Higher-Order Model Checking:
Principles and Applications to Program
Verification and Security

Part I: Types and Recursion Schemes
for Higher-Order Program Verification
Part IT: Higher-Order Program Verification
and Language-Based Security

Naoki Kobayashi
Tohoku University

Why (Automated) Program Verification?

¢ Increasing Use of Software in Critical Systems
- ATM, online banking, online shopping
- Airplanes, automobiles
- Nuclear power plant

— Reliability is becoming the primary concern

¢ Increase of Size/Complexity of Software
= Manual debugging is infeasible

Program Verification Techniques
¢ Model checking (c.f. 2007 Turing award)

- Applicable to first-order procedures (pushdown
model checking), but not to higher-order
programs

¢ Type-based program analysis
- Applicable to higher-order programs
- Sound but imprecise

¢ Dependent types/theorem proving
- Requires human intervention

Sound and precise verification techniques for
higher-order programs (e.g. ML/Java programs)?

This Talk

¢ New program verification technique
for higher-order languages (e.g. ML)
- Sound, complete, and automatic for

* A large class of higher-order programs
+ A large class of verification problems

- Built on recent/new advances in

- Type theories

- Automata/formal language theories
(esp. higher-order recursion schemes)

* Model checking

¢ Applications to language-based security
(part IT)

Relevance to Security?
(for ASIAN audience)

¢ Program verification is relevant to software
security
- Prevent security holes

- Verification techniques have been used for:
- information flow analysis
- access control
- protocol verification

¢ Higher-order program verification brings
new advantages
- precise for higher-order programs
- applicable to infinite-state systems

Outline

¢ Part I: Types and Recursion Schemes for
Higher-Order Program Verification
- Higher-order recursion schemes

- From program verification to model checking
recursion schemes [K. POPLO9][K., Tabuchi&Unno POPL10]

- From model checking to type checking
[K. POPLO9][K.&Ong LICS09]

- Type checking (=model checking) algorithm [K.PPDP09]

- TRecS: Type-based RECursion Scheme model checker
- Future perspectives

¢ Part IT: Higher-order program verification for
language -based security

Higher-Order Recursion Scheme
¢ Grammar for generating an infinite tree

Order-0 scheme S aq
(regular tree gramm ¢'B
S >ac B B> b
LA
B—>b S S ¢ b
S a —»>a —>a 7.7 Cll
/N /N /N /\\
c B ¢ b ¢ b b
| | .
S a

a
/\
B /3
l

¢ C

Higher-Order Recursion Scheme

¢ Grammar for Tree whose paths lite tree

Order-1 schem: %€ Ial:u:)led by
a™* pM ¢
S > Ac /\
A—->2x.a x (A (b x) c a
S:0, A:0—> 0 b/\a
S >Acsa —0a > ..o | Na
/\\ 7/ \\ C | 7\
c a b
c A(b c) A I
b A(b(b c)) C

b
%
«! ?
c

Model Checking Recursion Schemes
~

Given
G: higher-order recursion scheme
A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),
Qioes A accept Tree(6)? y

e.g.
- Does every finite path end with "c"?

- Does "a" occur eventually whenever "b” occurs?

4)

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)

Why Recursion Schemes?

¢ Expressive:

- Subsumes many other MSO-decidable tree classes
(regular, algebraic, Caucal hierarchy, HPDS, ...)

¢ High-level (c.f. higher-order PDS):

- Recursion schemes

Simply-typed A-calculus

+ recursion

+ tree constructors (but not destructors)
(+ finite data domains such as booleans)

‘Suitable models for higher-order pr'ogr'ams‘

Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking)
algorithm for recursion schemes

¢ TRecS: Type-based RECursion Scheme model checker
¢ Ongoing and future work

From Program Verification

to Model Checking Recursion Schemes
[K. POPL 2009]

Higher-order

program
+
specification

Rec. scheme
(describing all

—>

Program
Transformation

event sequences
— and outputs) —

+

Model
Checking

Tree automaton,

recognizing
valid event sequences

From Program Verification fo Model Checking:

