
Fortress: A New
Programming Language
for Scientific Computing

Sukyoung Ryu

Joint work with Eric Allen, David Chase, Christine Flood, Joseph Hallett,
Victor Luchangco, Jan-Willem Maessen, Guy L. Steele Jr., and Sam Tobin-Hochstadt

Sun Microsystems Laboratories
March 20, 2007



Fortress: A New Programming Language for Scientific Computing

2© 2007 Sun Microsystems, Inc. All rights reserved.

Outline

• Fortress Programming Language
> Growing a Language
> Mathematical Notation
> Parallelism by Default

• Formalism in Fortress

• Project Fortress



Fortress: A New Programming Language for Scientific Computing

3© 2007 Sun Microsystems, Inc. All rights reserved.

The Context of the Research

• Improving programmer productivity
for scientific and engineering applications
• Research funded in part by the DARPA IPTO

(Defense Advanced Research Projects Agency
Information Processing Technology Office) through
their High Productivity Computing Systems program
• Goal is economically viable technologies for both

government and industrial applications by the year
2010 and beyond



Fortress: A New Programming Language for Scientific Computing

4© 2007 Sun Microsystems, Inc. All rights reserved.

The Background of the Research

Jan-Willem Maessen
Haskell, Memory model

Guy L. Steele Jr.
Java, Lisp, Scheme

Eric Allen
Generic Java

David Chase
Modula 3, Java compiler

Sukyoung Ryu
ML, Program analysis

Missing: Victor Luchangco, Transactional memory
Christine Flood, Garbage collection



Fortress: A New Programming Language for Scientific Computing

5© 2007 Sun Microsystems, Inc. All rights reserved.

Fortress: “To Do for Fortran
What JavaTM Did for C”

• Catch “stupid mistakes” (like array bounds errors)
• Extensive libraries (e.g., for nework environment)
• Security model (including type safety)
• Dynamic compilation
• Platform independence
• Multithreading

• Make programmers more productive



Fortress: A New Programming Language for Scientific Computing

6© 2007 Sun Microsystems, Inc. All rights reserved.

Key Ideas

• Don't build the language—grow it

• Make programming notation closer to math

• Ease use of parallelism



Fortress: A New Programming Language for Scientific Computing

7© 2007 Sun Microsystems, Inc. All rights reserved.

Outline

• Fortress Programming Language
> Growing a Language
> Mathematical Notation
> Parallelism by Default

• Formalism in Fortress

• Project Fortress



Fortress: A New Programming Language for Scientific Computing

8© 2007 Sun Microsystems, Inc. All rights reserved.

Growing a Language

• Languages have gotten much bigger.
• You can’t build one all at once.
• Therefore it must grow over time.
• What happens if you design it to grow?
• How does the need to grow affect the design?
• Need to grow a user community, too.

See Steele, “Growing a Language” keynote talk, OOPSLA 1998;
Higher-Order and Symbolic Computation 12, 221–236 (1999)



Fortress: A New Programming Language for Scientific Computing

9© 2007 Sun Microsystems, Inc. All rights reserved.

What Primitive Data Types to Include?

• Integers and floating-point (what sizes? bignums?)
• Complex numbers, rational numbers, intervals
• Arrays, vectors, and matrices
• Rational intervals, complex intervals
• Complex vectors and matrices
• What about physical units (meters, kilograms)?

“I might say ‘yes’ to each one of these,
but it is clear that I must say ‘no’ to all of them!”



Fortress: A New Programming Language for Scientific Computing

10© 2007 Sun Microsystems, Inc. All rights reserved.

Interesting Language Design Strategy

Wherever possible,
consider whether a proposed language feature

can be provided by a library
rather than having it built into the compiler.



Fortress: A New Programming Language for Scientific Computing

11© 2007 Sun Microsystems, Inc. All rights reserved.

