. McMillan, Symbolic Model Checking: An Approach to the State Explosion Prob-
lem. Ph.D. Thesis, Carnegie Mellon University, 1992.

[29] http:/www-cad.eecs.berkley.edu/∼kenmcmil/smv/

