Fortress: A New
Programming Language
for Scientific Computing

Outline

* Fortress Programming Language
> Growing a Language
> Mathematical Notation
> Parallelism by Default

* Formalism in Fortress

* Project Fortress

© 2007 Sun Microsystems, Inc. All rights reserved. 2

The Context of the Research

* Improving programmer productivity
for scientific and engineering applications

» Research funded in part by the DARPAIPTO
(Defense Advanced Research Projects Agency
Information Processing Technology Office) through
their High Productivity Computing Systems program

> (Goal is economically viable technologies for both
government and industrial applications by the year
2010 and beyond

© 2007 Sun Microsystems, Inc. All rights reserved.

%Sun

The Background of the Research

I ;
~r

an-Willem Maessen
Haskell, Memory odel

,n"

Eric Allen
- Generic Java
;a'.‘}.":::.:-__‘ I ? '
i’ e — . w2 Missing: Victor Luchangg®, Transactional ory
" AR Chiistirie F‘rood Garbage collectioniy,
2 N e -

\ Y ¥
© 2007 Sun Microsystems, Inc. All rights reserved.

Fortress: “To Do for Fortran
What Java™ Did for C”

» Catch “stupid mistakes” (like array bounds errors)
» Extensive libraries (e.g., for nework environment)
» Security model (including type safety)

» Dynamic compilation

* Platform independence

* Multithreading

* Make programmers more productive

© 2007 Sun Microsystems, Inc. All rights reserved. 5

Key Ideas

* Don't build the language—qgrow it

» Make programming notation closer to math

» Ease use of parallelism

© 2007 Sun Microsystems, Inc. All rights reserved. 6

Outline

» Fortress Programming Language
> Growing a Language
> Mathematical Notation
> Parallelism by Default

* Formalism in Fortress

* Project Fortress

© 2007 Sun Microsystems, Inc. All rights reserved. 7

Growing a Language

- Languages have gotten much bigger.

» You can't build one all at once.

» Therefore it must grow over time.

» What happens if you design it to grow?

» How does the need to grow affect the design?
* Need to grow a user community, too.

See Steele, “Growing a Language” keynote talk, OOPSLA 1998;
Higher-Order and Symbolic Computation 12, 221-236 (1999)

© 2007 Sun Microsystems, Inc. All rights reserved.

What Primitive Data Types to Include?

* Integers and floating-point (what sizes? bignums?)
» Complex numbers, rational numbers, intervals

* Arrays, vectors, and matrices

- Rational intervals, complex intervals

» Complex vectors and matrices

» What about physical units (meters, kilograms)?

“I might say ‘yes’ to each one of these,
but it is clear that I must say ‘no’ to all of them!”

© 2007 Sun Microsystems, Inc. All rights reserved.

Interesting Language Design Strategy

Wherever possible,
consider whether a proposed language feature
can be provided by a library
rather than having it built into the compiler.

© 2007 Sun Microsystems, Inc. All rights reserved. 10

Types Defined by Libraries

- Lists, vectors, sets, multisets, and maps
> Like C Standard Template Library, but better notation

(1,2,4,3,4) AU{1,2,3,4}
134 5|x|100]
» Matrices and multidimensional arrays

* Integers, floats, rationals, with physical units

m: R Mass = 3.7 kg
v: R’ Velocity =[3.5 0 1] m/s
p: R’ Momentum =m v

© 2007 Sun Microsystems, Inc. All rights reserved. 1

ASCII (“Wiki-like markup”) Notation

<|1,2,3,4|> A UNION {1,2,3,4}
[3 4 5] CROSS [1 O O]

m: RR Mass = 3.7 kg _

_v: RR"3 Velocity = [3.5 0 1]
m /s

_p: RR"3 Momentum = m v

o
© 2007 Sun Microsystems, inc. All fights reserved. 12

Sample Code: Algebraic Constraints

trait BinaryPredicate|[T extends BinaryPredicate[T, ~], opr ~]