Example
let f(x) = Fxk— + (ck) (r(F x k))
if * then close(x) S—>Fd *+
else read(x); f(x) /" \
in IC "
!e'r y = open “foo" A
in C rl
f (y) X
C r
° " ll\ I I
Is the file "foo - ‘ \
ccessed according| —p | Is each path of the tree
to read™ close? labeled by r*c?
Y, _ y

From Program Verification fo Model Checking:
Example

_ Fxk—> + (c k) (r(F x k)
let f(x) =
if * then close(x) XS > Fd*

+

else read(x); f(x) T
in Transformation!

let y = open "foo"

NN
in C rl'
£ I
(y) PN
C r
° " ll\ I I
Is the file "foo - ‘ \
ccessed according | ——p | Is each path of the tree
to read™ close? labeled by r*c?
Y, _ y

From Program Verification

to Model Checking Recursion Schemes
[K. POPL 2009]

Higher-order

program
+
specification

—>

Program
Transformation

Rec. scheme
(describing all

event sequences)

#

automaton for

+

infinite trees

—>

Model
Checking

/Sound, complete, and automatic for:
- A large class of higher-order programs:
simply-typed A-calculus + recursion
+ finite base types
- A large class of verification problems:
resource usage verification [Igarashi&K. POPL2002],
\ reachability, flow analysis, ...

~

/

Comparison with Traditional Approach
(Control Flow Analysis)

¢ Control flow analysis
Control flow

graph

Higher-order_ [Flow > (finite state — |verification

program Analysis

or pushdown
machines)

¢ Our approach

Higher-order

Drogram — Program _, Recursion _,

Transformation| scheme

verification

Only information about
infinite data domains
is approximated!

Comparison with Traditional Approach
(Software Model Checking)

Program Classes Verification Methods
Programs with Finite state model checking
while-loops
Programs with Pushdown model checking infinite
1st-order recursion state
Higher-order functional Recursion scheme model model.

) checking
programs checking

Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking
- Goal and motivation
- Type system equivalent to model checking

¢ Type checking (=model checking) algorithm
¢ TRecS: Type-based RECursion Scheme model checker
¢ Future perspectives

Goal

Construct a type system TS(A) s.t.
Tree(G) is accepted by APT A
if and only if
G is typable in TS(A)

Model Checking as

Type Checking
(c.f. [Naik & Palsberg, ESOP2005])

Why Type-Theoretic
Characterization?

¢ Simpler decidability proof of model
checking recursion schemes

- Previous proofs [Ong, 2006][Hague et. al, 2008]
made heavy use of game semantics

¢ More efficient model checking algorithm

- Known algorithms [0Ong, 2006][Hague et. al, 2008]
always require n-EXPTIME

Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

- Goal and motivation

- Type system
¢ Type checking (=model checking) algorithm
¢ TRecS: Type-based RECursion Scheme model checker

¢ Future perspectives

Model Checking Problem
(Simple Case, for safety properties)

Given
G: higher-order recursion scheme
A: trivial automaton

(Biichi tree automaton where
all the states are accepting states)
does A accept Tree(6)?

‘See [K.&Ong, LICSO9] for the general case ‘

(Trivial) tree automaton
for infinite trees

q0
qlec /“Q 5(q0, a) = q1 qO
atb, a® 5(q1, b) = q2
| 9%~ > a0 3(q2, b) = q2
g2c b
q2t|) bql 8(ql, c) = ¢
2| ||Dq2 8((,2, C) - €&
Qcc i ,
b9

Types for Recursion Schemes

¢ Automaton state as the type of trees
- q: trees accepted from state q

A

- qlAq2: trees accepted from both q1 and q2

Types for Recursion Schemes

¢ Automaton state as the type of trees

- q1—> q2: functions that take a tree of type ql
and return a tree of q2

i

ql

v A =

Types for Recursion Schemes

¢ Automaton state as the type of trees
- qlAq2 — q3:
functions that take a tree of type qiAq2 and
return a tree of type q3

