Scalable Analysis of Linear Systems using Mathematical Programming

wslee @ ropas

- S. Sankaranarayanan, H. Sipma, and Z. Manna.
- Scalable analysis of linear systems using mathem atical programming. VMCAI'05.

Motivation

Previous related work

• Concrete domain

• Abstract domain

• Experiment

Conclusion

 Discover invariant relationships between the variables of a system.

• Polyhedral analysis.

- All the linear inequalities over all the variables.
- Precise.
- Time & Space complexity : O(xⁿ)

Interval domain or DBM based approach.

• $a \leq x_i \leq b$, $x_i - x_j \leq c$

Octagon domain-based approach.

- $\pm x_i \pm x_j \leq c$
- Scalable

Octahedral analysis.

• $a_1x_1 + \dots a_nx_n \le c$ $(a_i = \{0,1\})$

Computing invariants on an abstract domain less powerful than polyhedra.

But more general than intervals, octagons and octahedra.

(By means of LP solver and chosen template constraint matrices.)

- •Linear assertions
- •Farkas Lemma
- Linear Programming
- Linear Transition Systems
- Inductive Assertion Maps

• A finite conjunction of linear inequalities.

$$\varphi : \begin{bmatrix} a_{11}x_1 + \dots + a_{1n}x_n + b_1 \ge 0 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n + b_m \ge 0 \end{bmatrix}$$

• The assertion can be written in matrix form as

$$\mathbf{A}\mathbf{x} + \mathbf{b} \geq \mathbf{0}$$
 (A:m × n, x:n × 1, b:m × 1)

Consider the linear assertion

$$\varphi \colon \mathbf{A}\mathbf{x} + \mathbf{b} \geq \mathbf{0}$$

 \odot If ϕ is satisfiable, then

$$\mathbf{c}^T \mathbf{x} + \mathbf{d} \ge 0$$
, there exists $\lambda \ge \mathbf{0}$ such that
 $\mathbf{A}^T \lambda = \mathbf{c}$ and $\mathbf{b}^T \lambda \le \mathbf{d}$.

 \odot If ϕ is unsatisfiable, then

there exists
$$\lambda \ge 0$$
 such that
 $\mathbf{A}^T \lambda = \mathbf{0}$ and $\mathbf{b}^T \lambda \le -1$.

To determine the solution of φ for which objective function f is minimal.

 $f : \mathbf{b}^T \mathbf{x}$

• Possible three results:

- An optimal solution.
- Non-optimal solutions

```
(f is unbounded in \varphi.)
```

• φ has no solutions.

Linear Transition Systems

- $\odot \quad S: \langle L, \Gamma, l_0, \Theta \rangle$
 - L : a set of locations.
 - Γ : a set of transitions. Transition τ : $\langle l_i, l_j, \rho_\tau \rangle$
 - oli : pre-location
 - olj:post-location
 - $\circ\,\rho_{\tau}$: a linear assertion over V $\,\cup\,$ V'
 - $I_0 \in L$: the initial location.
 - Θ : a linear assertion specifying the initial condition.

integer i,j
(where i =
$$2 \land j = 0$$
)
 I_0 : while true do
i := i + 4
 I_1 : or
(i,j) := (i + 2, j + 1)

$$\begin{split} & L = \{l_o, l_1\}, \ V = \{i, j\}, \\ & \Theta : (i = 2 \land j = 0), \ T = \{\tau_0, \tau_1, \tau_2\}, \\ & \tau_0 : \langle l_0, l_1, true \rangle \\ & \tau_1 : \langle l_1, l_0, (i' = i + 4 \land j' = j) \rangle \\ & \tau_2 : \langle l_1, l_0, (i' = i + 2 \land j' = j + 1) \rangle \end{split}$$

Inductive assertion

 An assertion at a program location if it holds the first time the location is reached and is preserved under every cycle back to the location.

• Inductive assertion maps (η)

- Initial : $\Theta \models \eta(l_0)$
- Consecution :

For each transition $\tau: \langle l_i, l_j, \rho_\tau \rangle, \eta(l_i) \land \rho_\tau \vDash \eta(l_j)'$

Any inductive assertion is also an invariant assertion.

- Any inductive assertion map is also an invariant map.
- Therefore, our purpose is finding an inductive assertion map.

