Constraint Systems for Useless Variable Elimination

Mitchell Wand and Igor Siveroni*
College of Computer Science
Northeastern University
Boston, MA 02115, USA
{wand,igor}@ccs.neu.edu

Approximate Word Count: 4207

July 28, 1998

Abstract

A useless variable is one whose value contributes nothing to the final outcome of a computation. Such variables are unlikely to occur in human-produced code, but may be introduced by various program transformations. We would like to eliminate useless parameters from procedures and eliminate the corresponding actual parameters from their call sites. This transformation is the extension to higher-order programming of a variety of dead-code elimination optimizations that are important in compilers for first-order imperative languages.

Shivers has presented such a transformation. We reformulate the transformation and prove its correctness. We believe that this correctness proof can be a model for proofs of other analysis-based transformations. We proceed as follows:

- We reformulate Shivers’ analysis as a set of constraints; since the constraints are conditional inclusions, they can be solved using standard algorithms.
- We prove that any solution to the constraints is sound: that two computations that differ only on variables marked as useless give the same answer up to useless variables, and hence the same answer when the answer is a constant.

*Work supported by the National Science Foundation under grants numbered CCR-9404646 and CCR-9629801.
We observe that this notion of soundness is too weak to support the transformation of the analyzed program. We add additional closure conditions to the analysis and show that any solution to the new set of constraints justifies the transformation. The proof is by “tree surgery”: we show that from any computation of the original program, we can construct a computation of the transformed program that yields the transform of the original answer, and hence the same answer when the original answer is a constant.

Ironically, the proof of the transformation uses essentially nothing from the proof of the analysis; indeed, it is easier than the proof of the analysis.

1 Introduction

In a series of papers, we have explored the question of how program transformations are justified by program analyses [Wan93, SW97, WC98]. In this paper we consider the example of useless variable elimination. A useless variable is one whose value contributes nothing to the final outcome of a computation [Shi91].

For example, consider, the following example, obtained by translating [Muc97, Figure 18.18] into a functional setting:

```plaintext
let fun loop(a, bogus, j) =
    if (j > 100)
        then a
        else loop(f(a,j), 2*bogus, j+1)
    in loop (a, 3, 1)
end
```

Here it is clear that the second argument does not contribute to the value of the computation. We would like to replace `loop` by the evident two-argument procedure, getting

```plaintext
let fun loop (a, j) =
    if (j > 100)
        then a
        else loop (f(a,j), j+1)
    in loop (a, 1)
end
```
While such variables seem unlikely to occur in high-quality human-produced code, this transformation seems worthy of study for several reasons:

- Such variables may be introduced by various program transformations.

- This transformation is the extension to higher-order programming of a variety of dead-code elimination optimizations that are important in compilers for first-order imperative languages.

- Such variables may be result from program maintenance or other engineering considerations. For example, [ST98] finds that an average of 12.5% of the data members in realistic C++ benchmark programs were useless.

We present an analysis and transformation to eliminate useless variables from programs. This analysis and transformation is similar to one proposed by Shivers [Shi91]. Our major contribution is a proof of correctness of the transformation. The plan of the work is:

- We reformulate Shivers’ analysis as a set of constraints; since the constraints are conditional inclusions, they can be solved using standard algorithms [PS94]. We later show that although there may be $O(n^3)$ constraints, the standard algorithm still solves them in $O(n^3)$ time.

- We prove that any solution to the constraints is sound: that two computations that differ only on variables marked as useless give the same answer up to useless variables, and hence the same answer when the answer is a constant.

- We observe that this notion of soundness is too weak to support the transformation of the analyzed program. We add additional closure conditions to the analysis and show that any solution to the new set of constraints justifies the transformation: we show that from any computation of the original program, we can construct a computation of the transformed program that yields the transform of the original answer, and hence the same answer when the original answer is a constant.

Ironically, the proof of the transformation uses essentially nothing from the proof of the analysis; indeed, it is easier than the proof of the analysis.
This is in marked contrast to some of our previous examples, in which the soundness of the analysis played a key role in the transformation [WC98].

We begin in Section 2 with a survey of related work. In Sections 3 and 4 we present the source language, its semantics, and a simple control-flow analysis. In Section 5 we present our reformulation of Shivers’ analysis as a constraint-generation system and prove its soundness. In Section 6 we observe (as did Shivers) that the naive analysis is insufficient; we then show how to strengthen it. In Section 7 we present the transformation and show that it is correct. Last, we close with comments on the complexity of the analysis and conclusions.

2 Related Work

Our treatment of useless-variable elimination for higher-order languages is based on Shivers [Shi91]. We extend Shivers’ work by proving the correctness of the transformation. Our transformation also eliminates useless let-bindings and replaces recursive abstractions by non-recursive ones when possible. Shivers’ result is an application of control-flow analysis, which has been rediscovered several times [Jon81, JM82, Ses88, Shi91]. The formulation of control-flow analysis as a constraint problem is largely due to [Hei92].

