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Why (Automated) Program Verification?
Increasing Use of Software in Critical Systems
–

 
ATM, online banking, online shopping

–
 

Airplanes, automobiles
–

 
Nuclear power plant

⇒ Reliability is becoming the primary concern

Increase of Size/Complexity of Software 
⇒

 
Manual debugging is infeasible



Program Verification Techniques
Model checking (c.f. 2007 Turing award)
–

 
Applicable to first-order procedures (pushdown 
model checking), but not to higher-order 
programs

Type-based program analysis
–

 
Applicable to higher-order programs

–
 

Sound but imprecise
Dependent types/theorem proving
–

 
Requires human intervention

Sound and precise verification techniques for 
higher-order programs (e.g. ML/Java programs)?



This Talk
New program verification technique 
for higher-order languages (e.g. ML)
–

 
Sound, complete, and automatic

 
for 

•
 

A large class of higher-order programs
•

 
A large class of verification problems

–
 

Built on recent/new advances in
•

 
Type theories

•
 

Automata/formal language theories 
(esp. higher-order recursion schemes)

•
 

Model checking

Applications to language-based security
(part II)



Relevance to Security? 
(for ASIAN audience)

Program verification is relevant to software 
security
–

 
Prevent security holes

–
 

Verification techniques have been used for:
•

 
information flow analysis

•
 

access control
•

 
protocol verification

Higher-order program verification brings 
new advantages
–

 
precise for higher-order programs

–
 

applicable to infinite-state systems



Outline
Part I: Types and Recursion Schemes for 
Higher-Order Program Verification
–

 
Higher-order recursion schemes

–
 

From program verification to model checking 
recursion schemes [K. POPL09][K.,Tabuchi&Unno POPL10]

–
 

From model checking to type checking 
[K. POPL09][K.&Ong LICS09]

–
 

Type checking
 

(=model checking) algorithm [K.PPDP09]

–
 

TRecS:
 

Type-based RECursion
 

Scheme model checker

–
 

Future perspectives
Part II: Higher-order program verification for 
language-based security



Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme 
(regular tree grammar)
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Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

 S  →
 

A c
 A →

 
λx. a  x  (A (b x))
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o
→A

 
c

c A(b
 

c)

→
 

a →
 

... →

c a

→
 

a

b A(b(b
 

c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths 
are labeled by

 am+1
 

bm
 

c

S



Model Checking Recursion Schemes

e.g. 
-

 
Does every finite path end with “c”?

 -
 

Does “a”
 

occur eventually whenever “b”
 

occurs?

Given
 G:  higher-order recursion scheme

 A:  alternating parity tree automaton (APT)
 (a formula of modal μ-calculus or MSO),
 does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
 (for order-n recursion scheme)



Why Recursion Schemes?
Expressive:
-

 
Subsumes many other MSO-decidable tree classes

 (regular, algebraic, Caucal
 

hierarchy, HPDS, ...)

High-level (c.f. higher-order PDS):
–

 
Recursion schemes

 ≈
 Simply-typed λ-calculus 

+ recursion 
+ tree constructors (but not destructors)

 (+ finite data domains such as booleans)

Suitable models for higher-order programs



Outline
Higher-order recursion schemes
From program verification to model 
checking recursion schemes
From model checking to type checking
Type checking (=model checking) 
algorithm for recursion schemes
TRecS: Type-based RECursion Scheme model checker

Ongoing and future work



From Program Verification
 to Model Checking Recursion Schemes

 [K. POPL 2009]

Program 
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all 
event sequences

and outputs)
+

Tree automaton,
recognizing 

valid event sequences

Model
Checking



From Program Verification to Model Checking:
 Example

let f(x) = 
if ∗

 
then close(x) 

else read(x); f(x)
in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according 

to read* close?
Is each path of the tree

labeled by r*c?

F x k →
 

+
 

(c k) (r(F
 

x k))
S →

 
F d 



From Program Verification to Model Checking:
 Example

let f(x) = 
if ∗

 
then close(x) 

else read(x); f(x)
in
let y = open “foo”
in

f (y)

F x k →
 

+
 

(c k) (r(F
 

x k))
S →

 
F d 

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according 

to read* close?
Is each path of the tree

labeled by r*c?

CPS 
Transformation!