Types for Recursion Schemes

¢ Automaton state as the type of trees
(91 - q2) — q3:
functions that take a function of type q1 — q2
and return a tree of type q3

q3

Typing

S(q, Cl) = q1--Qn

|'0:q1—>...—>qn—>q

Soundness and Completeness
[K., POPL2009]

Let
G: Rec. scheme with initial non-terminal S
A: Trivial automaton with initial state q,
TS(A): Intersection type system
derived from A

Then,
Tree(G) is accepted by A
if and only if
S has type q, in TS(A)

Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
- Naive algorithm
- Practical algorithm

¢ TRecS: Type-based RECursion Scheme model checker
¢ Future perspectives

Typing

S(Q, Cl) = q1--Qn T x:it I'X -

|-0:q1—>...—>qn—>q

Tt 1AAT, =T
T, Xxi1y,..., xX:t, Ftt I Ft,t (i=1,..n)
[FAXt T ALAT, = T Tkttt

T T, : T (for every F,:tel’)
|'{F1—>'|‘1,..., Fn —)fn} B

Naive Type Checking Algorithm

[S has type qo]

Recursion Scheme:
{F, »t,, ..., F, o1, }

[(i)l" -t T
for each F,

(i) S:qp € T

for some I

T el

~N

[Filter out invalid type bindingsj

(5‘% e gfp(H)
where

- N, HN(C. o/ All the possible
k M\ type bindings
E.g. for F:o—o,

—
{:

H(@) = { Fit e T |T |- t,:t}| {F:T >0, F:q0 - q0,

F: q1 — qO,

1_‘max = {F:T | T SO?T(F)} F:qOnql — qO, ...}

_ -

Naive Algorithm Does NOT Work
[S has ’rypeza
$
-
Siqo € gfp(H) = N HY(Tpg)
where HI') = { FiteT'|T |- 6(F):t}
[pox = {Fi1 |7 ::sort(F)) This is hugel

~N

.
sort # of types (Q={q0.9:.9..95})
0 4 (90.91.92.93)
0 >0 24 x4 = 64 (rS—q. with Sc2R, qcQ)
(0—0) > o0 204 x4 = 266
((0—>0) > 0) >0 | 28 10000000000000000000
2 x4 > 10

Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
for recursion schemes
- Naive algorithm
- Practical algorithm

¢ TRecS: Type-based RECursion Scheme model checker
¢ Future perspectives

More Efficeint Algorithm?
S has type q,

e 1‘*0
Siqo € Ny HYE=)
where

HIT) = {FiteI'| T |-6(F):t}

Challenges:
(i) How can we find an appropriate I’y ?

"Run” the recursion scheme (finitely many steps),
and extract type information

(ii) How can we guarantee completeness?
Iteratively repeat (i) and type checking

Hybrid Type Checking Algorithm

f

Step 1:

~N

Run the recursion scheme

a finite number of steps

’roperty
violated?

yes

Error path

es Property
Is
no Satisfied!
4)
Step 3: Compute
_ k
T=Ny HT)

/

Step 2: Extract |
type environment

I'g)

Soundness and Completeness of
the Hybrid Algorithm

Given:

- Recursion scheme G

- Deterministic trivial automaton A,
the algorithm eventually terminates, and:

(i) outputs an error path
if Tree(6) is not accepted by A

(ii) outputs a type environment
if Tree(G) is accepted by A

Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
for recursion schemes

¢ TRecS: Type-based RECursion Scheme model checker
¢ Future perspectives

TRecS
http://www_ kb .ecei.tohoku.ac. jp/~koba/trecs/

@Type—Based Model Checker for Higher-0Order Recursion Scheme — Mozilla Firefox

2rE REE LW EES Yeiv-0B V-D o ATFH

@ - C (5] ‘J httpe/ S kb eceitohoku.ac. jp/ kobatrecs/ |_GJ'
8] F{RBA—T b Firefox B(ETHLS 0 BEHT1-A
‘J FrontPage — Kobalab Wiki ‘J Type-Based Model Ghecker for B | o ¥¢7Fe-EEEFEIREN -0