Our transformation is the extension to higher-order languages of optimizations such as dead code elimination, useless variable elimination, and unreachable code elimination, which are described in detail for first-order imperative languages by most standard compiler texts [App98, ASU86, Muc97]. Our definition of dead code comes closest to the one given by Muchnick, who defines dead code as code that is executable but that has no effect on the result of the computation being performed [Muc97]. Since a variable is useless when its value contributes nothing to the final outcome of the computation, any terms whose values are bound to useless variables are dead code. Our transformation eliminates all such terms. These also include terms that correspond to unreachable code in imperative programs.

This is not the same as live-variable analysis: A variable is dead at a program point if its contribution to the result of the computation has already been incorporated into some other value; a useless variable is one which is dead at its initial binding.

Program slicing [Wei84, HRB84] is a method for decomposing programs by analyzing their data and control flow. A slice of a program with respect to program point p and variable x consists of all statements and predicates of
the program that might affect the value of x at this point. Our dependency sets are much like slices, but we take advantage of the simpler structure of expressions: our labels l are like program points, but we are concerned only with the value of the expression at that label, and we collect just the variables upon which that value depends. We use the term dependence analysis for this process, but our concept seems unrelated to the notion of dependence graphs in first-order languages, which are relations on basic blocks using assignment.

Abadi et al [ALL96] define a dependency system for a higher-order language. However, rather than relying on analysis, they instrument the interpreter to keep track of which parts of the original term the result depends. They then cache these results to avoid future recalculation. This scheme enables them to cache pairs of the form (input pattern, output), rather than just (input, output) as in traditional memoizing systems [Mic68]. They also succinctly explain the difference between dependence analysis and strictness analysis: “strictness analysis is concerned with what parts of a program must be evaluated, whereas dependence analysis is concerned with what parts of a program may affect the result.” [ALL96, p. 84]

Our previous work includes a series of papers that describe transformations justified by program analyses [SW97, Wan93, WC98]. [Wan93] proves the correctness of a binding-time analysis and an off-line partial evaluator, using purely syntactic notions much like those in this paper. Steckler and Wand [SW97] use a control-flow analysis with additional constraints to introduce site-specific procedure-calling protocols; their protocols add extra parameters (to avoid saving them in closures), whereas we now consider eliminating useless parameters. [SW97] also use notions of occurrence index and occurrence closures that we refine by using labels, label configurations and a universe Σ of labeled terms that link labels and terms. [WC98] uses a sequence of three analyses to identify dead values in a first-order language of recursion equations. That result relies entirely on the soundness properties of the analyses, unlike the current paper.

3 The Source Language

The syntax of the source language is shown in Figure 1. It is an untyped lambda calculus extended with primitive functions and explicit operators for conditionals, let, and recursive procedures. Labels are used to identify the position of a term in a program; an expression is a labeled term.
The semantics is a big-step call-by-value environment semantics. It deals with configurations consisting of an expression label l and an environment ρ mapping variables to values. Values are either constants c or closures consisting of a pair (l, ρ), where l is the label of an abstraction. Note that a closure (l, ρ) is both a configuration and a value.

$$\begin{align*}
C & \in \text{Config} ::= \langle l, \rho \rangle \quad \text{(configurations)} \\
u, v, w & \in \text{Val} ::= c \mid \langle l, \rho \rangle \quad \text{(values)} \\
\rho & \in \text{Env} ::= [\cdot] \mid \rho[x \mapsto v] \quad \text{(environments)}
\end{align*}$$

We connect labels to terms by hypothesizing a finite universe Σ of labeled terms, with the property that no label occurs more than once in Σ. We write $\Sigma(l) = t$ if the unique occurrence of l in Σ labels the term t.

This enables us to connect the semantics (which deals with terms) to
the analysis (which deals with labels). It is useful to think of Σ as a store containing the nodes of the parse trees of some expressions, and labels l as L-values pointing to those nodes. In some development environments, an object like Σ is called the “storage map.” However, since labeled terms are finite, we can use induction on substructures of a labeled term as an induction principle.

The semantics is then given by judgments $\Sigma \vdash C \downarrow v$ defined by the system of Figure 2. Except for the systematic use of labels to refer to terms in the universe, this is an ordinary call-by-value big-step environment semantics.

4 Control Flow Analysis

Our analyses depend on a OCF A specified by the judgment $(\Sigma, l) \models (\hat{C}, \hat{\rho})$, where \hat{C} is (following [NN97]) a map from labels to sets of labels of abstractions and $\hat{\rho}$ is a map from variables to sets of labels of abstractions. This represents the judgment that C and ρ represent true statements about label l in universe Σ. The semantics of these propositions is standard and is given by the definition of \models in Figure 3. In this figure we have used vertical braces to indicate conjunctions.

We extend this definition to configurations and environments by:

$$(\Sigma, \langle l, \rho \rangle) \models (\hat{C}, \hat{\rho}) \iff (\Sigma, l) \models (\hat{C}, \hat{\rho}) \land (\Sigma, \rho) \models (\hat{C}, \hat{\rho})$$

$$(\Sigma, \rho) \models (\hat{C}, \hat{\rho}) \iff \forall x \in \text{dom}(\rho) :$$

$$\begin{cases} (\Sigma, \rho(x)) \models (\hat{C}, \hat{\rho}) \\ \land \rho(x) = \langle l', \rho' \rangle \Rightarrow l \in \hat{\rho}(x) \end{cases}$$

$$(\Sigma, c) \models (\hat{C}, \hat{\rho}) \quad \text{always}$$

The soundness of the control flow analysis says that if a configuration evaluates to a closure, then that closure is one that is predicted by the flow analysis as a possible value for the original configuration.