From Program Verification
 to Model Checking Recursion Schemes

 [K. POPL 2009]

Program 
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all 

event sequences)
+

automaton for
 infinite trees

Model
Checking

Sound, complete, and automatic for:
-

 
A large class of higher-order programs:

 simply-typed λ-calculus + recursion 
+ finite base types

-
 

A large class of verification problems:
 resource usage verification [Igarashi&K. POPL2002], 

reachability, flow analysis, ...



Comparison with Traditional Approach 
(Control Flow Analysis)

Control flow analysis

Our approach

Flow 
Analysis

Higher-order
program

Control flow 
graph
(finite state 
or pushdown 
machines)

verification

Program
Transformation

Higher-order
program

Recursion 
scheme verification

Only information about 
infinite data domains
is approximated!



Comparison with Traditional Approach 
(Software Model Checking)

Program Classes Verification Methods
Programs with 
while-loops

Finite state model checking

Programs with 
1st-order recursion

Pushdown model checking

Higher-order functional 
programs

Recursion scheme model 
checking

infinite
state
model 
checking



Outline
Higher-order recursion schemes
From program verification to model 
checking recursion schemes
From model checking to type checking
–

 
Goal and motivation

–
 

Type system equivalent to model checking
Type checking (=model checking) algorithm
TRecS: Type-based RECursion Scheme model checker

Future perspectives



Goal

Construct a type system TS(A) s.t.
Tree(G) is accepted by APT A 

if and only if

G is typable
 

in TS(A)

Model Checking as
Type Checking 
(c.f. [Naik

 
& Palsberg, ESOP2005])



Why Type-Theoretic 
Characterization?

Simpler decidability proof of model 
checking recursion schemes
–

 
Previous proofs [Ong, 2006][Hague et. al, 2008]

 made heavy use of game semantics

More efficient model checking algorithm
–

 
Known algorithms [Ong, 2006][Hague et. al, 2008]

 always
 

require n-EXPTIME



Outline
Higher-order recursion schemes
From program verification to model 
checking recursion schemes
From model checking to type checking
–

 
Goal and motivation

–
 

Type system
Type checking (=model checking) algorithm 
TRecS: Type-based RECursion Scheme model checker

Future perspectives



Model Checking Problem
 (Simple Case, for safety properties)

Given
 G:  higher-order recursion scheme

 A:  trivial automaton
(Büchi

 
tree automaton where

 all the states are accepting states)
 does A accept Tree(G)?

See [K.&Ong, LICS09] for the general case 



(Trivial) tree automaton 
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q1 q0
δ(q1, b) = q2
δ(q2, b) = q2
δ(q1, c) = ε
δ(q2, c) = ε

q0

q0q1
q0q1

q2
q0q1

q2

q2

q1
q2

q2

q2



Types for Recursion Schemes
Automaton state as the type of trees
–

 
q: trees accepted from state q

–
 

q1∧q2: trees accepted from both q1 and q2

q



Types for Recursion Schemes
Automaton state as the type of trees

–
 

q1→
 

q2: functions that take a tree of type q1 
and return a tree of q2

q2

q1 + =
q1

q2

q1



Types for Recursion Schemes
Automaton state as the type of trees
–

 
q1∧q2 →

 
q3: 

functions that take a tree of type q1∧q2 and 
return a tree of type q3

+ =
q1, q2

q3

q1 q2

q3

q1 q2



Types for Recursion Schemes
Automaton state as the type of trees
(q1 →

 
q2) →

 
q3: 

functions that take a function of type q1 →
 

q2 
and return a tree of type q3

+ =

q3

q1

q2

q1

q2

q3

q1

q2



Typing

Γ┝ t1 : τ1
 

∧…∧τn
 

→ τ 
Γ┝ t2 :τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2 :τ

Γ, x:τ1
 

,..., x:τn
 

┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1

 

∧…∧τn
 

→ τ 

Γ┝ tk
 

:
 

τ (for every Fk
 

:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1

 

→t1
 

,..., Fn
 

→

 
tn} : Γ

δ(q, a) = q1
 

…qn
−−−−−−−−−−−−−−−−−−−
┝ a

 
:q1 →

 
…

 
→

 
qn

 

→

 
q

Γ, x:τ
 

┝ x
 

:τa

…

q

q1 qn



Soundness and Completeness
 [K., POPL2009]

Let
 G: Rec. scheme with initial non-terminal S

 A: Trivial automaton with initial state q0
 TS(A): Intersection type system 

derived from A
Then,
Tree(G) is accepted by A

 if and only if
 S has type q0

 

in TS(A)