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

Enter a recursion scheme and a specification in the box below, and press the "submit" button, Examples are given below, Currently, our model checker only accepts determunistic Buchy

automata with a trivial acceptance cotdiion,

¢ The first model checker for recursion
schemes (or, for higher-order functions)

¢ Based on the hybrid model checking algorithm,
wn‘h cer"ram addmonal optimizations

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

Experiments

order |rules |states |result |Time

(msec)
Twofiles 4 P 11 4 Mac
Taken from the compiler of]

FileWrong |4 Objective Caml, consisting of

about 60 lines of O'Caml code |
TwofilesE |4
FileQcanic -“---
Lock
Orderb 5 9 4 Yes 2

(Environment: Intel(R) Xeon(R) 3Ghz with 2G6B memory)

(A simplified version of)

FileOcamlC

let readloop fp =

if * then () else readloop fp:; read fp
let read_sect() =

let fp = open “foo” in

{readc=fun x -> readloop fp:

closec = fun x -> close fp}
let loop s =

if * then s.closec() else s.readc():loop s
let main() =

let s = read_sect() in loop s

Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
for recursion schemes

¢ TRecS: Type-based RECursion Scheme model checker

¢ Discussion
- Advantages of our approach
- Remaining challenges

Advantages of our approach

(1) Sound, complete and automatic for a large
class of higher-order programs
- no false alarms!
- no annotations

Advantages of our approach

(1) Sound, complete and automatic for a large
class of higher-order programs
- no false alarms!
- no annotations

(2) Subsumes finite-state/pushdown model
checking

- Order-0 rec. schemes ~ finite state systems
- Order-1 rec. schemes ~ pushdown systems

Advantages of our approach

(3) Take the best of model checking and types

- Types as certificates of successful verification
= applications to PCC (proof-carrying code)

- Counter-example when verification fails
= error diagnosis,
CEGAR (counter-example-guided
abstraction refinement)

Advantages of our approach

(4) Encourages structured programming

Previous techniques:
- Imprecise for higher-order functions and recursions,
hence discourage using them

Main:

fpl ;= open “r' “foo": let copyfile fpl fPZ =

fp2 := open "w" "bar"; try write(read fp2, fpl);
Loop: copyfile fpl fp2

cl := read fpl; V.S. with

if cl=eof then goto E; Eof -> close(fpl):close(fp2)
write(cl, fp2): let main =

goto Loop; let fpl = open "r" file in
E: let fp2 = open "w" file in
close fpl; copyfile fpl fp2

close fp2;

Advantages of our approach

(4) Encourages structured programming

Our technique:

- No loss of precision for higher-order functions and
recursions

- Performance penalty? -- Not necessarily!

- n-EXPTIME in the specification size,
but polynomial time in the program size

- Compact representation of large state space
e.g. recursion schemes generating a™(c)
S—F; ¢, F{ x>F,(F, x),..., F, x—a(a x)
Vs
S—»a 6,, 6, >a6,,..., 6,— ¢ (m=2")

Advantages of our approach

(5) A good combination with testing:
Verification through testing

§ Step 1: h es Property
Run the recursion scheme no Is o
_a finite number of steps) Satisfied!
’roperty
violated?

yes

Step 3: Compute
=N, HYT,)

L

Step 2: Extract J

type environment

Error path I'o

Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
for recursion schemes

¢ TRecS: Type-based RECursion Scheme model checker

¢ Discussion
- Advantages of our approach
- Remaining challenges

Challenges

(1) More efficient recursion scheme
model checker

- More results on language-theoretic
properties of recursion schemes
(e.g. pumping lemmas)

- BDD-like representation for higher-order
functions

Challenges

(2) A software model checker
(on top of a recursion scheme model checker)

- predicate abstraction and CEGAR
for infinite base types (e.g. integers)

- automaton abstraction for algebraic
data types [K. et al. POPL2010]

- imperative features and concurrency

Challenges

(3) Extend the model checking problem:
Tree(G) |= o

- Beyond "simply-typed” recursion schemes
[Tsukada&K., FOSSACS 2010]
- polymorphism
* recursive types

- Beyond regular properties (MSO)
Is there a more expressive, decidable logic?

