
  

Koen Lindström Claessen

APLAS 2009, Seoul

testing

formal
specification



  

“Experimental
Science”



  

All Sheep are White?

white? white? white?

white? white?



  

Testing

● Provide inputs to a program

● Notion of “correctness” or “what we expect”

● Repeat until failing test case...

● ...or until we get tired

which inputs?

what do we
expect?

which failing
case do we

want to see?

what do we
know then?



  

QuickCheck by Example

● compile  :: Program -> Code
● run         :: Code -> Trace
● interpret :: Program -> Trace

● prop_Correct p =
   run (compile p) == interpret p

“embedded language”
-- the programmer
already knows it

testing a compiler

write a property
(in a simple logic)

[Claessen, Hughes, 2000]



  

Running Tests

● Write a generator for random programs
● arbitrary :: Gen Program

● quickCheck prop_Correct
● automatically runs 100s of tests of the property on 

random programs
● reports the first failing case
● Effective at finding bugs
● Failing cases are large

if (x1 - (-3) >= x1 + x1 – x3)
  print (x3+(-2)+1+(-x1-0+x2))
  x2 = 1
else
  if (x1)
    x2 = 0+0+(-3)-(x2+x3)
    print (-2)
  fi
  x2 = x2
fi
print (x1-x1)
...



  

Shrinking

● Write a shrinking function for programs
● shrink :: Program -> [Program]
● structural shrinking
● custom shrinking

● quickCheck prop_Correct
● runs tests, finds failing case
● automatically shrinks the failing case to a (local) 

minimum
● effective combination!

if (0)
  print (1)
else
  print (0)
fi



  

Incomplete Specification 

● simplify :: Program -> Program

● prop_SimplifyCorrect p =

   interpret p == interpret (simplify p)

● prop_SimplifySimplifies p =
   size p >= size (simplify p)

“design patterns”
-- common cases where
complete specifications

are not feasible



  

“Bug-Specification” 

● prop_SimplifyCorrect p =

   interpret p == interpret (simplify p)

buggy...

● prop_SimplifyCorrect_noWhile p =
   noWhileLoop p ==>
      interpret p == interpret (simplify p)

“bug specification”
-- allows progress
in testing process

implication



  

QuickCheck Components

● Generators
● structured data (trees, 

graphs, ...)
● functions
● grammar-based 

(automation)

● Shrinking
● Some automation

● Properties
● data structures
● stateful APIs
● concurrent APIs
● search problems, 

optimization problems
● ...



  

QuickCheck Success

● Conceived 2000 for Haskell
● Standard Haskell library

● part of the community

● Other languages
● Erlang (open source, commercial version)
● C, C++, Java, C#, ML, F#, Mercury, Python, Perl, 

Google Go, ...
● Use Haskell or Erlang to specify C, C++, Java, ...



  

Hypothesis

● Formal specification
● forces people to think 

about their program
● orthogonal
● incremental 

(incomplete 
specifications)

● Informal verification
● formal is too hard
● no verification makes 

everything useless
● sweet spot?

Experimental
evidence?



  

Testing Logic

● forAll gen (\x -> p(x))

● b ==> p

● b



  

Testing Logic

● forAll gen (\x -> p(x))
● universal quantification

● b ==> p
● implication

● b
● true or false



  

Testing Logic

● forAll gen (\x -> p(x))
● universal quantification
● generate an x, then test p(x)

● b ==> p
● implication
● if b, then test p; otherwise, discard p

● b
● true or false
● pass or fail



  

forAll gen (\x -> not B(x) ==> A(x))

Where do properties come from?

● Write what we want, logically
● “Massage” the logical formula into a testing 

logic formula
● forAll x . A(x) v B(x)

● Choices
● Logically the same
● Testing-logically different

forAll gen (\x -> A(x) || B(x))

forAll gen (\x -> not A(x) ==> B(x))



  

Testing Logic

● Semantics
● Reasoning system

● properties that are logically the same
● testing-logical “improvement”

● What are the (expected) equalities?

forAll gen (\x -> A(x) ==> B(x))

vs.

forAll genA (\x -> B(x))

A ==> B

vs.

not B ==> not A



  

All Sheep are White?

● forAll gen (\x -> Sheep(x) ==> White(x))
● forAll sheep (\x -> White(x))

● forAll gen (\x -> not White(x) ==> not Sheep(x))
● forAll nonWhite (\x -> not Sheep(x))



  

All non-White things are not Sheep?

non-sheep? non-sheep? non-sheep?

?



  

Which one is better?

white

non-white

non-sheep

sheep



  

Our Intuition was Right

● sheep: non-white vs. white
● non-white: sheep vs. non-sheep
● maximize amount of failing cases
● compare #non-white non-sheep against #white 

sheep
● A(x) ==> B(x)   vs.   not B(x) ==> not A(x)
● compare #not A,not B against #A,B

prop_Complete p =
  hasSolution p ==> solve p == Yes

prop_Complete p =
  solve p == No ==> hasNoSolution p



  

Conjunction

● Adding an operator & to the testing logic
● Seems simple enough

● Logic: A & B means conjunction
● Testing A & B means first testing A and then testing 

B

● What properties does & enjoy?
● A & A  ===  A ?
● A ==> (B & C)  ===  (A==>B)&(A==>C) ?