Outline
Higher-order recursion schemes
From program verification to model 
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
–

 
Naive algorithm

–
 

Practical algorithm
TRecS: Type-based RECursion Scheme model checker

Future perspectives



Typing

Γ┝ t1 : τ1
 

∧…∧τn
 

→ τ 
Γ┝ t2 :τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2 :τ

Γ, x:τ1
 

,..., x:τn
 

┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1

 

∧…∧τn
 

→ τ 

Γ, x:τ
 

┝ x
 

:τ

Γ┝ tk
 

:
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−−−−−−−−−−−−−−−−−−−−−−−−−
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→
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−−−−−−−−−−−−−−−−−−−
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→
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Naïve Type Checking Algorithm
Recursion Scheme:
{F1

 

→t1
 

, ..., Fm
 

→tm
 

}
S has type q0

(i)
 

Γ |− tk
 

: τ   
for each Fk

 

:τ ∈ Γ
(ii) S:q0

 

∈ Γ
for some Γ

S:q0
 

∈
 

gfp(H) = ∩k
 

Hk(Γmax
 

)
where

H(Γ) = { Fk
 

:τ
 

∈
 

Γ | Γ |−
 

tk
 

:τ
 

}
Γmax

 

= {F:τ
 

| τ :: sort(F)
 

}

All the possible 
type bindings
E.g. for F:o→o,
{F:T → q0, F:q0 → q0,
F: q1 → q0, 
F:q0∧q1 → q0,…}

Filter out invalid type bindings



Naïve Algorithm Does NOT Work

sort # of types (Q={q0
 

,q1
 

,q2
 

,q3
 

})
o 4 (q0

 

,q1
 

,q2
 

,q3
 

)
o → o 24

 
×4 = 64  (∧S→ q, with S∈2Q, q∈Q)

(o→o) → o 264
 

×4 = 266 

((o→o) → o) → o 266

 

10000000000000000000
2   ×4 > 10

S has type q0

S:q0
 

∈
 

gfp(H) = ∩k
 

Hk(Γmax
 

)
where H(Γ) = { F:τ

 
∈

 
Γ | Γ |−

 
G(F):τ

 
} 

Γmax
 

= {F:τ
 

| τ :: sort(F)
 

} This is huge!



Outline
Higher-order recursion schemes
From program verification to model 
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm 
for recursion schemes
–

 
Naive algorithm

–
 

Practical algorithm
TRecS: Type-based RECursion Scheme model checker

Future perspectives



More Efficeint  Algorithm?
S has type q0
⇔

S:q0
 

∈
 

∩k
 

Hk(Γmax
 

)
where

H(Γ) = { F:τ
 

∈
 

Γ | Γ |−
 

G(F):τ
 

} 

Γ0 
⇐

Challenges:
(i)  How can we find an appropriate Γ0 ?

(ii) How can we guarantee completeness?

“Run”
 

the recursion scheme (finitely many steps), 
and extract type information  

Iteratively repeat (i) and type checking  



Hybrid Type Checking Algorithm

Step 1:
Run the recursion scheme
a finite number of steps

Property 
violated?

Error path
yes

no Step 2: Extract 
type environment

Γ0

Step 3: Compute
Γ

 
= ∩k

 

Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!



Soundness and Completeness of
 the Hybrid Algorithm

Given:
–

 
Recursion scheme G

–
 

Deterministic trivial automaton A,
the algorithm eventually terminates, and:
(i) outputs an error path

 if Tree(G) is not accepted by A
(ii) outputs a type environment

 if Tree(G) is accepted by A



Outline
Higher-order recursion schemes
From program verification to model 
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm 
for recursion schemes
TRecS: Type-based RECursion Scheme model checker

Future perspectives



TRecS
 http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

The first model checker for recursion 
schemes (or, for higher-order functions)

Based on the hybrid model checking algorithm, 
with certain additional optimizations



Experiments
order rules states result Time 

(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1

TwofilesE 4 12 5 Yes 2

FileOcamlC 4 23 4 Yes 5

Lock 4 11 3 Yes 5

Order5 5 9 4 Yes 2

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Taken from the compiler of 
Objective Caml, consisting of 
about 60 lines of O’Caml

 
code



(A simplified version of) 
FileOcamlC

let readloop
 

fp
 

= 
if * then () else readloop

 
fp; read fp

let read_sect() =
let fp

 
= open “foo”

 
in

{readc=fun x -> readloop
 

fp;
closec

 
= fun x -> close fp}

let loop s =
if * then s.closec() else s.readc();loop

 
s

let main() =
let s = read_sect() in loop s



Outline
Higher-order recursion schemes
From program verification to model 
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm 
for recursion schemes
TRecS: Type-based RECursion Scheme model checker

Discussion
–

 
Advantages of our approach

–
 

Remaining challenges



Advantages of our approach
(1) Sound, complete

 
and automatic

 
for a large 

class of higher-order programs
–

 
no false alarms!

