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Motivation

Discover invariant relationships between the 
variables of a system.
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Previous related work 

Polyhedral analysis. 
• All the linear inequalities over all the variables. 

• Precise. 

• Time & Space complexity : O(xn) 

Interval domain or DBM based approach. 
• a ≤ xi ≤ b , xi – xj ≤ c 
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Octagon domain-based approach.
• ±xi ± xj ≤ c 

• Scalable

Octahedral analysis. 
• a1x1 + … anxn ≤ c   (ai = {0,1})
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Computing invariants on an abstract domain less 
powerful than polyhedra.

But more general than intervals, octagons and 
octahedra.

(By means of LP solver and chosen template 
constraint matrices.)
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Preliminaries

Linear assertions
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Linear Transition Systems

Inductive Assertion Maps

http://rosaec.snu.ac.kr/


Linear Assertions

A finite conjunction of linear inequalities.

The assertion can be written in matrix form as 
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Farkas Lemma

Consider the linear assertion 

If φ is satisfiable, then 

If φ is unsatisfiable, then
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Linear Programming

To determine the solution of φ for which 
objective function f is minimal. 

Possible three results:
• An optimal solution.

• Non-optimal solutions

(f is unbounded in φ.)

• φ has no solutions.

 : Tf b x
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Linear Transition Systems



• L : a set of locations.

• Г : a set of transitions. Transition

○ li : pre-location

○ lj : post-location

○ρτ : a linear assertion over V ∪ V’

• l0 ∈ L : the initial location.

• Θ : a linear assertion specifying the initial condition.  

0, : ,,LS l  

, :  ,i jl l   
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integer i,j

(where i = 2 ∧ j = 0)

l0 : while true do

i := i + 4

l1 :       or

(i,j) := (i + 2, j + 1) 
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Inductive Assertion Maps

Inductive assertion
• An assertion at a program location if it holds the first time 

the location is reached and is preserved under every cycle 
back to the location. 

Inductive assertion maps (η)
• Initial : 

• Consecution :

0)(l

For each transi , , ) )tion : , ( ( 'i j i jll l l        
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Any inductive assertion is also an invariant 
assertion.

Any inductive assertion map is also an invariant 
map.

Therefore, our purpose is finding an inductive 
assertion map. 
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Propagation-based analysis

Assertion map η : loc → assertion 

Objective : to find fix F  starting from F(false)
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Need to abstract 

1) F(false), F2(false) … may not converge in finite 
number of steps. 

2) Detection of convergence may be  
undecidable.

1( ) ( )n nF false F false 
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Abstract domain

Using Galois connection. 



 Objective : to find fix FA s.t. 
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∑A consists of polyhedra of a fixed shape for a 
given set of variables x.

The shape is fixed by an m*n template constraint 
matrix (TCM) T. 

∑T contains c = <c1, …, cm>  (ci ∈ R ∪ {∞,-∞})

c in ∑T represents the set of states described by 
the set of constraints

0T x c
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Concretization function 
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Ex).
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All the vectors can be concretized but (d).
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Abstraction function

  (  

 

For a linear assertion describing sets of states 
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Abstraction function

1given TCM T , ( ) , ,

                                             if  is unsatisfiable

min. ,  . . 0  if   is feasible. 
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• Canonicalization (Eliminating redundancy)

•

• Given an equivalence class [c], 

           can( ( ( = ))) T T c c
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Post condition operator
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Template formation 
• User defined patterns

○ “%i + 2*%j + 3*%k” generates all constraints of the form

xi+2xj+3xk+bijk ≥ 0 

• Automatically derived

○ From condition expressions in program. 

This corresponds to shape-corpus in our project.  
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Experiment

Complexity: 

2( )O km L T
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Conclusion

This work is less powerful than that of polyhedra, 
but more general than intervals, octagons, and 
octahedra.

The power of LP solver makes this work time and 
space-efficient alternative to polyhedra. 

A wiser choice of templates(TCM) improves 
scalability & precision.
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Lessons 

A wiser choice of templates(TCM) improves 
scalability & precision.

• Shows the possibility of success with corpus-based 
approach. 

A choice of templates is conducted both 
statically & dynamically. 

• We should consider this. 
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