Lemma 4.1 (Soundness of Control Flow Analysis) If $(\Sigma, \langle l, \rho \rangle) \models (\hat{C}, \hat{\rho})$ and $\Sigma \vdash \langle l, \rho \rangle \downarrow \langle l', \rho' \rangle$, then $l' \in \hat{C}(l)$ and $(\Sigma, \langle l', \rho' \rangle) \models (\hat{C}, \hat{\rho})$.

1Note that this notation is reversed from that in [NN97]: to us an analysis is the proposition, the set of labeled terms constitutes a model, and a particular label constitutes a "point" inside the model.

2The definition is given by induction on the size of l in Σ, unlike the gfp version of [NN97], but this difference is inessential.
[const] $\Sigma \vdash \langle l, \rho \rangle \downarrow v$ if $\Sigma(l) = c$

[var] $\Sigma \vdash \langle l, \rho \rangle \downarrow v$ if $\Sigma(l) = x \land x \in \text{dom}(\rho) \land \rho(x) = v$

[fn] $\Sigma \vdash \langle l, \rho \rangle \downarrow \langle l, \rho \rangle$ if $\Sigma(l) \in \text{Fun}$

[prim] $\Sigma(l) = (\tau_0 \, \ell_1 \ldots \ell_n) \land \Sigma \vdash \langle l_i, \rho \rangle \downarrow c_i$

$\Sigma \vdash \langle l, \rho \rangle \downarrow [\phi(g)](c_1 \ldots c_n)$

$\Sigma(l) = (t_0 \, \ell_1 \ldots \ell_n) \land$
$\Sigma \vdash \langle l_i, \rho \rangle \downarrow v_i \quad i = 1, \ldots, n \land$
$\Sigma \vdash \langle l_0, \rho \rangle \downarrow \langle f, \rho_0 \rangle \land$
$\Sigma(l_f) = (\text{fun } x_1 \ldots x_n \Rightarrow t_0) \land$
$\Sigma \vdash \langle l_0, \rho_0[x_1 \mapsto v_1] \ldots [x_n \mapsto v_n] \rangle \downarrow v$

[appfn] $\Sigma(l) = (\ell_0 \, \ell_1 \ldots \ell_n) \land$
$\Sigma \vdash \langle l_i, \rho \rangle \downarrow v_i \quad i = 1, \ldots, n \land$
$\Sigma \vdash \langle l_0, \rho \rangle \downarrow \langle f, \rho \rangle \land$
$\Sigma(l_f) = (\text{fun } y \, x_1 \ldots x_n \Rightarrow t_0) \land$
$\Sigma \vdash \langle l_0, \rho[y \mapsto \langle f, \rho \rangle][x_1 \mapsto v_1] \ldots [x_n \mapsto v_n] \rangle \downarrow v$

[appfun] $\Sigma \vdash \langle l, \rho \rangle \downarrow v$

[if1] $\Sigma(l) = (\text{if } t_0 \text{ then } \ell_1 \text{ else } \ell_2) \land \Sigma \vdash \langle l_0, \rho \rangle \downarrow \text{true} \land \Sigma \vdash \langle l_1, \rho \rangle \downarrow v$

$\Sigma \vdash \langle l, \rho \rangle \downarrow v$

[if2] $\Sigma(l) = (\text{if } t_0 \text{ then } \ell_1 \text{ else } \ell_2) \land \Sigma \vdash \langle l_0, \rho \rangle \downarrow \text{false} \land \Sigma \vdash \langle l_2, \rho \rangle \downarrow v$

$\Sigma \vdash \langle l, \rho \rangle \downarrow v$

[let] $\Sigma(l) = (\text{let } x = \ell_1 \text{ in } \ell_2) \land \Sigma \vdash \langle l_1, \rho \rangle \downarrow v_1 \land \Sigma \vdash \langle l_2, \rho[x \mapsto v_1] \rangle \downarrow v$

$\Sigma \vdash \langle l, \rho \rangle \downarrow v$

Figure 2: Operational Semantics of the Source Language
\[(\Sigma, l) \models (\hat{C}, \hat{\rho}) \iff\]

[const] \(\Sigma(l) = c \Rightarrow true\)

[var] \(\Sigma(l) = x \Rightarrow \hat{\rho}(x) \subseteq \hat{C}(l)\)

[fn] \(\Sigma(l) = (\text{fn } x_1 \ldots x_n \Rightarrow t''_l) \Rightarrow \begin{cases} (\Sigma, \ell') \models (\hat{C}, \hat{\rho}) \\ l \in \hat{C}(l) \end{cases}\)

[fun] \(\Sigma(l) = (\text{fun } y \ x_1 \ldots x_n \Rightarrow t''_l) \Rightarrow \begin{cases} (\Sigma, \ell') \models (\hat{C}, \hat{\rho}) \\ l \in \hat{C}(l) \\ l \in \hat{\rho}(y) \end{cases}\)