opr ~(self, other:T): Boolean
end

trait Symmetric[T" extends Symmetric[T, ~], opr ~]
extends { BinaryPredicate[T, ~] }
property V(a: T,b:T) (a ~ b) < (b~ a)
end
trait EquivalenceRelation[T" extends EquivalenceRelation [T, ~], opr ~]
extends { Reflexive[T', ~], Symmetric[T, ~], Transitive[T, ~] }

end

trait Integer extends { CommutativeRing[Integer, +, —, -, zero, one],
TotalOrderOperators[Integer, <, <, >, >, CMP],

end

(This is actual Fortress library code.)

© 2007 Sun Microsystems, Inc. All rights reserved.

13

Our Vision

With key algorithms in libraries (cf. MATLAB),
application code can be concise, therefore
easier to check against design specmcatlons

© 2007 Sun Microsystems, Inc. All rights reserved. 14

Outline

» Fortress Programming Language
> Growing a Language
> Mathematical Notation
> Parallelism by Default

* Formalism in Fortress

* Project Fortress

© 2007 Sun Microsystems, Inc. All rights reserved.

15

Conventional Mathematical Notation

» The language of mathematics is centuries old,
concise, convenient, and widely taught.

» Parsing mathematical notation is a challenge
> Subtle reliance on whitespace: { |x| | x « S, 3 | x }
> Semantic conventions: y = 3 x sin x cos 2 x log log x

© 2007 Sun Microsystems, Inc. All rights reserved. 16

What Syntax is Actually Wired In?

» Parentheses () for grouping

- Comma , to separate expressions in tuples

- Semicolon ; to separate statements on a line
* Dot . for field and method selection

» Conservative, traditional rules of precedence

> Adag, not always transitive (examples: a+B>C is okay;
SO is B>C VD>E; but A+B\/ C needs parentheses)

© 2007 Sun Microsystems, Inc. All rights reserved. 17

Libraries Define. ..

 Which operators have infix, prefix, postfix definitions,
and what types they apply to

opr -(m:Z,n:/Z) = m.subtract(n)
opr -(m:Z) = m.negate()

opr (n:N)! = if n=0 then 1 else n- (n-1)! end
* Whether a juxtaposition is meaningful

opr juxtaposition(m:Z,n:Z) = m.times (n)

» What bracketing operators actually mean
opr [x:R | = ceiling(x)
opr |x:[R| = if x<0 then -x else x end

opr |s:Set| = s.size

© 2007 Sun Microsystems, Inc. All rights reserved. 18

Simple Example: NAS CG Kernel (asci)

conjGrad(A: Matrix[\Float\], x: Vector[\Float\]):
(Vector[\Float\], Float)
cgit max = 25
z: Vector[\Float\] :
r: Vector[\Float\] :
p: Vector[\Float\]
rho: Float := r*T r

o2 Z';eq“”git-ma"’ * Matrix[\T\] and Vector[\T\] are

alpha = rho / p"T q parameterized interfaces, where

z := + alpha p .
r := r - alpha q T is the type of the elements.
rhoO rho
rho := r*T r
beta = rho / rhoO
P := + beta p
end
(z, |Ix - A z|])

0
X
r

R Il Il Il B N

(z,norm) = conjGrad(A, x)

© 2007 Sun Microsystems, Inc. All rights reserved. 19

Simple Example: NAS CG Kernel (asci)

conjGrad[\Elt extends Number, nat N,
Mat extends Matrix[\Elt,N BY N\],
Vec extends Vector[\Elt,N\]
\] (A: Mat, x: Vec): (Vec, Elt)
cgit max = 25

z: Vec := 0
oo - x Here we make conjGrad a generic
rho: Elt := r*T r " -
fon 3 <= weq(l:cqit max) a0 PrOCEdUre. The runtime compiler
a=2ap may produce multiple instantiations
alpha = rho / p"T g .
z = z + alpha p of the code for various types Elt.
r :=r - alpha gq
rhoO0 = rho
rho := r*T r

beta = rho / rhoO
P := r + beta p
end
(z, |Ix = A z]|])