–
 

no annotations



Advantages of our approach
(1) Sound, complete

 
and automatic

 
for a large 

class of higher-order programs
–

 
no false alarms!

–
 

no annotations
(2) Subsumes finite-state/pushdown model 

checking
–

 
Order-0 rec. schemes ≈

 
finite state systems

–
 

Order-1 rec. schemes ≈
 

pushdown systems



Advantages of our approach
(3) Take the best of model checking and types 

–
 

Types as certificates of successful verification 
⇒

 
applications to PCC (proof-carrying code)

–
 

Counter-example
 

when verification fails 
⇒

 
error diagnosis, 
CEGAR (counter-example-guided 
abstraction refinement)



Advantages of our approach
(4) Encourages structured programming

Main:  
fp1 := open “r”

 
“foo”;

fp2 := open “w”
 

“bar”;
Loop:
c1 := read fp1;
if c1=eof

 
then goto

 
E;

write(c1, fp2);
goto

 
Loop;

E:
close fp1;
close fp2;

let copyfile
 

fp1 fp2 =
try write(read

 
fp2, fp1);

copyfile
 

fp1 fp2 
with 

Eof
 

-> close(fp1);close(fp2)
let main =

let fp1 = open “r”
 

file
 

in
let fp2 = open “w”

 
file in

copyfile
 

fp1 fp2

v.s.

Previous techniques:
 -

 
Imprecise for higher-order functions and recursions,

 hence discourage using them



Advantages of our approach
(4) Encourages structured programming

Our technique:
-

 
No loss of precision for higher-order functions and 
recursions

-
 

Performance penalty? --
 

Not necessarily!
-

 
n-EXPTIME in the specification size,

 but polynomial time in the program size
-

 
Compact representation of large state space
e.g. recursion schemes generating am(c) 

S→F1
 

c, F1 x→F2
 

(F2
 

x),..., Fn x→a(a
 

x)
 vs

 S→a G1
 

, G1 →a G2
 

,..., Gm →
 

c  (m=2n)



Advantages of our approach
(5) A good combination with testing:

 Verification through testing

Step 1:
Run the recursion scheme
a finite number of steps

Property 
violated?

Error path
yes no Step 2: Extract 

type environment
Γ0

Step 3: Compute
Γ

 
= ∩k

 

Hk(Γ0)

S:q0 ∈ Γ ?
no

yes Property
Is
Satisfied!



Outline
Higher-order recursion schemes
From program verification to model 
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm 
for recursion schemes
TRecS: Type-based RECursion Scheme model checker

Discussion
–

 
Advantages of our approach

–
 

Remaining challenges



Challenges 

(1) More efficient recursion scheme 
model checker
–

 
More results on language-theoretic 
properties of recursion schemes 
(e.g. pumping lemmas)

–
 

BDD-like representation for higher-order 
functions



Challenges
(2) A software model checker 

(on top of a recursion scheme model checker)

-
 

predicate abstraction and CEGAR
 for infinite base types (e.g. integers)

 
-

 
automaton abstraction for algebraic

 data types [K. et al. POPL2010]

-
 

imperative features and concurrency



Challenges 
(3) Extend the model checking problem:

 Tree(G) |=
 

ϕ
-

 
Beyond “simply-typed”

 
recursion schemes

 [Tsukada&K., FOSSACS 2010]
•

 
polymorphism

•
 

recursive types

-
 

Beyond regular properties
 

(MSO)
Is there a more expressive, decidable logic?



Conclusion (for Part I)
New program verification technique based on 
model checking recursion schemes
–

 
Many attractive features
•

 
Sound and complete for higher-order programs

•
 

Take the best of model-checking and 
type-based techniques

–
 

Many interesting and challenging topics
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Language-Based Security
Enforcing software security
–

 
at a programming language level

–
 

by using programming language techniques
 (types, program analysis, compilation, run-time monitoring, ...)