[prim] \(\Sigma(l) = (g^0 \ t^l_1 \ldots t^l_n) \Rightarrow (\Sigma, l_i) \models (\hat{C}, \hat{\rho}) \quad i = 1, \ldots, n\)

\[
\begin{align*}
\forall l': \begin{cases} (\Sigma, l_i) \models (\hat{C}, \hat{\rho}) \quad i = 0, \ldots, n \\
(\Sigma(l') = (\text{fn } x_1 \ldots x_n \Rightarrow t''_l) \land
(\Sigma(l') = (\text{fun } y \ x_1 \ldots x_n \Rightarrow t''_l)) \Rightarrow \\
\{ l' \in \hat{C}(l_0) \Rightarrow \hat{C}(l_i) \subseteq \hat{\rho}(x) \quad i = 1, \ldots, n \\
(\Sigma(l') = (g^0 \ t^l_1 \ldots t^l_n) \Rightarrow \hat{C}(l_1) \subseteq \hat{C}(l) \\
(\Sigma(l') = (\text{let } x = t^l_1 \text{ in } t^l_2) \Rightarrow \begin{cases} (\Sigma, l_1) \models (\hat{C}, \hat{\rho}) \\
(\Sigma, l_2) \models (\hat{C}, \hat{\rho})\end{cases}\)
\end{cases}\end{align*}
\]

[app] \(\Sigma(l) = (t^l_0 \ t^l_1 \ldots t^l_n) \Rightarrow \begin{cases} (\Sigma, l_i) \models (\hat{C}, \hat{\rho}) \quad i = 1, 2, 3 \\
(\Sigma(l_1) \subseteq \hat{C}(l) \\
(\Sigma(l_2) \subseteq \hat{C}(l) \end{cases}\)

\[l \in \hat{C}(l) \Rightarrow \hat{C}(l_1) \subseteq \hat{\rho}(x) \]

\[\hat{C}(l_2) \subseteq \hat{C}(l)\]

[let] \(\Sigma(l) = (\text{let } x = t^l_1 \text{ in } t^l_2) \Rightarrow \begin{cases} (\Sigma, l_1) \models (\hat{C}, \hat{\rho}) \\
(\Sigma, l_2) \models (\hat{C}, \hat{\rho}) \\
(\Sigma(l_1) \subseteq \hat{C}(l) \\
(\Sigma(l_2) \subseteq \hat{\rho}(x) \\
\hat{C}(l_1) \subseteq \hat{C}(l) \\
\hat{C}(l_2) \subseteq \hat{C}(l) \end{cases}\)

Figure 3: Control Flow Analysis
Proof: By induction on the derivation of $\Sigma \vdash \langle l, \rho \rangle \Downarrow \langle l', \rho' \rangle$.

5 Dependency Analysis and Useless Variables

We next proceed to the dependency analysis. The dependency analysis computes for each label l a superset of the set of variables that contribute to the value of $\Sigma(l)$. A variable is deemed useless for label l if it does not appear in $D(l)$.

A dependency analysis is a function D

$$D : Lab \rightarrow \mathcal{P}(Var)$$

such that if $\Sigma(l) = t$ then $D(l) \subseteq FV(t)$. The semantics of a dependency analysis is specified as a judgment $(\Sigma, l) \models (\bar{C}, \bar{\rho}, D)$. This represents the judgment that the propositions \bar{C}, $\bar{\rho}$, and D are true at label l of universe Σ. The semantics of these propositions is given by the rules of Figure 4. Like the rules of Figure 3, these rules generate a finite set of constraints for any label l of universe Σ.

The rules of Figure 4 are fairly intuitive: For $(\Sigma, l) \models (\bar{C}, \bar{\rho}, D)$ to hold, $(\Sigma, l) \models (\bar{C}, \bar{\rho})$ must hold, as defined in Figure 3. In addition:

- A variable always depends on itself.
- An abstraction depends on all the variables on which its body depends, less its bound variables.
- An application of a primitive depends on all the variables that any of its arguments depends on.
- For a procedure application, we consider all of the closures that can flow to that site. For each i, if the body of any such closure depends on its i-th argument, then the entire expression depends on all the variables on which the i-th actual parameter depends.

Notice that this definition is inductive on $\Sigma(l)$, so for any l it generates a finite set of constraints. Furthermore, the constraints are all monotonic in D, so we can solve the constraints using the standard closure algorithms [PS94].
\[(\Sigma, l) \vdash (\hat{C}, \hat{\rho}, D) \iff (\Sigma, l) \vdash (\hat{C}, \hat{\rho}) \land D(l) \subseteq FV(\Sigma(l)) \land \]