• Assertion map η : loc \rightarrow assertion $F(X) = \Theta \lor X \lor \bigvee_{\tau \in T} post(\tau, X)$ $post(\tau, \varphi) : \exists V_0.(\varphi(V_0) \land \rho_\tau(V_0, V))$ $\begin{pmatrix} post : transition \times \eta \to 2^{\Sigma} \\ F : \eta \to \eta \end{pmatrix}$

• Objective : to find *fix F* starting from *F(false)*

 O 1) F(false), F²(false) ... may not converge in finite number of steps.

Output State
 Outp

 $F^{n+1}(false) \subseteq F^n(false)$

• Using Galois connection.

$$2^{\Sigma} \xrightarrow[\gamma]{\alpha} \Sigma_A$$

 $oldsymbol{ightarrow}$

• Objective : to find fix F_A s.t. $F_A(X) = \Theta_A \sqcup X \sqcup \bigsqcup_{\tau \in T} post_A(\tau, X)$

fix
$$F \vDash \gamma(fix F_A)$$

- ⊙ $∑_A$ consists of polyhedra of a fixed shape for a given set of variables x.
- The shape is fixed by an m*n template constraint matrix (TCM) T.

 ⊙c in \sum_{T} represents the set of states described by the set of constraints

$$T\mathbf{x} + \mathbf{c} \ge 0$$

Concretization function

$$\gamma_{T}(c) \equiv \begin{cases} false & \text{if } \exists c_{i} = -\infty \text{ or } c = c_{\perp}, \\ true & \text{if } c = c_{\top} \\ \bigwedge_{i \quad s.t. \ c_{i} \neq \infty} (T_{i}\mathbf{x} + c_{i} \ge 0) & \text{otherwise.} \end{cases}$$

⊙Ex).

 \mathbf{c} : $\langle \infty, 2, 3, \infty, 5, 1 \rangle$

$$T = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \\ -1 & 1 \\ 1 & -1 \end{bmatrix} \text{ representing the template assertions} \begin{bmatrix} x & +c_1 \ge 0 \\ -x & +c_2 \ge 0 \\ y + c_3 \ge 0 \\ -y + c_4 \ge 0 \\ -x + y + c_5 \ge 0 \\ x - y & +c_6 \ge 0 \end{bmatrix}$$

 $\gamma_T(\mathbf{c}) : \left[-x + 2 \ge 0 \land y + 3 \ge 0 \land -x + y + 5 \ge 0 \land x - y + 1 \ge 0 \right]$

• All the vectors can be concretized but (d).

• Abstraction function

For a linear assertion describing sets of states $\varphi : \mathbf{A}\mathbf{x} + \mathbf{b} \ge \mathbf{0}$ $\alpha_T : 2^{\Sigma} (= \varphi) \rightarrow \mathbf{c} (\in \Sigma_T)$ $\mathbf{A}\mathbf{x} + \mathbf{b} \ge \mathbf{0} \models T\mathbf{x} + \mathbf{c} \ge \mathbf{0}$ $\mathbf{A}\mathbf{x} + \mathbf{b} \ge \mathbf{0} \models T_i \mathbf{x} + \mathbf{c}_i \ge \mathbf{0}$ $\Leftrightarrow (\exists \lambda \ge 0) \mathbf{A}^T \lambda = T_i \land \mathbf{b}^T \lambda \le c_i$ $\psi : \lambda \ge 0 \land A^T \lambda = T_i$ with objective function $\mathbf{b}^T \lambda$

Abstraction function

 $\varphi : \mathbf{A}\mathbf{x} + \mathbf{b} \ge \mathbf{0}$ given TCM T, $\alpha(\varphi) = \mathbf{c} = \langle c_1, \dots, c_m \rangle$ $\begin{pmatrix} -\infty & \text{if } \varphi \text{ is unsatisfiable} \\ \vdots & \mathbf{b} T \mathbf{0} & \cdots & \mathbf{b} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf{0} & \cdots & \mathbf{c} T \mathbf{0} \\ \vdots & \mathbf{c} T \mathbf$

$$c_i = \begin{cases} \min \cdot \mathbf{b}^T \lambda, \ s.t. \ \underbrace{\lambda \ge 0 \ \land \mathbf{A}^T \lambda = T}_{\Psi_i} & \text{if } \Psi_i \text{ is feasible.} \\ \infty & \text{if } \Psi_i \text{ is infeasible.} \end{cases}$$

