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Abstract

Some 10 years ago, Harper illustrated the powerful method of proof-directed debugging for
developing programs with an article in this journal. Unfortunately, his example uses both
higher-order functions and continuation-passing style, which is too difficult for students
in an introductory programming course. In this pearl, we present a first-order version of
Harper’s example and demonstrate that it is easy to transform the final version into an
efficient state machine. Our new version convinces students that the approach is useful,
even essential, in developing both correct and efficient programs.

1 Introduction

Harper (Harper, 1999) demonstrated the power of inductive reasoning in develop-

ing correct programs. To illustrate the principle, he used the example of regular-

expression matching. Unfortunately, his example used functions in higher-order

continuation-passing style (CPS), making it inaccessible to beginning students.

If we wish to teach the principles and usefulness of inductive reasoning to a

wide audience early in the curriculum, we must develop a simple version of the

example. Ideally, the new version should rely only on first-order functions. Even

more importantly, we must also address the efficiency of the functions. For beginning

students, the gap between Harper’s example with higher-order functions and the

conventional regular expression matcher based on finite-state machines (Aho et al.,

1986) is just too large.

In this education pearl, we show how to overcome both problems. The resulting

functions are first-order and the development uses nothing but inductive reasoning.

The students in our first-year undergraduate programming course can readily follow

the program and its development via proof-directed debugging. Furthermore, we

also show how to reformulate the resulting functions as finite-state machines whose

time complexity is linear in the input string size. In short, our new version can

convince students that the idea is useful, even essential, in developing both correct

and efficient programs.1

1 This pearl is not about teaching the transformation (Wand, 1980) of CPS into accumulator-
style programs. Our point is to illustrate how to directly arrive at “conventional” first-order
programs by means of only inductive reasoning.
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The rest of the pearl proceeds as follows. Section 2 introduces the necessary back-

ground, section 3 the problem statement and a first solution. Following Harper, the

correctness proof fails and exposes errors. We fix the errors with a program refine-

ment that repeatedly applies inductive reasoning to the inputs. Finally, section 4

shows that it is straightforward to transform the proven first-order program into a

finite-state machine that matches the string input in time linear in the string size.

2 Background

Let Σ be an alphabet, that is, a finite set of letters. We use c to denote a letter. Σ∗

is the set of finite strings over the alphabet Σ. We use s to denote a string. The

null string is written ε. The set Σ∗ is inductively defined as

s → ε

| c·s (c ∈ Σ)

String concatenation of s and s′ is written s ·s′. The empty string is the identity

element for the concatenation operator, that is, ε·s = s = s·ε.

A language L is a subset of Σ∗. The size |s| of string s is defined as |ε| = 0 and

|c·s| = 1 + |s|. We use the following operations on languages:

L L′ = {s·s′ | s ∈ L, s′ ∈ L′}

L0 = {ε}

Li+1 = L Li

L∗ = ∪i≥0L
i

Regular expressions are notation for languages. The set of regular expressions is

inductively defined as

r → ε

| c

| rr

| r+r

| r∗

Each regular expression r denotes language L(r) inductively as follows:

L(ε) = {ε}

L(c) = {c}

L(rr ′) = L(r)L(r ′)

L(r + r ′) = L(r) ∪ L(r ′)

L(r∗) = L(r)∗

We use L(R) also for a set R of regular expressions to denote ∪r∈RL(r). L(∅)

is defined as ∅. The size |r | of regular expression r is defined as: |ε| = |c| = 1,

|rr ′| = |r + r ′| = |r | + |r ′| + 1, and |r∗| = |r | + 1.
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3 A Regular Expression Matching Algorithm

3.1 Problem and Specification

The regular expression matching problem is, for a string s ∈ Σ∗ and a regular

expression r , to determine whether s ∈ L(r).

The inductive specification for “r!s”, which is true iff string s matches regular

expression r , consists of five cases, following the definition of the regular-expression

grammar:

ε!s = s = ε

c!s = s = c

r1 + r2!s = r1!s ∨ r2!s (1)

r1r2!s = ∃s1∃s2 : s = s1 ·s2 ∧ r1!s1 ∧ r2!s2 (2)

r∗
!s = s = ε ∨ (∃s1∃s2 : s = s1 ·s2 ∧ r!s1 ∧ r∗

!s2) (3)

The problem is to find s’s substrings s1 and s2 that satisfy the conditions for the

last two cases.