\[
\begin{align*}
\Sigma(l) &= c & \Rightarrow & \text{always} \\
\Sigma(l) &= x & \Rightarrow & x \in D(l) \\
\Sigma(l) &= (\text{fn} \ x_1 \ldots x_n \Rightarrow t_0^h) & \Rightarrow & \begin{cases}
(\Sigma, l_0) \vdash (\hat{C}, \hat{\rho}, D) \\
D(l_0) \iff \{x_1, \ldots, x_n\} \subseteq D(l)
\end{cases} \\
\Sigma(l) &= (\text{fun} \ y \ x_1 \ldots x_n \Rightarrow t_0^h) & \Rightarrow & \begin{cases}
(\Sigma, l_0) \vdash (\hat{C}, \hat{\rho}, D) \\
D(l_0) \iff \{y, x_1, \ldots, x_n\} \subseteq D(l)
\end{cases} \\
\Sigma(l) &= (g^h \ t_1^l \ldots t_n^l) & \Rightarrow & i = 1, \ldots, n : \begin{cases}
(\Sigma, l_i) \vdash (\hat{C}, \hat{\rho}, D) \\
D(l_i) \subseteq D(l)
\end{cases} \\
\Sigma(l) &= (t_0^h \ t_1^l \ldots t_n^l)^l & \Rightarrow & \\
\begin{cases}
(\Sigma, l_0) \vdash (\hat{C}, \hat{\rho}, D) \\
D(l_0) \subseteq D(l)
\end{cases} & \forall l': (\Sigma(l')) = (\text{fn} \ x_1 \ldots x_n \Rightarrow t_0^h) \lor \Sigma(l') = (\text{fun} \ x \ x_1 \ldots x_n \Rightarrow t_0^h)) \Rightarrow \\
\begin{cases}
(\Sigma, l_i) \vdash (\hat{C}, \hat{\rho}, D) \\
D(l_i) \subseteq D(l) \iff i = 1, \ldots, n
\end{cases} \\
\Sigma(l) &= (\text{if} \ t_0^h \ \text{then} \ t_1^l \ \text{else} \ t_2^l) & \Rightarrow & \begin{cases}
(\Sigma, l_0) \vdash (\hat{C}, \hat{\rho}, D) \\
(\Sigma, l_1) \vdash (\hat{C}, \hat{\rho}, D) \\
(\Sigma, l_2) \vdash (\hat{C}, \hat{\rho}, D) \\
D(l_0) \cup D(l_1) \cup D(l_2) \subseteq D(l)
\end{cases} \\
\Sigma(l) &= (\text{let} \ x = t_1^l \ \text{in} \ t_2^l) & \Rightarrow & \begin{cases}
(\Sigma, l_1) \vdash (\hat{C}, \hat{\rho}, D) \\
(\Sigma, l_2) \vdash (\hat{C}, \hat{\rho}, D) \\
D(l_2) \iff \{x\} \subseteq D(l) \\
x \in D(l_2) \Rightarrow D(l_1) \subseteq D(l)
\end{cases}
\end{align*}
\]

Figure 4: Dependency Analysis
In order to state a correctness property for this analysis, we extend the definition to environments, configurations, and values as follows:

\[(\Sigma, \rho) \models (\hat{C}, \hat{\rho}, \mathcal{D}) \iff (\Sigma, \rho) \models (\hat{C}, \hat{\rho}) \land \forall x \in \text{dom}(\rho), (\Sigma, \rho(x)) \models (\hat{C}, \hat{\rho}, \mathcal{D})\]
\[(\Sigma, \langle l, \hat{\rho} \rangle) \models (\hat{C}, \hat{\rho}, \mathcal{D}) \iff (\Sigma, l) \models (\hat{C}, \hat{\rho}, \mathcal{D}) \land (\Sigma, \rho) \models (\hat{C}, \hat{\rho}, \mathcal{D})\]
\[(\Sigma, c) \models (\hat{C}, \hat{\rho}, \mathcal{D}) \iff \text{true}\]

It is then easy to prove that any dependency analysis satisfying these constraints is preserved under evaluation:

Lemma 5.1 If \((\Sigma, \langle l, \rho \rangle) \models (\hat{C}, \hat{\rho}, \mathcal{D})\) and \(\Sigma \vdash \langle l, \rho \rangle \downarrow \langle l', \rho' \rangle\), then \(l' \in \hat{C}(l)\) and \((\Sigma, \langle l', \rho' \rangle) \models (\hat{C}, \hat{\rho}, \mathcal{D})\).

In order to express why variables not in \(\mathcal{D}(l)\) are useless for \(l\), we define an equivalence relation on configurations that says that they are equal except perhaps for useless variables:

Definition 5.1 (Equality up to useless variables)

\[\mathcal{D} \models \langle l, \rho \rangle \cong \langle l', \rho' \rangle \iff \left\{ \begin{array}{l}
l = l' \\
\forall x \in \mathcal{D}(l), \mathcal{D} \models \rho(x) \cong \rho'(x) \end{array} \right.\]
\[\mathcal{D} \models c \cong c' \iff c = c'\]

Now we can state the correctness of the analysis, by showing that configurations that differ only in useless variables produce results that differ only in useless variables:

Theorem 5.1 (Correctness of Dependency Analysis)

If \((\Sigma, C) \models (\hat{C}, \hat{\rho}, \mathcal{D}), \mathcal{D} \models C \cong C', \Sigma \vdash C \downarrow v, \text{ and } \Sigma \vdash C' \downarrow v',\) then \(\mathcal{D} \models v \cong v'\).

Proof: By induction on the structure of \(\Sigma \vdash C \downarrow v\).

Note that two configurations that differ only in useless variables might differ in their termination behavior, much like example in Section 7.