Applications
–

 
information flow/integrity

•
 

Can I run this program without leaking secret information?
•

 
Can I trust the output of this program?

–
 

access control
–

 
protocol verification

Advantages (c.f. operating system-based approach)
–

 
static guarantees

–
 

high-level assurance 



Program Verification Techniques
 for Security

Played a key role in language-based security
–

 
Information flow
•

 
types [Volpano&Smith] [Myer 99] ...

•
 

model checking (self-composition)[Barth
 

et al. 04] ...
•

 
combination [Terauchi 05][Unno&K. 06]

–
 

Access control (e.g. JVM)
•

 
types [Pottier

 
et al. 01][Higuichi&Ohori, 03]

•
 

model checking [Nitta et al. 01]

–
 

Protocol verification
•

 
types [Gordon&Jefferey] [Kikuchi&K. 09]

•
 

model checking



This Talk
Higher-order model checking for 
language-based security
–

 
Applications
•

 
information flow

•
 

access control (stack inspection)
–

 
Advantages
•

 
more precise than previous type-based approach

 (more programs can be statically checked to be safe)
•

 
more faithful modeling of software

 than previous model-checking
 (higher-order functions and recursion)

–
 

Limitations



Outline
Model checking higher-order boolean
programs
Information flow
–

 
Problem definition

–
 

Reduction to higher-order model checking
Stack-based access control
–

 
Problem definition

–
 

Reduction to higher-order model checking



Model-checking Higher-Order 
Boolean Programs (HBP)

Language:
simply-typed λ + recursion + booleans
M (terms) ::= x | true | false | fix(f,x,M)

| M1M2 | if M1 then M2 else M3

τ (types)  ::= bool | τ → τ 

Model checking problem:
Given M:bool and b∈{true,false},
decide whether M⇓b

Decidable, by a straightforward encoding 
into recursion scheme model checking

(true = λx.λy.x, false=λx.λy.y
 

)



Outline
Model checking higher-order boolean
programs
Information flow analysis
–

 
Problem definition

–
 

Reduction to higher-order model checking
Stack-based access control
–

 
Problem definition

–
 

Reduction to higher-order model checking



Information Flow Analysis
Static program analysis to check flow 
of information

Insecure

Secure

pub := if s < passwd
 

then 0 else 2

tmp
 

:= if s < passwd
 

then 0 else 2;
pub := tmp

 
mod 2



Information Flow Analysis (IFA) 
for Higher-Order Boolean Programs

Given a program M: τ → σ → bool, 
check whether

M u w ≈bool
 

M v w

for all u,v∈Val(τ) and w∈Val(σ)  

secret
input

public
input

public
output

M u w⇓b iff M v w ⇓b 

and b∈{true,false}



IFA via Higher-Order Model Checking
IFA Problem:

 Given a program M: τ → σ → bool, 
check whether

M u w⇓b iff M v w ⇓b
for all u,v∈Val(τ), w∈Val(σ) and b∈{true,false}

“Procedure”
 

based on higher-order model-checking
1. Enumerate all u, v, w (up to ≈τ and ≈σ

 

)
2. Check M u w⇓b and M v w⇓b

 
for each u,v,w,b

Theorem: IFA is decidable if τ
 

=
 

σ = bool



IFA via Higher-Order Model 
Checking: Limitations

IFA for HBP is undecidable in general,
due to undecidability of finitary PCF [Loader01]

Only finite base types are allowed

“Procedure”
 

based on higher-order model-checking
1. Enumerate all u, v, w (up to ≈τ and ≈σ

 

)  No such algorithm!
2. Check M u w⇓b and M v w⇓b

 
for each u,v,w,b

Solution: Over-approximate definable functions, 
to get a sound but incomplete IFA algorithm

Solution: Use self-composition [Barthe
 

et al. 04]
 and predicate abstraction



Outline
Model checking higher-order boolean
programs
Information flow analysis
Stack-based access control
–

 
Problem definition

–
 

Reduction to higher-order model checking



Java’s Stack-Based Access Control (SBAC)

Prevent untrusted code’s indirect access to 
resources

System: /* trusted, allowed to access files */
void grepfile(file, key) {

fp
 

= open(file);
... /* print a line that contains key */

}

Applet:  /* untrusted, not allowed to access files */
grepfile(“/etc/passwd”, “kobayashi”);

A callee
 

is given the least privilege in the call sequence

Security Violation!