Types Defined by Libraries

• Lists, vectors, sets, multisets, and maps
> Like C Standard Template Library, but better notation

• Matrices and multidimensional arrays
• Integers, floats, rationals, with physical units

m: ℝMass = 3.7 kg
v: ℝ3 Velocity = [3.5 0 1] m/s
p: ℝ3Momentum = m v

〈1,2,4,3,4〉
[3 4 5]×[1 0 0]

A∪{1,2,3,4}



Fortress: A New Programming Language for Scientific Computing

12© 2007 Sun Microsystems, Inc. All rights reserved.

ASCII (“Wiki-like markup”) Notation

• Lists, vectors, sets, multisets, and maps
> Like C Standard Template Library, but better notation
<|1,2,3,4|> A UNION {1,2,3,4}

[3 4 5] CROSS [1 0 0]

• Matrices and multidimensional arrays
• Integers, floats, rationals, with physical units

m: RR Mass = 3.7 kg_
_v: RR^3 Velocity = [3.5 0 1]
m_/s_

_p: RR^3 Momentum = m _v

• Data structures may be local or distributed



Fortress: A New Programming Language for Scientific Computing

13© 2007 Sun Microsystems, Inc. All rights reserved.

Sample Code: Algebraic Constraints

(This is actual Fortress library code.)



Fortress: A New Programming Language for Scientific Computing

14© 2007 Sun Microsystems, Inc. All rights reserved.

Our Vision

With key algorithms in libraries (cf. MATLAB),
application code can be concise, therefore

easier to check against design specifications.



Fortress: A New Programming Language for Scientific Computing

15© 2007 Sun Microsystems, Inc. All rights reserved.

Outline

• Fortress Programming Language
> Growing a Language
> Mathematical Notation
> Parallelism by Default

• Formalism in Fortress

• Project Fortress



Fortress: A New Programming Language for Scientific Computing

16© 2007 Sun Microsystems, Inc. All rights reserved.

Conventional Mathematical Notation

• The language of mathematics is centuries old,
concise, convenient, and widely taught.

• Parsing mathematical notation is a challenge
> Subtle reliance on whitespace: { |x| | x← S, 3 | x }
> Semantic conventions: y = 3 x sin x cos 2 x log log x



Fortress: A New Programming Language for Scientific Computing

17© 2007 Sun Microsystems, Inc. All rights reserved.

What Syntax is Actually Wired In?

• Parentheses ( ) for grouping
• Comma , to separate expressions in tuples
• Semicolon ; to separate statements on a line
• Dot . for field and method selection
• Conservative, traditional rules of precedence
> A dag, not always transitive (examples: A+B>C is okay;

so is B>C∨D>E; but A+B∨C needs parentheses)



Fortress: A New Programming Language for Scientific Computing

18© 2007 Sun Microsystems, Inc. All rights reserved.

Libraries Define . . .
• Which operators have infix, prefix, postfix definitions,

and what types they apply to
opr -(m:ℤ,n:ℤ) = m.subtract(n)

opr -(m:ℤ) = m.negate()

opr (n:ℕ)! = if n=0 then 1 else n·(n-1)! end

• Whether a juxtaposition is meaningful
opr juxtaposition(m:ℤ,n:ℤ) = m.times(n)

• What bracketing operators actually mean
opr x:ℝ = ceiling(x)

opr |x:ℝ| = if x<0 then -x else x end

opr |s:Set| = s.size



Fortress: A New Programming Language for Scientific Computing

19© 2007 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (ASCII)

conjGrad(A: Matrix[\Float\], x: Vector[\Float\]):
(Vector[\Float\], Float)

cgit_max = 25
z: Vector[\Float\] := 0
r: Vector[\Float\] := x
p: Vector[\Float\] := r
rho: Float := r^T r
for j <- seq(1:cgit_max) do
q = A p
alpha = rho / p^T q
z := z + alpha p
r := r - alpha q
rho0 = rho
rho := r^T r
beta = rho / rho0
p := r + beta p

end
(z, ||x – A z||)

(z,norm) = conjGrad(A,x)

Matrix[\T\] and Vector[\T\] are
parameterized interfaces, where
T is the type of the elements.



