
  

Koen Lindström Claessen

APLAS 2009, Seoul

testing

formal
specification



  

“Experimental
Science”



  

All Sheep are White?

white? white? white?

white? white?



  

Testing

● Provide inputs to a program

● Notion of “correctness” or “what we expect”

● Repeat until failing test case...

● ...or until we get tired

which inputs?

what do we
expect?

which failing
case do we

want to see?

what do we
know then?



  

QuickCheck by Example

● compile  :: Program -> Code
● run         :: Code -> Trace
● interpret :: Program -> Trace

● prop_Correct p =
   run (compile p) == interpret p

“embedded language”
-- the programmer
already knows it

testing a compiler

write a property
(in a simple logic)

[Claessen, Hughes, 2000]



  

Running Tests

● Write a generator for random programs
● arbitrary :: Gen Program

● quickCheck prop_Correct
● automatically runs 100s of tests of the property on 

random programs
● reports the first failing case
● Effective at finding bugs
● Failing cases are large

if (x1 - (-3) >= x1 + x1 – x3)
  print (x3+(-2)+1+(-x1-0+x2))
  x2 = 1
else
  if (x1)
    x2 = 0+0+(-3)-(x2+x3)
    print (-2)
  fi
  x2 = x2
fi
print (x1-x1)
...



  

Shrinking

● Write a shrinking function for programs
● shrink :: Program -> [Program]
● structural shrinking
● custom shrinking

● quickCheck prop_Correct
● runs tests, finds failing case
● automatically shrinks the failing case to a (local) 

minimum
● effective combination!

if (0)
  print (1)
else
  print (0)
fi



  

Incomplete Specification 

● simplify :: Program -> Program

● prop_SimplifyCorrect p =

   interpret p == interpret (simplify p)

● prop_SimplifySimplifies p =
   size p >= size (simplify p)

“design patterns”
-- common cases where
complete specifications

are not feasible



  

“Bug-Specification” 

● prop_SimplifyCorrect p =

   interpret p == interpret (simplify p)

buggy...

● prop_SimplifyCorrect_noWhile p =
   noWhileLoop p ==>
      interpret p == interpret (simplify p)

“bug specification”
-- allows progress
in testing process

implication



  

QuickCheck Components

● Generators
● structured data (trees, 

graphs, ...)
● functions
● grammar-based 

(automation)

● Shrinking
● Some automation

● Properties
● data structures
● stateful APIs
● concurrent APIs
● search problems, 

optimization problems
● ...



  

QuickCheck Success

● Conceived 2000 for Haskell
● Standard Haskell library

● part of the community

● Other languages
● Erlang (open source, commercial version)
● C, C++, Java, C#, ML, F#, Mercury, Python, Perl, 

Google Go, ...
● Use Haskell or Erlang to specify C, C++, Java, ...



  

Hypothesis

● Formal specification
● forces people to think 

about their program
● orthogonal
● incremental 

(incomplete 
specifications)

● Informal verification
● formal is too hard
● no verification makes 

everything useless
● sweet spot?

Experimental
evidence?



  

Testing Logic

● forAll gen (\x -> p(x))

● b ==> p

● b



  

Testing Logic

● forAll gen (\x -> p(x))
● universal quantification

● b ==> p
● implication

● b
● true or false



  

Testing Logic

● forAll gen (\x -> p(x))
● universal quantification
● generate an x, then test p(x)

● b ==> p
● implication
● if b, then test p; otherwise, discard p

● b
● true or false
● pass or fail



  

forAll gen (\x -> not B(x) ==> A(x))

Where do properties come from?

● Write what we want, logically
● “Massage” the logical formula into a testing 

logic formula
● forAll x . A(x) v B(x)

● Choices
● Logically the same
● Testing-logically different

forAll gen (\x -> A(x) || B(x))

forAll gen (\x -> not A(x) ==> B(x))



  

Testing Logic

● Semantics
● Reasoning system

● properties that are logically the same
● testing-logical “improvement”

● What are the (expected) equalities?

forAll gen (\x -> A(x) ==> B(x))

vs.

forAll genA (\x -> B(x))

A ==> B

vs.

not B ==> not A



  

All Sheep are White?

● forAll gen (\x -> Sheep(x) ==> White(x))
● forAll sheep (\x -> White(x))

● forAll gen (\x -> not White(x) ==> not Sheep(x))
● forAll nonWhite (\x -> not Sheep(x))



  

All non-White things are not Sheep?

non-sheep? non-sheep? non-sheep?

?



  

Which one is better?

white

non-white

non-sheep

sheep



  

Our Intuition was Right

● sheep: non-white vs. white
● non-white: sheep vs. non-sheep
● maximize amount of failing cases
● compare #non-white non-sheep against #white 

sheep
● A(x) ==> B(x)   vs.   not B(x) ==> not A(x)
● compare #not A,not B against #A,B

prop_Complete p =
  hasSolution p ==> solve p == Yes

prop_Complete p =
  solve p == No ==> hasNoSolution p



  

Conjunction

● Adding an operator & to the testing logic
● Seems simple enough

● Logic: A & B means conjunction
● Testing A & B means first testing A and then testing 

B

● What properties does & enjoy?
● A & A  ===  A ?
● A ==> (B & C)  ===  (A==>B)&(A==>C) ?