In particular, when \(v\) is a constant, then \(v'\) must be the same constant:

Corollary 5.1 (Correctness of Dependency Analysis)

If \((\Sigma, C) \models (\hat{C}, \hat{\rho}, \mathcal{D}), \mathcal{D} \models C \cong C', \Sigma \vdash C \downarrow c, \text{ and } \Sigma \vdash C' \downarrow c',\) then \(c = c'\)

These results sharpen the usual results that the result of a computation depends only on its free variables.
6 Extending the Analysis to Support a Transformation

The analysis above, while correct, is not sufficient to support the desired transformation, because it does not guarantee that two closures flowing into a site will depend on the same set of arguments. Worse yet, one could have all the closures flowing into one site depending on the same set of arguments, but one of those closures could flow into another site where it met another closure that depended on a different set of arguments. For example, consider

```haskell
let fun f1 (x, y) = x
    fun f2 (x, y) = x+x
    fun f3 (x, y) = y
val g = if p(x,y) then f1 else f2
val h = if q(x,y) then f1 else f3
in (g(x,y), h(x,y))
```

Here both the possible values of g depend only on their first argument. This suggests that we could rewrite f1 and f2 to take only one argument and remove the y from the call to g. However, h may depend on either of its arguments, so we cannot remove any arguments from the call to h. Since f1 flows into h, we cannot remove any arguments from f1.\(^3\) And since f1 and f2 flow together into g, we cannot remove any arguments from f2 either.

Merely analyzing dependencies does not shed any light on these difficulties, despite the correctness of the dependency analysis. To handle these problems, we need to extend the analysis to enforce these conditions.

Luckily, the remedy is fairly simple. For each closure, we can determine the argument positions on which it depends:

\[
D\text{Formals}_{(D, \Sigma)}(l') = \{ j \mid (\Sigma(l') = (\text{fun}\ x_1\ldots\ x_n \Rightarrow t_b) \lor \Sigma(l') = (\text{fun}\ y\ x_1\ldots\ x_n \Rightarrow t'_b)) \land x_j \in D(l_b) \}
\]

We want to guarantee for that for any l appearing in the operator position of an application, any two closures flowing into l depend on exactly the same arguments:

\[
l', l'' \in \hat{C}(l) \Rightarrow D\text{Formals}_{(D, \Sigma)}(l') = D\text{Formals}_{(D, \Sigma)}(l'')
\]

\(^3\)At least not without duplicating code, which would lead to a different, more complex transformation.
This can be ensured by adding extra entries to \(\mathcal{D} \): If the body of any closure flowing into a site depends on its \(i \)-th parameter, then we add extra entries to \(\mathcal{D} \) to declare that the bodies of all closures flowing into that site will also depend on their \(i \)-th parameters. This can be done by changing the rule for applications in the dependency analysis of Figure 4 to say:

\[
\Sigma(l) = (t_0^l t_1^l \ldots t_n^l) \Rightarrow \\
\quad ((\Sigma, l_i) \models (\hat{C}, \hat{\rho}, \hat{\mathcal{D}}) \quad i = 0, \ldots, n) \\
\quad \mathcal{D}(l_0) \subseteq \mathcal{D}(l) \\
\quad \forall l' : (\Sigma(l') = (\text{fn } x_1 \ldots x_n \Rightarrow t_h^l) \lor \Sigma(l') = (\text{fun } x \ x_1 \ldots x_n \Rightarrow t_h^l)) \Rightarrow \\
\quad \quad \quad \left\{ \begin{array}{l}
\quad l' \in \hat{C}(l_0) \land x_i \in \mathcal{D}(l_h) \Rightarrow \mathcal{D}(l_i) \subseteq \mathcal{D}(l) \quad i = 1, \ldots, n \\
\quad \forall l'' : (\Sigma(l'') = (\text{fn } y_1 \ldots y_n \Rightarrow t_c^l) \lor \Sigma(l'') = (\text{fun } y \ y_1 \ldots y_n \Rightarrow t_c^l)) \Rightarrow \\
\quad \quad \quad \left\{ \begin{array}{l}
\quad l', l'' \in \hat{C}(l_0) \land x_i \in \mathcal{D}(l_h) \Rightarrow y_i \in \mathcal{D}(l_c) \quad i = 1, \ldots, n \\
\end{array} \right.
\end{array} \right.
\]

Here the new constraints are in the box: we quantify over \(l'' \) and add the feedback constraint

\[
l', l'' \in \hat{C}(l_0) \land x_i \in \mathcal{D}(l_h) \Rightarrow y_i \in \mathcal{D}(l_c)
\]

that forces each the sets \(\text{DFormals}_{(\mathcal{D}, \Sigma)}(l') \) and \(\text{DFormals}_{(\mathcal{D}, \Sigma)}(l'') \) to be equal.

\section{The Transformation}

Now we are in a position to transform the program. The transformation takes place in three positions:

- In each application: Eliminate all the expressions that appear as arguments to parameters that are useless in the procedures called from this site. By the preceding constraints, these will be the same for all procedures that can reach this site.

- In each functional term: Eliminate all the arguments from the argument list that are useless in the body of the function, and replace \text{fun} by \text{fn} when the local name \(y \) is useless in the body.