Conclusion (for Part I)

¢ New program verification technique based on
model checking recursion schemes

- Many attractive features

+ Sound and complete for higher-order programs

» Take the best of model-checking and
type-based techniques

- Many interesting and challenging topics

References

¢ K., Types and higher-order recursion schemes for
verification of higher-order programs, POPLO9

From program verification to model-checking, and
from model-checking to typing

¢ K.&Ong, Complexity of model checking recursion
schemes for fragments of the modal mu-calculus,
ICALPQ9 complexity of model checking

¢ K.&Ong, A type system equivalent to modal mu-calculus
model-checking of recursion schemes, LICS09
From model-checking to type checking

¢ K., Model-checking higher-order functions, PPDPO9
Type checking (= model-checking) algorithm

¢ K., Tabuchi & Unno, Higher-order multi-parameter tree
transducers and recursion schemes for program
verification, POPL10 Extension to transducers and its applications

Higher-Order Model Checking:
Principles and Applications to Program
Verification and Security

Part I: Types and Recursion Schemes
for Higher-Order Program Verification
Part IT: Higher-Order Program Verification
and Language-Based Security

Naoki Kobayashi
Tohoku University

Language-Based Security

¢ Enforcing software security
- at a programming language level
- by using programming language techniques
(types, program analysis, compilation, run-time monitoring, ...)
¢ Applications

- information flow/integrity
* Can I run this program without leaking secret information?
* Can I trust the output of this program?

- access control
- protocol verification

¢ Advantages (c.f. operating system-based approach)
- static guarantees
- high-level assurance

Program Verification Techniques
for Security

¢ Played a key role in language-based security

- Information flow
* types [Volpano&Smith] [Myer 99] ...

- model checking (self-composition)[Barth et al. 04] ...

- combination [Terauchi 05][Unno&K. 06]

- Access control (e.g. JVM)
* types [Pottier et al. 01][Higuichi&Ohori, 03]
- model checking [Nitta et al. 01]

- Protocol verification
* types [Gordon&Jefferey] [Kikuchi&K. 09]
- model checking

This Talk

¢ Higher-order model checking for
language -based security

- Applications
» information flow
- access control (stack inspection)

- Advantages

* more precise than previous type-based approach
(more programs can be statically checked to be safe)

* more faithful modeling of software

than previous model-checking
(higher-order functions and recursion)

- Limitations

Outline

¢ Model checking higher-order boolean
programs
¢ Information flow
- Problem definition
- Reduction to higher-order model checking
¢ Stack-based access control
- Problem definition
- Reduction to higher-order model checking

Model-checking Higher-Order
Boolean Programs (HBP)

¢ Language:
simply-typed A + recursion + booleans
M (terms) ::= x | true | false | fix(f,x,M)
| MM, | if M; then M, else M,

t (types) ::= bool | T > 1

¢ Model checking problem:
Given M:bool and be{true, false},
decide whether MUb

" Decidable, by a straightforward encoding
info recursion scheme model checking
L (true = Ax.Ay.x, false=Ax.\y.y))

\

Outline

¢ Model checking higher-order boolean
programs
¢ Information flow analysis
- Problem definition
- Reduction to higher-order model checking
¢ Stack-based access control
- Problem definition
- Reduction to higher-order model checking

Information Flow Analysis

¢ Static program analysis to check flow
of information

[pub := if s < passwd then O else 2]

Insecure

(Tmp := if s < passwd then O else 2;)
\pub := tmp mod 2

J

Secure

Information Flow Analysis (IFA)
for Higher-Order Boolean Programs

secret public public
iInput Input output

¢ Given a program M: T —> G — bool,
check whether

Muwlb iff Mvwlb

for all u,veVal(t) and weVal(oc)
and be{true,false}

IFA via Higher-Order Model Checking

(IFA Problem:)
Given a program M: t - ¢ — bool,
check whether

Muwlb iff Mvwlb
_ for all u,veVal(z), weVal(c) and be{true, false} /

- D
"Procedure” based on higher-order model-checking

1. Enumerate all u, v, w (up to ~.and ~_)
L 2. Check M u wlb and M v wllb for each u,v,w,b

[Theor'em: IFA is decidable if T = ¢ = bool]