• Canonicalization (Eliminating redundancy)

•
$$-1 \le x, y \le 1 \land -2 \le x - y \le 2$$

 $\Leftrightarrow -1 \le x, y \le 1 \land -3 \le x - y \le 3$

$$\Leftrightarrow -1 \le x, y \le 1 \land a \le x - y \le b$$

:
$$[\langle 1, 1, 1, 1, 2, 2 \rangle] = \{\langle 1, 1, 1, 1, a, b \rangle | a, b \ge 2\}$$

• Given an equivalence class [c], $can(\mathbf{c}) = \alpha_T(\gamma_T(\mathbf{c}))$

...

• Post condition operator

Given
$$\tau: \langle l_i, l_j, \rho_\tau \rangle$$
,

$$post(\eta(l_i), \tau) = \begin{cases} \bot & \eta(l_i) = \bot \\ \alpha_j(\gamma_i(\eta(l_i) \land \rho_\tau)) & \text{otherwise} \end{cases}$$

Using the postcondition the map at step i > 0 is updated as follows:

$$\eta^{i+1}(l_n) = \eta^i(l_n) \sqcup \left(\bigsqcup_{\tau: \langle l_m, l_n, rho \rangle} post(\eta^i(l_m), \tau) \right)$$

Template formation

User defined patterns

o "%i + 2*%j + 3*%k" generates all constraints of the form

 $x_i + 2x_j + 3x_k + b_{ijk} \ge 0$

Automatically derived
 From condition expressions in program.

• This corresponds to shape-corpus in our project.

Experiment

Program			Template		Statistics				
name	$\mid L \mid$	$\mid T \mid$	#t	#s	t(sec)	$t_{lp}(sec)$	# LPS	#avg.	#dim.
Mcc91 (3)	1	2	11	0	0.05	0.01	227	1.5	15(20)
TRAINHPR97(3)	4	12	58	3	0.1	0.02	673	0.9	18(25)
BERKELEY(4)	1	3	63	16	0.23	0.11	1,632	1.36	64(96)
DRAGON(5)	1	12	129	157	3.94	2.38	$11,\!426$	3.23	202(298)
HEAPSORT(5)	1	4	33	24	0.34	0.13	1,751	2.45	75(90)
EFM(6)	1	5	506	461	7.65	2.36	$10,\!872$	0.69	359(981)
LIFO(7)	1	10	85	79	1.87	0.91	5,401	3.37	141(174)
CARS-MIDPT (7)	1	2	101	324	3.72	2.21	$4,\!641$	6.23	154(329)
BARBER(8)	1	12	128	0	1.97	0.83	9,210	1.96	124(141)
SWIM-POOL(9)	1	6	104	0	0.56	0.27	2,710	2.11	97(118)
TTP(9)	4	20	3,555	127	62.8	40.9	61,263	4.41	574(1032)
REQ-GRANT(11)	1	8	221	18	2.96	1.41	8,635	2.10	241(255)
CONSPROT(12)	2	14	533	40	4.88	2.00	$12,\!487$	1.83	266(286)
CSM(13)	1	8	313	73	9.65	5.21	$14,\!890$	3.69	380(414)
C-PJAVA(16)	1	14	453	93	35.16	15.19	33,288	5.00	433(567)
CONSPROD(18)	1	14	529	96	38.72	19.43	35,797	5.17	468(663)
INCDEC(32)	1	28	961	267	287.54	110.27	$103,\!841$	6.57	877(1294)
MESH2X2(32)	1	32	438	0	43.9	17.5	$52,\!622$	4.53	390(506)
BIGJAVA(44)	1	37	864	376	331.98	117.68	$122,\!643$	5.25	1018(1280)
MESH3X2(52)	1	54	1133	0	432.85	192.15	$216,\!600$	6.70	930(1241)

• Complexity:

 $O(km^2 |L||T|)$

This work is less powerful than that of polyhedra, but more general than intervals, octagons, and octahedra.

The power of LP solver makes this work time and space-efficient alternative to polyhedra.

 A wiser choice of templates(TCM) improves scalability & precision.

Lessons

 A wiser choice of templates(TCM) improves scalability & precision.

Shows the possibility of success with corpus-based approach.

A choice of templates is conducted both statically & dynamically.

• We should consider this.