Fortress: A New Programming Language for Scientific Computing

20© 2007 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (ASCII)

conjGrad[\Elt extends Number, nat N,
Mat extends Matrix[\Elt,N BY N\],
Vec extends Vector[\Elt,N\]

\](A: Mat, x: Vec): (Vec, Elt)
cgit_max = 25
z: Vec := 0
r: Vec := x
p: Vec := r
rho: Elt := r^T r
for j <- seq(1:cgit_max) do
q = A p
alpha = rho / p^T q
z := z + alpha p
r := r - alpha q
rho0 = rho
rho := r^T r
beta = rho / rho0
p := r + beta p

end
(z, ||x – A z||)

(z,norm) = conjGrad(A,x)

Here we make conjGrad a generic
procedure. The runtime compiler
may produce multiple instantiations
of the code for various types Elt.



Fortress: A New Programming Language for Scientific Computing

21© 2007 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (Unicode)

conjGrad[[Elt extends Number, nat N,
Mat extends Matrix[[Elt,N N]],
Vec extends Vector
]](A: Mat, x: Vec): (Vec, Elt)

cgit_max = 25
z: Vec := 0
r: Vec := x
p: Vec := r
ρ: Elt := r^T r
for j ← seq(1:cgit_max) do

q = A p
α = ρ / p^T q
z := z + α p
r := r - α q
ρ₀ = ρ
ρ := r^T r
β = ρ / ρ₀
p := r + β p

end
(z, ‖x - A z‖)

This would be considered entirely
equivalent to the previous
version. You might think of this as
an abbre-viated form of the ASCII
version, or you might think of the
ASCII version as a way to
conveniently enter this version on
a standard keyboard.



Fortress: A New Programming Language for Scientific Computing

22© 2007 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel
conjGrad 〚Elt extends Number, nat N, 〛

Mat extends Matrix〚Elt,N×N 〛 ,
Vec extends Vector 〚Elt, N〛

〚 〛A :Mat, x :Vec:Vec, Elt 
cgitmax = 25
z :Vec := 0
r :Vec := x
p :Vec := r
 :Elt := rT r
for j  seq 1:cgitmax do
q= A p

 = 
pTq

z := z p
r := r− q
0= 
 := rT r

 = 
0

p := r p
end
 z , ⋳x−A z⋳

It's not new or surprising that code
written in a programming language
might be displayed in a conventional
math-like format. The point of this
example is how similar the code is to
the math notation: the gap between
the two syntaxes is relatively small.
We want to see what will happen if
a principal goal of a new language
design is to minimize this gap.



Fortress: A New Programming Language for Scientific Computing

23© 2007 Sun Microsystems, Inc. All rights reserved.

Comparison: NAS NPB 1 Specification
z = 0
r = x
 = rT r
p= r
DO i= 1,25

q= A p
 = / pT q
z = z p
0= 
r = r−q
 = rT r
 = /0
p= r p

ENDDO
compute residual norm explicitly: ⋳r⋳=⋳x−A z⋳

z :Vec := 0
r :Vec := x
p :Vec := r
 :Elt := rT r
for j  seq 1:cgitmax do
q = A p

 = 
pTq

z := z p
r := r− q
0= 
 := rT r

 = 
0

p := r p
end
 z , ⋳x−A z⋳



Fortress: A New Programming Language for Scientific Computing

24© 2007 Sun Microsystems, Inc. All rights reserved.

Comparison: NAS NPB 2.3 Serial Code

do j=1,lastrow-firstrow+1
sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1

sum = sum + a(k)*z(colidx(k))
enddo
w(j) = sum

enddo
do j=1,lastcol-firstcol+1

r(j) = w(j)
enddo
sum = 0.0d0
do j=1,lastcol-firstcol+1

d = x(j) - r(j)
sum = sum + d*d

enddo
d = sum
rnorm = sqrt( d )

do j=1,naa+1
q(j) = 0.0d0
z(j) = 0.0d0
r(j) = x(j)
p(j) = r(j)
w(j) = 0.0d0

enddo
sum = 0.0d0
do j=1,lastcol-firstcol+1

sum = sum + r(j)*r(j)
enddo
rho = sum
do cgit = 1,cgitmax

do j=1,lastrow-firstrow+1
sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1