(z,norm) = conjGrad(A, x)

© 2007 Sun Microsystems, Inc. All rights reserved. 20

Simple Example:

NAS CG Kernel (Unicode)

conjGrad[[Elt extends Number, nat N,
Mat extends Matrix[[Elt, NXN],

Vec extends Vector

J(A: Mat, x: Vec): (Vec, Elt)

cgit max = 25

z: Vec := 0

r: Vec = x

p: Vec = r

p: E1t := r*T r

for j < seq(l:cgit _max) do
q=Ap
x=p/ p'Tgq
z =z + p
r :=r - Xq
Po = P
p :=r*T r
B=p/ po
p:=r+Bp

end

(z, Ix - & z|)

© 2007 Sun Microsystems, Inc. All rights reserved.

This would be considered entirely
equivalent to the previous
version. You might think of this as
an abbre-viated form of the ASCII
version, or you might think of the
ASCII version as a way to
conveniently enter this version on
a standard keyboard.

21

Simple Example: NAS CG Kernel

conjGrad | Elt extends Number, nat N,
Mat extends Matrix [Elt, N X N |,
Vec extends Vector [Elt, N
|(A:Mat, x:Vec):(Vec, Elt)

cgit, =25
Neo o v It's not new or surprising that code
f)’;EVftC:‘:r’;r written in a programming language
for j — seq(1:cgit_) do might be displayed in a conventional
q:fjﬁ; math-like format. The point of this
T Ty example is how similar the code is to
oy the math notation: the gap between
Py = p the two syntaxes is relatively small.
P We want to see what will happen if
P a principal goal of a new language
pi=rtbp design is to minimize this gap.

© 2007 Sun Microsystems, Inc. All rights reserved.

22

Comparison: NAS NPB 1 Specification

z=0

r=x
T

p=rr

p=r

DO i=1,25
q=ApT
o= pl(p q)
z=z+xp
Po=1p
r=r—ogq

T

p=rr
B=rplp,
p=r+Bp

ENDDO

compute residual norm explicitly: ||7|| =1|x—4z||

© 2007 Sun Microsystems, Inc. All rights reserved.

z:Vec :=0
r:Vec :=x
p:Vec :=r
p:Elt:=r"r
for j — seq(1:cgit, .) do
q=Ap
«= b
P q
Z:=zZz+xp
ri=r—ogq
Po— P
pi=r'r
B:_&
Po
p:=r+Bp
end
(z, [[x—A4z]|)

23

Comparison: NAS NPB 2.3 Serial Code

do j=1,naa+l
qg(j) = 0.0do

z(j) = 0.0d0
r(j) = x(j)
p(j) = r(j)
w(j) = 0.0d0
enddo
sum = 0.0d0

do j=1,lastcol-firstcol+l
sum = sum + r(j)*r(j)
enddo
rho = sum
do cgit = 1,cgitmax
do j=1,lastrow-firstrow+l
sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1

sum = sum + a(k)*p(colidx(k))

enddo
w(j) = sum

enddo

do j=1,lastcol-firstcol+l
a(j) = w(3j)

enddo

© 2007 Sun Microsystems, Inc. All rights reserved.

do j=1,lastcol-firstcol+l
w(j) = 0.0d0

enddo

sum = 0.0dO

do j=1,lastcol-firstcol+l
sum = sum + p(j)*q(3)

enddo

d = sum
alpha = rho / d
rho0 = rho

do j=1,lastcol-firstcol+l
z(j) = z(j) + alpha*p(j)
r(j) = r(j) - alpha*q(j)

enddo

sum = 0.0dO

do j=1,lastcol-firstcol+l
sum = sum + r(j)*r(j)

enddo

rho = sum

beta = rho / rhoO

do j=1,lastcol-firstcol+l
p(J) = r(j) + beta*p(j)

enddo

enddo

do j=1,lastrow-firstrow+l
sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1
sum = sum + a(k)*z (colidx(k))
enddo

w(j) = sum

enddo

do j=1,lastcol-firstcol+l
r(j) = w(3j)

enddo

sum = 0.0d0

do j=1,lastcol-firstcol+l
d =x(j) - r(3)
sum = sum + d*d

enddo

d = sum

rnorm = sqrt(d)