IFA via Higher-Order Model
Checking: Limitations

¢ IFA for HBP is undecidable in general,

due to undecidability of finitary PCF [LoaderO1]

r)
"Procedure” based on higher-order model-checking

1. Enumerate all u, v, w (up to ~.and =~,) No such algorithm!

2. Check M u wib and M v wlb for each u,v,w,b
_)

Solution: Over-approximate definable functions,
to get a sound but incomplete IFA algorithm

¢ Only finite base types are allowed
[Solu’rion: Use self-composition [Barthe et al. 04]]

and predicate abstraction

Outline

¢ Model checking higher-order boolean
programs

¢ Information flow analysis

¢ Stack-based access control
- Problem definition
- Reduction to higher-order model checking

Java's Stack-Based Access Control (SBAC)

¢ Prevent untrusted code's indirect access to
resources

System: /* trusted, allow iles *
void grepfile(file, key) { Security Violation!
fp = open(file):
... /™ print a line that contains _key */

Applet: /* untrusted, not allowed to access files */
grepfile("/etc/passwd”, “kobayashi”);

A callee is given the least privilege in the call sequence ‘

A-calculus with SBAC
[Pottier et al. 01][Gordon&Fournet 01]

M ::= x | fix(f,x,M) | M1M2
| RIM] | check r then M | ...
Evaluate M Check that r is in the j
with permissions R current permission
System: /* trusted */

let grepfile f k = void grepfile(file, key) {
{open}[fp = open(file):
check open then ...] in y
<[grepfile ...] Applet: /* untrusted*/
—* grepfile("/etc/passwd”, "koba"):
Dl{open}{

check open then Fails, as the current permission is

1] & N {open} = O

A-calculus with SBAC
[Pottier et al. 01][Gordon&Fournet 01]

M ::i= x | fix(f,x,M) | M1M2

| RIM] | check r then M | ...
Evaluate M WMT risin the :l
with permissions R current permission

4)

Static SBAC Problem:
Given a (closed) SBAC program M,
decide whether M ->* FAIL
_ J

From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates “call tree”

R1[]

/N
RZ‘[] R3[]
checkP1 R2[]\
enld checkP2

From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates “call tree”

(let f x = Trusted[check Trusted in x] in]
let g x = Untrusted[f x] in

" gd r Continuation that takes a call tree :I
as an additional argument

F x k > k (trusted (checkT end)) x)
6 x k > F x (A\t.Ax.k (untrusted t) x)
S - 6. d (At.Ax.1) y

From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates "call trees”

(let f x = Trusted[check Trusted in x] in]
let g x = Untrusted[f x] in

" gd r Continuation that takes a call tree :I
as an additional argument

F x k > k (trusted (checkT end)) x)
6 x k > F x (A\t.Ax.k (untrusted t) x)
S > 6 d (At.Ax.1) y

S > 6d(\.Ax.1)
- F x (\t.Ax. (At.Ax.1) (frusted t) x)
— F x (A\t.Ax. (untrusted t))
— (At.Ax. (untrusted t)) (trusted (checkT end)) x
— untrustd (trusted (checkT end))

From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates “call trees”

(let f x = Trusted[check Trusted in x] in)
let g x = Untrusted[f x] in
N gd

‘ y,
F x k — k (trusted (checkT end)) x)

6 x k > F x (A\t.Ax.k (untrusted t) x)
S > 6 d (At.Ax.1)

S —* untrusted (trusted (checkT end)) = untrusted
trusted

|
chclackT
end

J

From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates "call trees”