sum = sum + a(k)*p(colidx(k))
enddo
w(j) = sum

enddo
do j=1,lastcol-firstcol+1

q(j) = w(j)
enddo

do j=1,lastcol-firstcol+1
w(j) = 0.0d0

enddo
sum = 0.0d0
do j=1,lastcol-firstcol+1

sum = sum + p(j)*q(j)
enddo
d = sum
alpha = rho / d
rho0 = rho
do j=1,lastcol-firstcol+1

z(j) = z(j) + alpha*p(j)
r(j) = r(j) - alpha*q(j)

enddo
sum = 0.0d0
do j=1,lastcol-firstcol+1

sum = sum + r(j)*r(j)
enddo
rho = sum
beta = rho / rho0
do j=1,lastcol-firstcol+1

p(j) = r(j) + beta*p(j)
enddo

enddo



Fortress: A New Programming Language for Scientific Computing

25© 2007 Sun Microsystems, Inc. All rights reserved.

Outline

• Fortress Programming Language
> Growing a Language
> Mathematical Notation
> Parallelism by Default

• Formalism in Fortress

• Project Fortress



Fortress: A New Programming Language for Scientific Computing

26© 2007 Sun Microsystems, Inc. All rights reserved.

Parallelism Is Not a Feature!

• Parallel programming is not a goal,
but a pragmatic compromise.
• It would be a lot easier to program a single

processor chip running at 1 PHz than a million
processors running at 20 GHz.
> We don't know how to build a 1 PHz processor.
> Even if we did, someone would still want to strap

a bunch of them together!

• Parallel programming is difficult and error-prone.



Fortress: A New Programming Language for Scientific Computing

27© 2007 Sun Microsystems, Inc. All rights reserved.

Questions

Can we encapsulate parallelism in libraries?

Will this separation be effective?



Fortress: A New Programming Language for Scientific Computing

28© 2007 Sun Microsystems, Inc. All rights reserved.

Should Parallelism Be the Default?

• “Loop” can be a misleading term
> A set of executions of a parameterized block of code
> Whether to order or parallelize those executions

should be a separate question

• Fortress “loops” are parallel by default
> This is actually a library convention about generators
> You get sequential execution by asking for it specifically



Fortress: A New Programming Language for Scientific Computing

29© 2007 Sun Microsystems, Inc. All rights reserved.

In Fortress, Parallelism Is the Default
for i←1:m, j←1:n do
a[i,j] := b[i] c[j]

end

for i seq(← 1:m) do
for j seq(← 1:n) do
print a[i,j]

end
end

for i←1:m, j i← :n do
a[i,j] := b[i] c[j]

end

for (i,j) a.indices← do a[i,j] := b[i] c[j] end

for (i,j) a.indices.rowMajor← do print a[i,j] end

• Generators (defined by libraries) manage parallelism
and the assignment of threads to processors

1:n is a generator

seq(1:n) is a sequential
generator

a.indices is a generator
for the indices of the array a
a.indices.rowMajor is
a sequential generator of indices



Fortress: A New Programming Language for Scientific Computing

30© 2007 Sun Microsystems, Inc. All rights reserved.

Loops, Reducers, Comprehensions
for k1:n do print k end
y= ∑

k1:n
ak x

k

w=∑ S (* same as ∑
x S

x *)

v= ∩
kS
prime k

arrayOfSetsk

z= MAX
 j , k a.indices

∣a j , k−b j , k∣
B={ f  x , y ∣ x S , y A , x≠ y}

l triangle=〈 x  x12 ∣ x1:100〉



Fortress: A New Programming Language for Scientific Computing

31© 2007 Sun Microsystems, Inc. All rights reserved.

Loops, Reducers, Comprehensions

for k 1:n← do print i end

y = ∑[k 1:n← ] a[k] x^k

w = ∑S (* same as ∑[x S← ] x *)

v = ∩[k S, prime k← ] arrayOfSets[k]

z = MAX[(j,k) a.indices← ] |a[j,k]-b[j,k]|

B = { f(x,y) | x S, y A, x≠y← ← }

l_triangle = x(x+1)/2 | x←1:100



Fortress: A New Programming Language for Scientific Computing

32© 2007 Sun Microsystems, Inc. All rights reserved.