Sun

microsystemns

24

Outline

» Fortress Programming Language
> Growing a Language
> Mathematical Notation
> Parallelism by Default

* Formalism in Fortress

* Project Fortress

© 2007 Sun Microsystems, Inc. All rights reserved.

25

Parallelism Is Not a Feature!

- Parallel programming is not a goal,
but a pragmatic compromise.

» |t would be a lot easier to program a single
processor chip running at 1 PHz than a million
processors running at 20 GHz.

> We don't know how to build a 1 PHz processor.

> Even if we did, someone would still want to strap
a bunch of them together!

- Parallel programming is difficult and error-prone.

© 2007 Sun Microsystems, Inc. All rights reserved. 26

Questions

Can we encapsulate parallelism in libraries?

Will this separation be effective?

© 2007 Sun Microsystems, Inc. All rights reserved.

27

Should Parallelism Be the Default?

» “Loop” can be a misleading term
> A set of executions of a parameterized block of code

> Whether to order or parallelize those executions
should be a separate question

» Fortress “loops” are parallel by default
> This is actually a library convention about generators
> You get sequential execution by asking for it specifically

© 2007 Sun Microsystems, Inc. All rights reserved. 28

In Fortress, Parallelism Is the Default

for i+1:m, j<1l:n do 1:n Iisagenerator
af[i,j] := b[i] c[]]

end

for i< seq(l:m) do seq(l:n) isa sequential

for j+seqg(l:n) do
print a1,]]

end a.indices Is agenerator

generator

end L
for the indices of the array a
for 1<1:m, j<i:n do _ _ _ ,
a[i,j] := b[i] cI[j] a.indices.rowMajor IS
end a sequential generator of indices
for (i,j)+ca.indices do a[i,]j] := b[i] c¢[]j] end

for (i,j)+<a.indices.rowMajor do print a[i,]j] end

» Generators (defined by libraries) manage parallelism
and the assignment of threads to processors

© 2007 Sun Microsystems, Inc. All rights reserved. 29

Loops, Reducers, Comprehensions

for k< 1:n do printk end

Y= Z akxk

k—1:n

WZZS (* same as Z x *)

xS

v= N arrayOfSets,
kS
prime k

z= MAX |a,,—b, |
(j,k)—a.indices

B={f(x,y)|x=S,y—A,x#y]
/ —<x<x2“) x<—1:100>

© 2007 Sun Microsystems, Inc. All rights reserved. 30

triangle

Loops, Reducers, Comprehensions

for k<1l:n do print i end

y = Y[ke1l:n] al[k] x*k

w =S (* same as Y [x<S] x *)
v = [1[k<S, prime k] arrayOfSets[k]

z = MAX[(j.k)+“a.indices] |al[j,k]l-b[]j,k]]|
B={ f(x,y) | xS, y=A, x#y }

1l triangle = (x(x+1)/2 | x<1:100)

© 2007 Sun Microsystems, Inc. All rights reserved. 31

Parallelism in Fortress

» Regions describe machine resources like CPU and
memory and their properties.

» Distributions describe how to map aggregates onto
regions.

 When a data structure (or its index set) is used as a
generator, the parallelism of the generator reflects the
distribution of the data structure.