(let f x = Trusted[check Trusted in x] in)
let g x = Untrusted[f x] in

__94d ‘ y
(F x k > k (frameT (checkT end)) x
6 x k > F x (A\t.Ax.k (frameU 1) x)
S > 6 d (At.Ax.1) y
g Static SBAC problem is decidable b
for simply-typed programs with finite base types
X if the set of permissions is finite y

Limitations of higher-order
model checking for SBAC

¢ Applicable only to simply-typed programs
with recursion and finite base types

(For infinite base types (e.g. integers),
use predicate abstractions
_to get a sound but incomplete algorithm

Summary (for Part II)

¢ Higher-order model checking provides:
- sound, complete, and certifying verification methods
- for various security-related problems,
- with some intrinsic restrictions on target programs
- simply-typed
- only finite base types
» closed programs of low order types
(c.f. undecidability of A-definability)
¢ For practical programming languages,

- predicate abstraction may be applicable
to get a sound but incomplete method

- more studies are required to evaluate effectiveness

Lessons Learned

¢ As a researcher on program verification

- Keep an eye on new theoretical results
(esp. on decision problems)

- Do not worry too much about the worst-case
complexity (e.g. SAT, recursion schemes), or
undecidability (e.g. termination analysis)

¢ As a researcher on language-based security

- Keep an eye on new verification techniques
(e.g. program analysis based on linear
programming [Terauchi&Aiken], SAT solvers,
recursion schemes)

	Higher-Order Model Checking:�Principles and Applications to Program Verification and Security
	Why (Automated) Program Verification?
	Program Verification Techniques
	This Talk
	Relevance to Security? �(for ASIAN audience)
	Outline
	Higher-Order Recursion Scheme
	Higher-Order Recursion Scheme
	Model Checking Recursion Schemes
	Why Recursion Schemes?
	Outline
	From Program Verification�to Model Checking Recursion Schemes�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification�to Model Checking Recursion Schemes�[K. POPL 2009]
	Comparison with Traditional Approach (Control Flow Analysis)
	Comparison with Traditional Approach (Software Model Checking)
	Outline
	Goal
	Why Type-Theoretic Characterization?
	Outline
	Model Checking Problem�(Simple Case, for safety properties)
	(Trivial) tree automaton �for infinite trees
	Types for Recursion Schemes
	Types for Recursion Schemes
	Types for Recursion Schemes
	Types for Recursion Schemes
	Typing
	Soundness and Completeness�[K., POPL2009]
	Outline
	Typing
	Naïve Type Checking Algorithm
	Naïve Algorithm Does NOT Work
	Outline
	More Efficeint Algorithm?
	Hybrid Type Checking Algorithm
	Soundness and Completeness of�the Hybrid Algorithm
	Outline
	TRecS�http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/
	Experiments
	(A simplified version of) FileOcamlC
	Outline
	Advantages of our approach
	Advantages of our approach
	Advantages of our approach
	Advantages of our approach
	Advantages of our approach
	Advantages of our approach
	Outline
	Challenges
	Challenges
	Challenges
	Conclusion (for Part I)
	References
	ASIAN2009.pdf
	Higher-Order Model Checking:�Principles and Applications to Program Verification and Security
	Language-Based Security
	Program Verification Techniques�for Security
	This Talk
	Outline
	Model-checking Higher-Order Boolean Programs (HBP)
	Outline
	Information Flow Analysis
	Information Flow Analysis (IFA) �for Higher-Order Boolean Programs
	IFA via Higher-Order Model Checking
	IFA via Higher-Order Model Checking: Limitations
	Outline
	Java’s Stack-Based Access Control (SBAC)
	l-calculus with SBAC�[Pottier et al. 01][Gordon&Fournet 01]
	l-calculus with SBAC�[Pottier et al. 01][Gordon&Fournet 01]
	From SBAC to �Higher-Order Model Checking
	From SBAC to �Higher-Order Model Checking
	From SBAC to �Higher-Order Model Checking
	From SBAC to �Higher-Order Model Checking
	From SBAC to �Higher-Order Model Checking
	Limitations of higher-order model checking for SBAC
	Summary (for Part II)
	Lessons Learned