Parallelism in Fortress

• Regions describe machine resources like CPU and
memory and their properties.

• Distributions describe how to map aggregates onto
regions.

• When a data structure (or its index set) is used as a
generator, the parallelism of the generator reflects the
distribution of the data structure.



Fortress: A New Programming Language for Scientific Computing

33© 2007 Sun Microsystems, Inc. All rights reserved.

Our Key Design Themes

• Make stupid mistakes impossible
And make clever mistakes relatively unlikely

• Design the language to be grown by (expert) users
Rich library language enables simple application languages

• Make abstraction efficient
Aggressive static and dynamic optimization

• Make parallelism tractable
Appropriate abstractions for managing thread and data distribution

• Emulate standard mathematical notation
Reduce the effort of translating from science to computation



Fortress: A New Programming Language for Scientific Computing

34© 2007 Sun Microsystems, Inc. All rights reserved.

Outline

• Fortress Programming Language

• Formalism in Fortress

• Project Fortress



Fortress: A New Programming Language for Scientific Computing

35© 2007 Sun Microsystems, Inc. All rights reserved.



Fortress: A New Programming Language for Scientific Computing

36© 2007 Sun Microsystems, Inc. All rights reserved.

Formalizing Language Semantics

• Provides unambiguous specification for compiler writers.
> Fewer insidious bugs
> More portable code

• Allows proofs of soundness and formal analysis.
> “Well-typed programs do not go wrong.”
> Catch errors at compile time to avoid run-time disasters

(Ariane 5, Mars Climate Orbiter, Patriot Missile Failure).



Fortress: A New Programming Language for Scientific Computing

37© 2007 Sun Microsystems, Inc. All rights reserved.

Fortress Type System

• Our static type system can encode data types usually
considered the province of dynamic type systems.

• We have completed soundness proofs for the
associated type calculi.

• Algebraic properties drive implementation strategies to
achieve mix-and-match code selection.



Fortress: A New Programming Language for Scientific Computing

38© 2007 Sun Microsystems, Inc. All rights reserved.

Types Example: Data Types



Fortress: A New Programming Language for Scientific Computing

39© 2007 Sun Microsystems, Inc. All rights reserved.

Types Example: Algebraic Properties



Fortress: A New Programming Language for Scientific Computing

40© 2007 Sun Microsystems, Inc. All rights reserved.

Zeroes Can Stop Iteration Early

1 2

4

3

×

×

×

×

×

7

0

DONE!

Equal Equal

Less

Equal

Equal

Greater

DONE!

LEXICO

LEXICO

LEXICO

LEXICO

LEXICO



Fortress: A New Programming Language for Scientific Computing

41© 2007 Sun Microsystems, Inc. All rights reserved.

Outline

• Fortress Programming Language

• Formalism in Fortress

• Project Fortress



Fortress: A New Programming Language for Scientific Computing

42© 2007 Sun Microsystems, Inc. All rights reserved.

Design Strategy

• Devise a specification, implementation, formal
semantics, and library code in parallel.

• Each provides different insights into the language.

• Each provides feedback to the others.



Fortress: A New Programming Language for Scientific Computing

43© 2007 Sun Microsystems, Inc. All rights reserved.

Status

• Draft specification and preliminary open source
release available

• BSD license

• http://research.sun.com/projects/plrg



Fortress: A New Programming Language for Scientific Computing

44© 2007 Sun Microsystems, Inc. All rights reserved.

Fostering Community Development

• An effective language needs good compilers, tools,
development environments, libraries, tutorials.

• An effective language should belong to the community.

• An effective language should be built by the community.



Fortress: A New Programming Language for Scientific Computing

45© 2007 Sun Microsystems, Inc. All rights reserved.

Establishing an Open Source
Community

• Establish open source projects as enabling technologies.

• Provide initial code and participate in extensions.

• Establish Cooperative Research agreements with
external teams (in academia, industry, non-profits).



sukyoung.ryu@sun.com

http://research.sun.com/projects/
plrg


