Interprocedural Class Analysis¹

Yoonseok Ko Seoul National University Programming Research Laboratory 2009. 1. 17.

¹"A Framework for Call Graph Construction Algorithms", D. Grove and C. Chambers, ACM Trans. Program. Lang. Syst., 2001. 23(6):p. 685-746.

Agenda

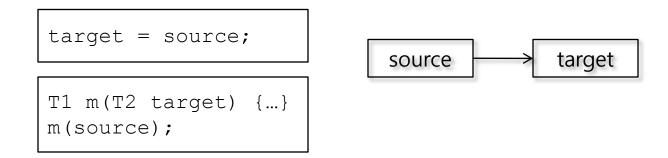
• Preliminary

Interprocedural Class Analysis

- Flow graph representation
- Edge filters
- Call merging
- Node merging
- Merging parameters
- Instantiations
- Conclusions

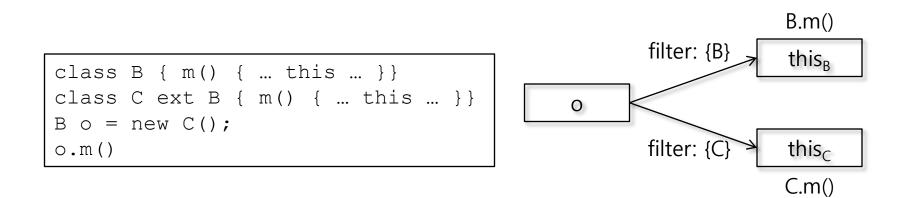
• Framework integrates

- propagation-based analysis (0-CFA)
- unification-based analysis
- optimistic reachability analysis(RTA)

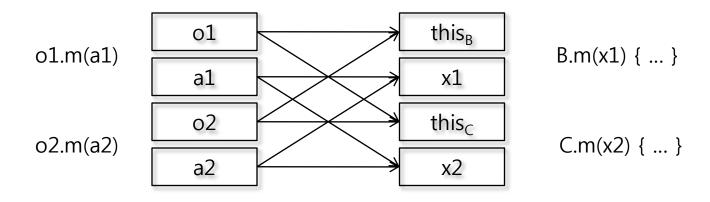

Computes set of classes for each program variable

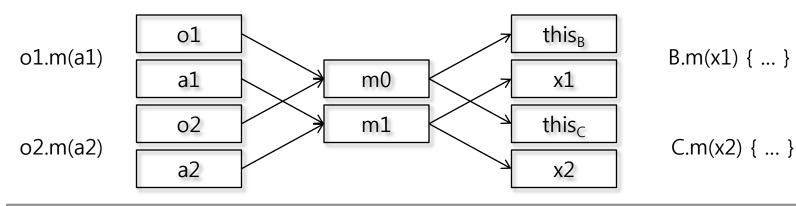
Flow graph representation

- Node for each variable, method, new, call
- Algorithm computes set of classes for each node


• Edge between two nodes if classes can flow between them

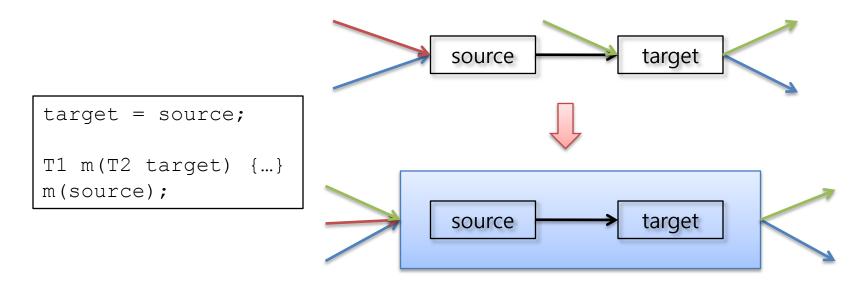
• Edges may have a filter set


 Don't propagate class if filter does not include that class



Call merging

- Analysis parameterized by MergeCalls
- When MergeCalls = false:


• When MergeCalls = true:

Node merging

- Can speedup analysis by merging nodes into supernodes
- Nodes merged with successors

• Always merging is equivalent to **unification-based analysis**

Merging parameters

- Analysis parameterized by
 - P and
 - MergeWithGlobal
- Parameters
 - P=k: merge node with its successors if node visited more than k times
 - P=0: always merge
 - P=N: never merge
 - MergeWithGlobal = true: use only one global supernode

Instantiations

Algorithm	Р	MergeWithGlobal	MergeCalls	Complexity
0-CFA	Ν	N/A	false	O(N ³)
linear-edge 0-CFA	Ν	N/A	true	O(N ²)
Bounded 0-CFA	O(1)	false	false	$O(N^2 \Box (N,N))$
Bounded linear-edge 0-CFA	O(1)	false	true	$O(N \square (N,N))$
Simply bounded 0-CFA	O(1)	true	false	O(N ²)
Simple bounded linear-edge 0-CFA	O(1)	true	true	O(N)
Equivalence class analysis	0	false	true	$O(N \square (N,N))$
RTA	0	true	true	O(N)

• Parameterized algorithm

• from O(N) to $O(N^3)$

Integrates both algorithm to achieve costs and precision benefits

- propagation-style analysis and
- unification-style analysis