3.2 Inductive Refinement

Our first step toward the implementation of (2) and (3) uses an inductive analysis

of the string argument s → ε | c·s (for c ∈ Σ):

r∗
!ε = True

r∗
!c·s = r ′r∗

!s for some r ′ ∈ r †c

= False ∨
∨

{r ′r∗
!s | r ′ ∈ r†c} (4)

where L(r†c) = {s | c·s ∈ L(r)}.

That is, r†c denotes the set of regular expressions for the strings in r whose leading

letter c has been removed.

Analyzing r1r2!s proceeds along the same lines:

r1r2!ε = r1!ε ∧ r2!ε (5)

r1r2!c·s = r ′
1r2!s for some r ′

1 ∈ r1 †c

= False ∨
∨

{r ′
1r2!s | r ′

1 ∈ r1†c} (6)

The definition of the function r†c again follows the definition of the regular-

expression grammar:

ε†c = ∅

c′†c = ∅ (c 6= c′)

c†c = {ε}

r1+r2†c = r1 †c ∪ r2 †c (7)

r1r2†c = {r ′
1r2 | r ′

1 ∈ r1†c} (8)

r∗†c = {r ′r∗ | r ′ ∈ r†c} (9)
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Are the definitions of r!s and r†c correct? The natural way to approach the

proofs is to proceed by induction. We first prove and debug the definition of r†c

and then that of r!s.

3.2.1 Inductive Proof for r†c

First, the termination of r†c is clear, because arguments to the recursive calls

follow a well-founded order: every regular expression argument to recursive callees is

smaller than that of the caller. From a finite regular expression there is no infinitely

decreasing chain.

Our proof proceeds by induction on the same order, that is on the size |r | of r .

In proving the correctness of r†c, the inductive hypothesis is that r ′†c is correct for

every r ′ such that |r ′| < |r |. Our proof goal is to show that our definition of r†c

satisfy the specification:

L(r†c) = {s | c·s ∈ L(r)}.

Base cases: ε†c and c′†c when c′ 6= c must be ∅ because L(ε) or L(c′) has no string

starting with c. Case c†c must be {ε} because L(c) = {c}.

Inductive cases: By r1 + r2†c’s definition (Eq. (7)), L(r1 + r2†c) is equal to

L(r1†c) ∪ L(r2†c). It follows from the hypothesis (applied to r 1 and r2) that

L(r1†c) ∪ L(r2†c) = {s | c·s ∈ L(r1)} ∪ {s | c·s ∈ L(r2)}

= {s′ | c·s′ ∈ L(r1 + r2)}.

Applying the r∗†c’s definition (Eq. (9)), L(r∗†c) is L(r†c)L(r∗). By inductive hy-

pothesis to r yields:

L(r†c)L(r∗) = {s | c·s ∈ L(r)}L(r∗)

= {s′ | c·s′ ∈ L(r)L(r∗)}

= {s′′ | c·s′′ ∈ L(r∗)}.

What about r1r2†c? By its definition (Eq. (8)), L(r 1r2†c) is L(r1†c)L(r2). By

inductive hypothesis applied to r 1, it is {s | c·s ∈ L(r1)}L(r2). Is this set equal to

{s | c·s ∈ L(r1)L(r2)} so that we can conclude our proof? Unfortunately it is not;

for example, in the case L(r 1) = {ε} and c·s ∈ L(r2), the latter set is nonempty,

while the former set is empty.

What to do? Following Harper (Harper, 1999), we may leave the definition as

it is and assume a pre-processed input r , such that for every r 1r2 occurring in r ,

ε 6∈ L(r1).

Another way to fix the problem is to inductively refine the definition one step

further. Because the proof failure naturally suggests the consideration of the cases
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for r1, we refine the definition of r1r2†c by the inductive sub-cases for r 1:

cr2†c = {r2}

c′r2†c = ∅ (c 6= c′)

εr2†c = r2 †c (10)

(r11
r12

)r2†c = r11
(r12

r2) †c (11)

(r11
+ r12

)r2†c = r11
r2 †c ∪ r12

r2 †c (12)

r∗
1r2†c = r2 †c ∪ {r ′r∗

1r2 | r ′ ∈ r1†c} (13)

The cases where L(r1) can have ε are handled either by case analysis or by recursive

calls.

Now a new problem arises with Eq. (11) because we can no longer induct solely

on the size of r . We have to find a different well-founded order for the recursive

calls. Because, for the recursive call r 11
(r12

r2)†c from (r11
r12

)r2†c, the regular

expression’s left-hand side (Left(rr ′)
let

= r) is decreasing, the arguments to recursive

calls follow the order

(r , c) > (r ′, c)

iff |r | > |r ′| (for Eq. (7),(9),(10),(12),(13))

or (|r | = |r ′| ∧ |Left(r)| > |Left(r ′)|) (for Eq. (11))

The order is well-founded; there is no infinitely decreasing chain from finite (r , c).