© 2007 Sun Microsystems, Inc. All rights reserved. 32

Our Key Design Themes

 Make stupid mistakes impossible
And make clever mistakes relatively unlikely

» Design the language to be grown by (expert) users
Rich library language enables simple application languages

» Make abstraction efficient
Aggressive static and dynamic optimization

» Make parallelism tractable
Appropriate abstractions for managing thread and data distribution

 Emulate standard mathematical notation
Reduce the effort of translating from science to computation

© 2007 Sun Microsystems, Inc. All rights reserved. 33

Outline

» Fortress Programming Language

* Formalism In Fortress

* Project Fortress

© 2007 Sun Microsystems, Inc. All rights reserved.

34

Formalism for the Fortress Programming Language

Eric Allen Sukyoung Ryu Joe Hallett
Eric.Allen@sun.com Sukyoung.Ryu@sun.com Joseph.Hallett@sun.com

The Value of Formal Methods Formalized Semantics

« Provides unambiguous specification for compiler writers + Allows proofs of soundness and formal analysis
- Fewer insidious bugs
Fortress Program - More portable code

; —_ Type Proof X
compiler
—X Typing Rules)y
{} Theorem (Subject Reduction). If p is well-typed,

Fprossion typings [7r ST #57] AT e and p= e ¢ then p AT H ' -7 where

. ; Ak <
Lexing and Parsing o
[T-Viaw] PATF T Proof. The proot is b case analysis on the evaluation rule applied.
, o o= EIOIF1 ())
[T-SLE AT self : [{self) Case [R-FIELD] —
~ Ellr/alv'/ze]
tract Syn (AST) abjectO- (7). €p - By thewell-typednoss of ¢, we have pr AsT b OTF 7)) iy £ [7al!
Abstract Syntax Tree (AST) I BAROIRI ok pATET T pard o F where object Ola 4 N 1)) < {AT.} #ce'=e; f; end € p.
BT EIRaT= By lyping riles. [T-ORJECT]. [T-ORIECTDER], [T-FIELDDEF],
BAT Fepimy bounda(m) = OIT;] and [W-BoTh], \:Im\'ﬂ
[T-Firan] SlectOlEE 1 ! €n (o) pmATE 7
Type Inference PATE eo.: 1/} () parT < 7
BATen mie(f. boundaln)) = {[5 5,1 7~ 7} et
BAFT Ok pART AN (20} piex <
. o 4 [T-Mrson] mATEFIT AT & felrl (36 pAFT < [r/:
AST with Type Annotation RATF e SIR1GE) el o) BATE ORI G : OF)
By the Weakening Lemma and the Term Substitution Lemma
ﬂ / applied to (2a], (1), and (1), we have:
L 50) mAa < NI F e "

@) pAa < N < o

By the Tvpe Substitution Lemma applied to (3a) and (35). we

Translation

Evaluation Rules Tave
(Ga) pi A [rjo]l = [rfa]l falle; -
H Faltion rles: [pF 7CR] — Flel|) pA- T < [fafst
By the Wertkening Lemma, the Type Substitntion Lemma, and

[S-TRANS], we have:

object Ox

Intermediate Representatior

R-FikLD, = o g il
: » = EOWTIE) 50 — Bl o]l e (W) p A= < [rfalr
By applying the Replacament, Lemma o judgenents (Ta) and
object O (z':) €p (8b), we finish the case.
ReMymon mbody,(G7,) OL51) = ((F) e Case [R-METHOD]: o
i pFEQIFIE) . 17,1501 — EQuf2 O 1E) feelf][vffzle]
\ /

Executable Code

Example Program in Fortress i 3 Soundness of the Example Program
object Main[]() traits {Object} MeChan |Zed SemantICS Suppose p is the example program.

myself:Main[] = self I opee no [(Mainl10):0
:Object) :Object = » Tests soundness of language semantics P MR L. Aaers oy R Th-myReltd 206 8ok
identity[] (x:Object):Object = x guag and ph Mainl10). identity(] (Mainl] O .myself) —" Mainl] O

end then ;00 - Main(]1Q : Main[] where p;0F Main] <: Object.