- In each \text{let} term: The \text{let} term is replaced by its body if the let-variable is not part of the dependency set of the body term.
To determine which actual parameters should be retained at an application site, we define the set

$$DActuals_{(\hat{C}, \hat{D}, \Sigma)}(l) = DForms_{(D, \Sigma)}(l')$$

where $$\Sigma(l) = (t_0^0, t_1^1, \ldots, t_n^n)^l \land l' \in \hat{C}(l_0)$$

where in the new analysis, the right-hand side is independent of the choice of $$l'$$. If there is no such $$l'$$, we define the set to be empty.

Given $$\mathcal{A} = (\hat{C}, \hat{\rho}, \Sigma, D)$$, the transformation $$\mathcal{T}_A(\equiv)$$ takes a label and produces a labeled term as follows:

<table>
<thead>
<tr>
<th>$$\Sigma(l)$$</th>
<th>$$\mathcal{T}_A(l)$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$\Sigma(l) = c$$</td>
<td>$$\mathcal{T}_A(l) = c^l$$</td>
</tr>
<tr>
<td>$$\Sigma(l) = x$$</td>
<td>$$\mathcal{T}_A(l) = x^l$$</td>
</tr>
<tr>
<td>$$\Sigma(l) = (\mathsf{fn} \ x_1 \ldots x_n \Rightarrow t_0^k)$$</td>
<td>$$\mathcal{T}_A(l) = (\mathsf{fn} \ x_1 \ldots x_m \Rightarrow \mathcal{T}A(l_b))^l_i$$, $$i_j \in DForms{(D, \Sigma)}(l)$$</td>
</tr>
<tr>
<td>$$\Sigma(l) = (\mathsf{fun} \ y \ x_1 \ldots x_n \Rightarrow t_0^k)$$</td>
<td>$$\mathcal{T}_A(l) = \begin{cases} (\mathsf{fn} \ x_1 \ldots x_m \Rightarrow \mathcal{T}_A(l_b))^l_i & \text{if } y \not\in D(l_b) \ (\mathsf{fun} \ y \ x_1 \ldots x_m \Rightarrow \mathcal{T}_A(l_b))^l_i & \text{otherwise} \end{cases}$$</td>
</tr>
<tr>
<td>$$\Sigma(l) = (g^0, t_1^1, \ldots, t_n^n)$$</td>
<td>$$\mathcal{T}_A(l) = (g^0 \mathcal{T}_A(l_1) \ldots \mathcal{T}_A(l_n))^l$$</td>
</tr>
<tr>
<td>$$\Sigma(l) = (t_0^0, t_1^1, \ldots, t_n^n)$$</td>
<td>$$\mathcal{T}_A(l) = (\mathcal{T}_A(l_0) \mathcal{T}_A(l_1) \ldots \mathcal{T}A(l_m))^l_i$$, $$i_j \in DActuals{(\hat{C}, \hat{D}, \Sigma)}(l)$$</td>
</tr>
<tr>
<td>$$\Sigma(l) = (\mathsf{if} \ t_0^0 \ \mathsf{then} \ t_1^1 \ \mathsf{else} \ t_2^2)$$</td>
<td>$$\mathcal{T}_A(l) = (\mathsf{if} \ \mathcal{T}_A(l_0) \ \mathsf{then} \ \mathcal{T}_A(l_1) \ \mathsf{else} \ \mathcal{T}_A(l_2))^l$$</td>
</tr>
<tr>
<td>$$\Sigma(l) = (\mathsf{let} \ x = t_1^1 \ \mathsf{in} \ t_2^2)$$</td>
<td>$$\mathcal{T}_A(l) = \begin{cases} (\mathsf{let} \ x = \mathcal{T}_A(l_1) \ \mathsf{in} \ \mathcal{T}_A(l_2))^l_i & \text{if } x \in D(l_2) \ \mathcal{T}_A(l_2)^l_i & \text{otherwise} \end{cases}$$</td>
</tr>
</tbody>
</table>

where in the last line for \texttt{let}, the notation $$\mathcal{T}_A(l_2)^l_i$$ means an expression the same as $$\mathcal{T}_A(l_2)$$ except that it is labeled with $$l$$.

15
As usual, in order to express the correctness of the transformation, we extend it to operate on configurations, values, and universes:

\[\mathcal{T}_A((l, \rho)) = \langle l, \{\mathcal{T}_A(\rho(x)) \mid x \in D(l)\}\rangle\]
\[\mathcal{T}_A(e) = e\]
\[\mathcal{T}_A(\Sigma) = \{\mathcal{T}_A(l) \mid l \in \text{dom}(\Sigma)\}\]

The decision about removing a formal parameter from an abstraction is made separately from decisions about removing occurrences of terms containing that variable. Hence there is a danger that some variable might be removed from a formal parameter list while some occurrence of that variable still remained in the transformed body, resulting in an unbound variable. It would be easy to add more constraints to the analysis to prevent this, but luckily that is not necessary: we show that the transformation creates no new free variables.

Lemma 7.1 If \((\Sigma, l) \models (\check{C}, \hat{\rho}, \mathcal{D})\) then \(FV(\mathcal{T}_A(l)) \subseteq D(l) \subseteq FV(\Sigma(l))\).