λ-calculus with SBAC
 [Pottier

 
et al. 01][Gordon&Fournet 01]

M ::= x | fix(f,x,M) | M1M2 
| R[M] | check r then M | ...

System: /* trusted */
void grepfile(file, key) {

fp
 

= open(file);
... 

}
Applet:  /* untrusted*/
grepfile(“/etc/passwd”,“koba”);

let grepfile
 

f k =
{open}[
check open then ...] in

∅[ grepfile
 

...]
→*
∅[{open}[

 check open then ...
]]

Evaluate M
with permissions R

Check that r is in the 
current permission

Fails, as the current permission is
∅ ∩ {open} = ∅



λ-calculus with SBAC
 [Pottier

 
et al. 01][Gordon&Fournet 01]

M ::= x | fix(f,x,M) | M1M2 
| R[M] | check r then M | ...

Evaluate M
with permissions R

Check that r is in the 
current permission

Static SBAC Problem:
Given a (closed) SBAC program M, 
decide whether M →*  FAIL



From SBAC to 
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call tree”

R1[ ]

R2[ ] R3[ ]

R2[ ]checkP1

checkP2
end

…

…



From SBAC to 
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call tree”

let f x = Trusted[check
 

Trusted in x] in
let g x = Untrusted[f

 
x] in

g d

F x k
 

→
 

k (trusted (checkT
 

end)) x
G x k

 
→

 
F x (λt.λx.k

 
(untrusted

 
t) x)

S →
 

G d (λt.λx.t)

Continuation that takes a call tree 
as an additional argument



From SBAC to 
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call trees”

let f x = Trusted[check
 

Trusted in x] in
let g x = Untrusted[f

 
x] in

g d

F x k →
 

k (trusted (checkT
 

end)) x
G x k

 
→

 
F x (λt.λx.k

 
(untrusted

 
t) x)

S →
 

G d (λt.λx.t)
S →

 
G d (λt.λx.t)

→ F x (λt.λx. (λt.λx.t)
 

(trusted t) x)
→ F x (λt.λx.

 
(untrusted

 
t))

→
 

(λt.λx.
 

(untrusted
 

t)) (trusted (checkT
 

end)) x
→

 
untrustd

 
(trusted (checkT

 
end))

Continuation that takes a call tree 
as an additional argument



From SBAC to 
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call trees”

let f x = Trusted[check
 

Trusted in x] in
let g x = Untrusted[f

 
x] in

g d

F x k →
 

k (trusted (checkT
 

end)) x
G x k

 
→

 
F x (λt.λx.k

 
(untrusted

 
t) x)

S →
 

G d (λt.λx.t)
S →* untrusted

 
(trusted (checkT

 
end)) = untrusted

trusted

end
checkT



From SBAC to 
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call trees”

let f x = Trusted[check
 

Trusted in x] in
let g x = Untrusted[f

 
x] in

g d

F x k →
 

k (frameT
 

(checkT
 

end)) x
G x k

 
→

 
F x (λt.λx.k

 
(frameU

 
t) x)

S →
 

G d (λt.λx.t) 

Static SBAC problem is decidable
for simply-typed programs with finite base types

if the set of permissions is finite



Limitations of higher-order 
model checking for SBAC

Applicable only to simply-typed programs 
with recursion and finite base types

For infinite base types (e.g. integers), 
use predicate abstractions 
to get a sound but incomplete algorithm



Summary (for Part II)

Higher-order model checking provides:
–

 
sound, complete, and certifying verification methods

–
 

for various security-related problems,
–

 
with some intrinsic restrictions on target programs
•

 
simply-typed

•
 

only finite base types
•

 
closed programs of low order types 
(c.f. undecidability

 
of λ-definability)

For practical programming languages,
–

 
predicate abstraction may be applicable

 to get a sound but incomplete method
–

 
more studies are required to evaluate effectiveness



Lessons Learned
As a researcher on program verification
–

 
Keep an eye on new theoretical results 
(esp. on decision problems)

–
 

Do not worry too much about the worst-case 
complexity (e.g. SAT, recursion schemes), or

 undecidability
 

(e.g. termination analysis)
As a researcher on language-based security
–

 
Keep an eye on new verification techniques

 (e.g. program analysis based on linear 
programming [Terauchi&Aiken], SAT solvers, 
recursion schemes) 
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