NO

YES



  

Alternative Conjunction

● Other operator &'
● Logic: A &' B means conjunction
● Testing A &' B means randomly choosing A or B to 

test

● What properties does & enjoy?
● A &' A  ===  A ?
● A ==> (B &' C)  ===  (A==>B)&'(A==>C) ?
● A &' (B &' C)  ===  (A &' B) &' C ? NO

YES

YES

A &' B :=
forAll x:Bool . if x then A else B



  

Testing Logic

● We are defining operators
● logical semantics
● testing semantics

● Investigating properties
● Trying to come up with a simple set of primitives
● For practical use...
● ...explaining practical problems
● Example-driven



  

Hard Specifications

● Some problems are hard to specify...
● ...without reimplementing the programs
● Examples:

● Search problems
– path finding
– SAT-solver

● Optimization problems
– shortest path
– best solution

● Problems with tedious specifications



  

“Inductive Testing”

● Specify program in terms of smaller instances 
of the program
● prop_SatBaseTrue =

   sat [] == True
● prop_SatBaseFalse =

   sat [ [] ] == False
● prop_SatStep p x =

   sat p == (sat (subst x False p)
                   || sat (subst x True p))

like a naive implementation,
but more efficient

invoke the program
more than once



  

Another Example

● anonymize :: String -> String
anonymize s = ...

● modify :: (a -> Bool) -> ([a] -> [a]) -> [a] -> [a]
modify p f xs = ...

p p p p p p p p p p p p p p

f f

tedious specification



  

Testing Modify

● prop_ModifyEmpty p f =
  modify p f [] == []

● prop_ModifyBase f xs =
  not (null xs) ==>
    modify (`elem` xs) f xs == f xs

● prop_ModifySep p f xs y zs =
  not (p y) ==>
    modify p f (xs ++ [y] ++ zs)
       == modify p f xs ++ [y] ++ modify p f zs

free choice
where to split



  

Distribution of Failing Cases

FAIL



  

Coming Up with Specifications

● Hard to start “from scratch”
● QuickSpec:

● Given a (compiled) module
● API of the module
● Test data generators
● automatically generates an equational specification



  

Example
● type Map a b
● empty :: Map a b
● look :: a -> Map a b -> Maybe b
● insert :: a -> b -> Mab a b -> Map a b

● look x empty == Nothing
● look x (insert x a m) == Just a
● look x (insert y a empty) == look y (insert x a empty)
● insert x (insert x a m) == insert x a m
● insert x a (insert y a m) == insert y a (insert x a m)



  

What is it good for?

● Getting started with writing properties
● Exploring a module

● Understanding
● Improving

● Discovering strangeness
● A law is not as general as you think, why?
● Often, a good implementation/design has nice 

properties



  

How does it work?

● Generate a set of terms with variables
● depth-based, ~20.000 terms

● Use testing to refine these into equivalence 
classes
● when done, ~5.000 classes
● each of which gives rise to several equations r == t

● Use pruning to get rid of superfluous equations
● implied by other equations
● hardest part!
● ~5-30 equations

complement to
QuickCheck



  

QuickSpec

● Joint work with Nick Smallbone, John Hughes
● Implemented for Haskell, Erlang
● Very fast (a few seconds)
● Used for

● data structures
● abstract data types
● regular expression library
● ...

● Currently working on
● conditional equations
● imperative programs
● use cases



  

Testing Polymorphic Functions

● Suppose we are testing a property about a 
polymorphic function
● reverse :: [a] -> [a]
● filter :: (a -> Bool) -> [a] -> [a]
● modify :: (a -> Bool) -> ([a] -> [a]) -> [a] -> [a]

● What type(s) should we pick to run the tests on?
● Standard QuickCheck practice suggests using Int

● prop_Reverse (xs :: [Int]) =
   reverse (reverse xs) == xs



  

Example: reverse

● reverse :: [a] -> [a]
● the only source of a's in the result are the 

elements in the argument list
● we could symbolically represent these by their 

indices
● prop_Reverse n =

   let xs = [1..n] in
      reverse (reverse xs) == xs

● It is enough to vary the length of the lists!



  

Example: filter and map

● prop_MapFilter p f xs =
   filter p (map f xs) == map f (filter p xs)

● Here:
● p :: a -> Bool
● f :: a -> a
● xs :: [a]

● An a can either come (1) from the list xs, (2) 
from applying f



  

filter and map

● data T = X Int    -- from the list
            | F T       -- applying F

● prop_MapFilter p n =
   let xs = [X 1 .. X n]
        f    = F
    in filter p (map f xs) == map f (filter p xs)

● Varying the length n, and the predicate p is 
enough!



  

General Idea

● Given a property, rewrite it into the following 
form:
● prop :: (F a -> a) -> (G a -> X) -> H a
● for polynomial functors F, G, and H

● Then, the monotype T is computed as the least 
fixpoint of F

● The argument of type F a -> a (now F T -> T) is 
fixed to the initial algebra of F

● Based on parametricity



  

PolyTest

● Joint work with Jean-Philippe Bernardy, Patrik 
Jansson

● Also for arguments with properties
● Still investigating boundaries
● Paper at ESOP 2010



  

Summary

● QuickCheck
● Testing Logic
● Inductive Testing
● QuickSpec – generating specifications
● Testing polymorphic functions


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