Now we can state our main theorem: the correctness of the transformation. The theorem says that given an evaluation of some configuration to some value, we can construct an evaluation of the transformed configuration to the transformed value.

Theorem 7.1 (Correctness of the Transformation)
If \((\Sigma, C) \models (\check{C}, \hat{\rho}, \mathcal{D})\) and \(\Sigma \vdash C \Downarrow v\), then \(\mathcal{T}_A(\Sigma) \vdash \mathcal{T}_A(C) \Downarrow \mathcal{T}_A(v)\).

Proof: By tree surgery: given a derivation of \(\Sigma \vdash C \Downarrow v\), we recursively construct a derivation of \(\mathcal{T}_A(\Sigma) \vdash \mathcal{T}_A(C) \Downarrow \mathcal{T}_A(v)\). The key step, corresponding to subject reduction in a small-step semantics, is that if \((\Sigma, C) \models (\check{C}, \hat{\rho}, \mathcal{D})\) holds for the conclusion \(\Sigma \vdash C \Downarrow v\) of some rule, then \((\Sigma, C') \models (\check{C}, \hat{\rho}, \mathcal{D})\) holds for any configuration \(C'\) that appears on the left-hand side of any antecedent of the rule.\(^4\)

As usual, since \(\mathcal{T}_A(c) = c\), we deduce that if the original program evaluates to a constant, then the transformed program evaluates to the same constant:

Corollary 7.1 (Correctness of the Transformation)
If \((\Sigma, C) \models (\check{C}, \hat{\rho}, \mathcal{D}), \Sigma \vdash C \Downarrow c\), then \(\mathcal{T}_A(\Sigma) \vdash \mathcal{T}_A(C) \Downarrow c\)

\(^4\)This is of course an old idea, going back at least as far as [MW77].
Note that this transformation does not preserve non-termination. Consider

let fun loop(a, bogus, j) =
 if (j > 100)
 then a
 else loop(f(a,j), infloop(bogus), j+1)
fun infloop x = infloop(x+1)
in loop (a, 3, 1)
end

This program will not terminate, of course, but the transformed version will eliminate the second argument, and hence it will terminate.

Furthermore, the flow analysis still holds for the transformed program. This is the counterpart in the untyped analysis world to the idea that transformations preserve type:

Theorem 7.2 (The transformation preserves the analysis)
If \((\Sigma, C) \models (\mathcal{C}, \hat{\rho}, \mathcal{D})\) then \((\mathcal{T}_A(\Sigma), \mathcal{T}_A(C)) \models (\mathcal{C}, \hat{\rho}, \mathcal{D})\)

8 Complexity

The analyses of Figures 3 and 4 are all straightforward constraint systems, generating constraints of the forms

\[
x_1 \in X_1 \land \ldots \land x_n \in X_n \Rightarrow y \in Y
\]

\[
x_1 \in X_1 \land \ldots \land x_n \in X_n \Rightarrow X \subseteq Y
\]

constraining the \(O(n)\) sets \(\mathcal{C}(l), \hat{\rho}(x),\) and \(\mathcal{D}(l)\). There are only \(O(n^2)\) of these, since the number of argument constraints such as

\[
l' \in \hat{\mathcal{C}}(l_0) \Rightarrow \hat{\mathcal{C}}(l_i) \subseteq \hat{\rho}(x_i) \quad i = 1, \ldots, n
\]

is bounded by the number of actual parameters \(l_i\) in the program. Hence these can be solved by the standard method [PS94] in \(O(n^3)\) time.

The only potential difficulty is the \(O(n^3)\) constraints of the form

\[
l', l'' \in \mathcal{C}(l_0) \land x_i \in \mathcal{D}(l_b) \Rightarrow y_i \in \mathcal{D}(l_c)
\]

But each of these has a consequent of the form \(y \in Y\), which costs only constant time (rather than a consequent of the form \(X \subseteq Y\), which would take \(O(n)\) time. So the total cost of the analysis is still \(O(n^3)\).
9 Conclusions

We have completed a proof of correctness of useless variable elimination. This transformation is the extension to higher-order programming of a variety of dead-code elimination optimizations that are important in compilers for first-order imperative languages.

Our proof highlights the difference between proving the soundness of an analysis and proving the correctness of a transformation. We were able to formulate and prove a very plausible soundness theorem for our analysis, but it turned out that this soundness property was essentially useless for the transformation: indeed, we had to strengthen the analysis itself in order to obtain a transformation.

The proof also introduces a few technical tricks that may be useful to others who wish to prove the correctness of analysis-based transformations. In particular, the use of a universe \(\Sigma \) of labeled terms provides a clean way of linking labels and terms.

The choice of semantics was crucial: the proof would have been much more difficult in a small-step framework, because it would have been quite difficult to formalize just when a particular reduction step in the original computation was relevant to the reduction of the transformed program. Because the big-step semantics is organized top-down, we can choose just which subtrees to explore. The usual advantage of small-step semantics in dealing with non-terminating computations [NN97] was not relevant because our transformation does not preserve non-termination.

We hope to extend this work to consider transformations that duplicate or otherwise move code, and also to consider how our proofs change as we consider finer analyses, such as replacing 0CFA by \(k \)-CFA.

References