Hence, our correctness proof proceeds by induction on the new order: the induc-

tion hypothesis in proving r†c is that r ′†c is correct for every (r ′, c) < (r , c). The

proof proceeds smoothly, following the same pattern of reasoning as before.

3.2.2 Inductive Proof for r!s

First, the termination of r!s is clear, because the arguments to recursive calls follow

a well-founded order:

(r , s) > (r ′, s′)

iff |s| > |s′| (for Eq. (4),(6))

or (|s| = |s′| ∧ |r | > |r ′|) (for Eq. (1),(5))

There is no infinitely decreasing chain from finite (r , s).

Our proof proceeds by induction on this order. In proving r!s, the induction

hypothesis is that r ′
!s′ is correct for every (r ′, s′) < (r , s). Our proof goal is to

show two things:

r!s = True =⇒ s ∈ L(r) and r!s = False =⇒ s 6∈ L(r).

The base cases are trivial. Consider the inductive cases. If r ∗
!c ·s returns true,

∃r ′ ∈ r†c : r ′r∗
!s = True (by Eq. (4)). By inductive hypothesis applied to (r ′r∗, s),
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the assertion is equal to ∃r ′ ∈ r†c : s ∈ L(r ′r∗) = True. Thus,

c·s ∈ c·L(r ′r∗)

∈ c·L(r ′)L(r∗)

⊆ L(r)L(r∗) since r ′ ∈ r†c

⊆ L(r∗).

If r∗
!c·s is false, then by its definition (Eq. (4)), r†c = ∅ or ∀r ′ ∈ r†c : r ′r∗

!s =

False. If r†c = ∅, then by its correctness, ∅ = L(r†c) = {s | c ·s ∈ L(r)}, i.e.,

c ·s 6∈ L(r) hence c ·s 6∈ L(r∗). If ∀r ′ ∈ r†c : r ′r∗
!s = False, then by inductive

hypothesis applied to s, ∀r ′ ∈ r†c : s 6∈ L(r ′r∗). This means by the correctness of

r†c that s 6∈ L(r†c)L(r∗). Hence c·s 6∈ {c}L(r†c)L(r∗). This means that c·s has no

common prefix with L(r)’s strings with leading c. That is, c·s 6∈ L(r)L(r ∗). Thus

c·s 6∈ L(r∗).

What about r1r2!c·s (Eq. (6))? When it returns true, the proof proceeds by a

similar pattern of reasoning without a problem. When it returns false, it means that,

by its definition, r†c = ∅ or ∀r ′ ∈ r†c : r ′
1r2!s = False. Consider the case r†c = ∅,

which means that c·s 6∈ L(r 1). Can we conclude, from this, that c·s 6∈ L(r 1r2)? No,

because if ε ∈ L(r1) and c·s ∈ Lr2, it is possible that c·s ∈ L(r 1r2).

We also fix this problem with a refinement of the inductive definition with one

more step, instead of transforming the given regular expression into its (equivalent)

standard form. We refine the definition of r 1r2!c·s by analyzing the five inductive

sub-cases for r1:

εr2!c·s = r2!c·s (14)

cr2!c·s = r2!s (15)

(r11
r12

)r2!c·s = r11
(r12

r2)!c·s (16)

(r11
+ r12

)r2!c·s = r11
r2!c·s ∨ r12

r2!c·s (17)

r∗
1r2!c·s = r2!c·s ∨

∨
{r ′(r∗

1r2)!s | r ′ ∈ r1†c} (18)

The termination is easy to see, because arguments to recursive calls follow the

well-founded order :

(r , s) > (r ′, s′)

iff |s| > |s′| (for Eq. (4),(15),(18)

or (|s| = |s′| ∧ |r | > |r ′|) (for Eq. (1),(5),(14),(17),(18))

or (|s| = |s′| ∧ |r | = |r ′| ∧ |Left(r)| > |Left(r ′)|) (for Eq. (16))

Our correctness proof proceeds by induction on the order. The induction hypoth-

esis in proving r!s is that r ′
!s′ is correct for every (r ′, s′) < (r , s). The induction

proof proceeds without a problem, following the same pattern of reasoning as before.