Main[] () .identity[] (Main[] () .myself)

Reductions of the Example Program using PLT Redex
((invk ((invk ‘((Maln (tas) (vas))
(Main (tas) (vas)) (Main (tas) (vas)) R (tain (tas)))
(identity (identity .
(tam) == = (tas)
(vas (vas (Main (tas) (vas)))))
(invk oObject)

(Main (tas) (vas))
(myself)))))
object)

Copyright © 2005, Sun Microsystems, Inc. 35

Formalizing Language Semantics

* Provides unambiguous specification for compiler writers.
> Fewer insidious bugs
> More portable code

» Allows proofs of soundness and formal analysis.
> “Well-typed programs do not go wrong.”

> Catch errors at compile time to avoid run-time disasters
(Ariane 5, Mars Climate Orbiter, Patriot Missile Failure).

© 2007 Sun Microsystems, Inc. All rights reserved. 36

Fortress Type System

» Qur static type system can encode data types usually
considered the province of dynamic type systems.

» We have completed soundness proofs for the
associated type calculi.

» Algebraic properties drive implementation strategies to
achieve mix-and-match code selection.

© 2007 Sun Microsystems, Inc. All rights reserved. 37

© 2007 Sun Microsystems, Inc. All rights reserved.

Types Example: Data Types

value trait List[T extends U] extends List[U] where {U extends Object}
excludes {T'}
comprises {Empty, Cons|T]}
cons(first’: U, self): List[U] = Cons(first’, self)
append(self, rest’: List[U]): List[U]
end
value object Empty extends List[7] where {T extends Object}
append(self, rest’: List[T]): List[T] = rest’
end

value object Cons[T extends UJ(first: T, rest: List[T]) extends List[U]
where {U extends Object}
append(self, rest’: List[U]): List[U] = cons(first, append(rest, rest’))
end

38

Types Example: Algebraic Properties

value trait Comparison
extends { IdentityEquality [Comparison],
Associative|[Comparison, LEXICO],
Hasldentity[[Comparison, LEXICO],
HasLeftZeroes[Comparison, LEXICO, isLeftZeroForLEXICO] }
comprises { TotalComparison, Unordered }
opr LEXICO(self, other: Comparison): Comparison
isLeftZeroFor LEXICO (self): Boolean
opr =(self, other: Comparison): Boolean
getter hashCode(): Z64
toString(): String
end

© 2007 Sun Microsystems, Inc. All rights reserved. 39

Zeroes Can Stop Iteration Early

LEXICO
DONE!«_ ></ AN DONE!~ /7 N\
e 4 S LEXICO Less
%\ AN
T3 LEXICO® Equal
AN /7 N\
* 0 LEXICO Greater
7N\ /N
* / LEXICO Equal
/N /7 N\

1 . Equal Equal

© 2007 Sun Microsystems, Inc. All rights reserved. 40

Outline

» Fortress Programming Language

* Formalism In Fortress

* Project Fortress

© 2007 Sun Microsystems, Inc. All rights reserved.

41

Design Strategy

» Devise a specification, implementation, formal
semantics, and library code in parallel.

» Each provides different insights into the language.

- Each provides feedback to the others.

© 2007 Sun Microsystems, Inc. All rights reserved. 42

Status

» Draft specification and preliminary open source
release available

» BSD license

* http://research.sun.com/projects/plrg

© 2007 Sun Microsystems, Inc. All rights reserved.

43

Fostering Community Development

* An effective language needs good compilers, tools,
development environments, libraries, tutorials.

* An effective language should belong to the community.

* An effective language should be built by the community.

© 2007 Sun Microsystems, Inc. All rights reserved. 44

Establishing an Open Source
Community

- Establish open source projects as enabling technologies.
* Provide initial code and participate in extensions.

- Establish Cooperative Research agreements with
external teams (in academia, industry, non-profits).

© 2007 Sun Microsystems, Inc. All rights reserved. 45

sukyoung.ryu@sun.com

http:/Iresearch.sun.com/projects/
pirg