NO

YES



  

Alternative Conjunction

● Other operator &'
● Logic: A &' B means conjunction
● Testing A &' B means randomly choosing A or B to 

test

● What properties does & enjoy?
● A &' A  ===  A ?
● A ==> (B &' C)  ===  (A==>B)&'(A==>C) ?
● A &' (B &' C)  ===  (A &' B) &' C ? NO

YES

YES

A &' B :=
forAll x:Bool . if x then A else B



  

Testing Logic

● We are defining operators
● logical semantics
● testing semantics

● Investigating properties
● Trying to come up with a simple set of primitives
● For practical use...
● ...explaining practical problems
● Example-driven



  

Hard Specifications

● Some problems are hard to specify...
● ...without reimplementing the programs
● Examples:

● Search problems
– path finding
– SAT-solver

● Optimization problems
– shortest path
– best solution

● Problems with tedious specifications



  

“Inductive Testing”

● Specify program in terms of smaller instances 
of the program
● prop_SatBaseTrue =

   sat [] == True
● prop_SatBaseFalse =

   sat [ [] ] == False
● prop_SatStep p x =

   sat p == (sat (subst x False p)
                   || sat (subst x True p))

like a naive implementation,
but more efficient

invoke the program
more than once



  

Another Example

● anonymize :: String -> String
anonymize s = ...

● modify :: (a -> Bool) -> ([a] -> [a]) -> [a] -> [a]
modify p f xs = ...

p p p p p p p p p p p p p p

f f

tedious specification



  

Testing Modify

● prop_ModifyEmpty p f =
  modify p f [] == []

● prop_ModifyBase f xs =
  not (null xs) ==>
    modify (`elem` xs) f xs == f xs

● prop_ModifySep p f xs y zs =
  not (p y) ==>
    modify p f (xs ++ [y] ++ zs)
       == modify p f xs ++ [y] ++ modify p f zs

free choice
where to split



  

Distribution of Failing Cases

FAIL



  

Coming Up with Specifications

● Hard to start “from scratch”
● QuickSpec:

● Given a (compiled) module
● API of the module
● Test data generators
● automatically generates an equational specification



  

Example
● type Map a b
● empty :: Map a b
● look :: a -> Map a b -> Maybe b
● insert :: a -> b -> Mab a b -> Map a b

● look x empty == Nothing
● look x (insert x a m) == Just a
● look x (insert y a empty) == look y (insert x a empty)
● insert x (insert x a m) == insert x a m
● insert x a (insert y a m) == insert y a (insert x a m)



  

What is it good for?

● Getting started with writing properties
● Exploring a module

● Understanding
● Improving

● Discovering strangeness
● A law is not as general as you think, why?
● Often, a good implementation/design has nice 

properties



  

How does it work?

● Generate a set of terms with variables
● depth-based, ~20.000 terms

● Use testing to refine these into equivalence 
classes
● when done, ~5.000 classes
● each of which gives rise to several equations r == t

● Use pruning to get rid of superfluous equations
● implied by other equations
● hardest part!
● ~5-30 equations

complement to
QuickCheck



  

QuickSpec

● Joint work with Nick Smallbone, John Hughes
● Implemented for Haskell, Erlang
● Very fast (a few seconds)
● Used for

● data structures
● abstract data types
● regular expression library
● ...

● Currently working on
● conditional equations
● imperative programs
● use cases



  

Testing Polymorphic Functions

● Suppose we are testing a property about a 
polymorphic function
● reverse :: [a] -> [a]
● filter :: (a -> Bool) -> [a] -> [a]
● modify :: (a -> Bool) -> ([a] -> [a]) -> [a] -> [a]

● What type(s) should we pick to run the tests on?
● Standard QuickCheck practice suggests using Int

● prop_Reverse (xs :: [Int]) =
   reverse (reverse xs) == xs



  

Example: reverse

● reverse :: [a] -> [a]
● the only source of a's in the result are the 

elements in the argument list
● we could symbolically represent these by their 

indices
● prop_Reverse n =

   let xs = [1..n] in
      reverse (reverse xs) == xs

● It is enough to vary the length of the lists!



  

Example: filter and map

● prop_MapFilter p f xs =
   filter p (map f xs) == map f (filter p xs)

● Here:
● p :: a -> Bool
● f :: a -> a
● xs :: [a]

● An a can either come (1) from the list xs, (2) 
from applying f



  

filter and map

● data T = X Int    -- from the list
            | F T       -- applying F

● prop_MapFilter p n =
   let xs = [X 1 .. X n]
        f    = F
    in filter p (map f xs) == map f (filter p xs)

● Varying the length n, and the predicate p is 
enough!



  

General Idea

● Given a property, rewrite it into the following 
form:
● prop :: (F a -> a) -> (G a -> X) -> H a
● for polynomial functors F, G, and H

● Then, the monotype T is computed as the least 
fixpoint of F

● The argument of type F a -> a (now F T -> T) is 
fixed to the initial algebra of F

● Based on parametricity



  

PolyTest

● Joint work with Jean-Philippe Bernardy, Patrik 
Jansson

● Also for arguments with properties
● Still investigating boundaries
● Paper at ESOP 2010



  

Summary

● QuickCheck
● Testing Logic
● Inductive Testing
● QuickSpec – generating specifications
● Testing polymorphic functions
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