Figure 1 displays the complete and provably correct definition of our pattern

matching program.
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ε!s = s = ε

c!s = s = c

r1 + r2!s = r1!s ∨ r2!s

r∗
!ε = True

r∗
!c·s = False ∨

W

{r ′r∗
!s | r ′ ∈ r†c}

r1r2!ε = r1!ε ∧ r2!ε

εr2!c·s = r2!c·s
cr2!c·s = r2!s

(r11
r12

)r2!c·s = r11
(r12

r2)!c·s
(r11

+ r12
)r2!c·s = r11

r2!c·s ∨ r12
r2!c·s

r∗

1r2!c·s = r2!c·s ∨
W

{r ′(r∗

1r2)!s | r ′ ∈ r1†c}

ε†c = ∅
c
′†c = ∅ (c 6= c

′)
c†c = {ε}

r1 + r2†c = r1 †c ∪ r2†c

r∗†c = {r ′r∗ | r ′ ∈ r†c}
cr2†c = {r2}
c
′r2†c = ∅ (c 6= c

′)
εr2†c = r2†c

(r11
r12

)r2†c = r11
(r12

r2)†c

(r11
+ r12

)r2†c = r11
r2 †c ∪ r12

r2†c

r∗

1r2†c = r2 †c ∪ {r ′r∗

1r2 | r ′ ∈ r1†c}

Fig. 1. Correct implementation of r!s and r†c

4 Performance Improvement by Automaton Construction

Note that the worst-case number of recursive calls during r!s is exponential. Its

recursive calls span a tree, because it sometimes invokes two or more recursive calls.

The depth of the call tree is the length of the decreasing chain from the initial input

(r , s). By the definition of the order (r ′, s′) < (r , s) of recursive call arguments, the

length of the chain is proportional to the sum of |s| and a quantity proportional to

|r |. Hence the number of recursive calls (i.e., nodes in the call tree) is exponential

to this length.

From the proven code, how can we achieve an efficient version like the automaton-

based matcher (Aho et al., 1986)? By using the r†c function. Given r , we can

easily build a finite state machine that decides on s ∈ r in time linear in |s|.

The automaton’s states are regular expressions, one expression per state, denoting

that the machine at state r expects strings in L(r). The machine’s starting state

is thus the input regular expression r , and its accepting states are those regular

expressions whose languages contain ε. From each state r , we compute r†c for each

c ∈ Σ and draw an edge labeled c to r ′ whenever r ′ ∈ r†c. The rationale behind

this edge construction is obvious from the definition of r†c: each regular expression

in r†c expects c-prefixed strings of L(r), but with the c being removed. We apply

this procedure until no longer possible, transitively closing the states and edges.

(This construction in a more general setting that covers the intersection and the
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a

a

a

b
a

start

b

ε

εa
∗

ab

a
∗

ab

Fig. 2. Non-deterministic automaton constructed from a
∗
ab by the daggar (r†c) operator

complement operators is also presented in (Brzozowski, 1964) and later in (Berry

& Sethi, 1986) with an efficiency improvement.)

This automaton construction is finite. There are only finitely many states (regular

expressions). A formal proof in a more general setting is in (Brzozowski, 1964), yet

from our definition it is easy to see this finiteness. By r†c’s definition, the generated

regular expression is always either ε, a sub-part of r , or an expanded one from r .

But, because the expansion occurs only when r has a leading r ∗
1 and the expansion

is to prefix the input r∗
1r2 by r ′ ∈ r1†c, the number of the transitive expansions

is bounded by the number of nested stars in r ∗
1. The newly expanded one r ′r∗

1r2

cannot keep having a leading •∗ forever, because the prefix r ′ is from r1, one with

the outermost star of r∗
1 removed.

For example, for regular expression a∗ab with alphabet {a, b}, the following states

and edges are constructed (Figure 2):

• a∗ab with a goes to εa∗ab and b, because

a∗ab†a = ab †a ∪{ra∗ab | r ∈ a†a} = {b, εa∗ab}.

• εa∗ab with a goes to b and itself, because

εa∗ab†a = a∗ab†a = {b, εa∗ab}.

• b with b goes to ε, because b†b = {ε}.

A non-deterministic automaton can always be transformed into a deterministic one

by the standard subset construction (Aho et al., 1986).

5 Conclusion

Our educational pearl reformulates Harper’s example of proof-directed debugging

so that it becomes accessible to first-year students:

• We introduce a first-order version of the regular-expression matcher.

• We use inductive reasoning throughout program development: from the sketch

of the algorithms to their correct completion. That is, refining the algorithms

by repeatedly applying inductive analysis to a function’s input structure fixes

the errors.
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• We are left with a small gap between theory and practice because it is easy

to derive an efficient finite-state machine from the proven code. Based on our

experience, this close connection to practice helps convince students of the

practicality of the approach.
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