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Why (Automated) Program Verification?

¢ Increasing Use of Software in Critical Systems
- ATM, online banking, online shopping
- Airplanes, automobiles
- Nuclear power plant

— Reliability is becoming the primary concern

¢ Increase of Size/Complexity of Software
= Manual debugging is infeasible



Program Verification Techniques
¢ Model checking (c.f. 2007 Turing award)

- Applicable to first-order procedures (pushdown
model checking), but not to higher-order
programs

¢ Type-based program analysis
- Applicable to higher-order programs
- Sound but imprecise

¢ Dependent types/theorem proving
- Requires human intervention

Sound and precise verification techniques for
higher-order programs (e.g. ML/Java programs)?




This Talk

¢ New program verification technique
for higher-order languages (e.g. ML)
- Sound, complete, and automatic for

* A large class of higher-order programs
+ A large class of verification problems

- Built on recent/new advances in

- Type theories

- Automata/formal language theories
(esp. higher-order recursion schemes)

* Model checking

¢ Applications to language-based security
(part IT)



Relevance to Security?
(for ASIAN audience)

¢ Program verification is relevant to software
security
- Prevent security holes

- Verification techniques have been used for:
- information flow analysis
- access control
- protocol verification

¢ Higher-order program verification brings
new advantages
- precise for higher-order programs
- applicable to infinite-state systems



Outline

¢ Part I: Types and Recursion Schemes for
Higher-Order Program Verification
- Higher-order recursion schemes

- From program verification to model checking
recursion schemes [K. POPLO9][K., Tabuchi&Unno POPL10]

- From model checking to type checking
[K. POPLO9][K.&Ong LICS09]

- Type checking (=model checking) algorithm [K.PPDP09]

- TRecS: Type-based RECursion Scheme model checker
- Future perspectives

¢ Part IT: Higher-order program verification for
language -based security



Higher-Order Recursion Scheme
¢ Grammar for generating an infinite tree
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Higher-Order Recursion Scheme

¢ Grammar for Tree whose paths lite tree
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Model Checking Recursion Schemes
~

Given
G: higher-order recursion scheme
A: alternating parity tree automaton (APT)
(a formula of modal p-calculus or MSO),
Qioes A accept Tree(6)? y

e.g.
- Does every finite path end with "c"?

- Does "a" occur eventually whenever "b” occurs?

4 )

n-EXPTIME-complete [Ong, LICS06]
(for order-n recursion scheme)




Why Recursion Schemes?

¢ Expressive:

- Subsumes many other MSO-decidable tree classes
(regular, algebraic, Caucal hierarchy, HPDS, ...)

¢ High-level (c.f. higher-order PDS):

- Recursion schemes

Simply-typed A-calculus

+ recursion

+ tree constructors (but not destructors)
(+ finite data domains such as booleans)

‘Suitable models for higher-order pr'ogr'ams‘




Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking)
algorithm for recursion schemes

¢ TRecS: Type-based RECursion Scheme model checker
¢ Ongoing and future work



From Program Verification

to Model Checking Recursion Schemes
[K. POPL 2009]

Higher-order

program
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Model
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recognizing
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From Program Verification fo Model Checking:

Example
let f(x) = Fxk— + (ck) (r(F x k))
if * then close(x) S—>Fd *+
else read(x); f(x) /" \
in IC "
!e'r y = open “foo" A
in C rl
f (y) X
C r
° " ll\ I I
Is the file "foo - ‘ \
ccessed according| —p | Is each path of the tree
to read™ close? labeled by r*c?
Y, \_ y




From Program Verification fo Model Checking:
Example

_ Fxk—> + (c k) (r(F x k)
let f(x) =
if * then close(x) XS > Fd*

+

else read(x); f(x) T
in Transformation!

let y = open "foo"
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From Program Verification

to Model Checking Recursion Schemes
[K. POPL 2009]

Higher-order

program
+
specification

—>

Program
Transformation

Rec. scheme
(describing all

event sequences)

#

automaton for

+

infinite trees

—>

Model
Checking

/Sound, complete, and automatic for:
- A large class of higher-order programs:
simply-typed A-calculus + recursion
+ finite base types
- A large class of verification problems:
resource usage verification [Igarashi&K. POPL2002],
\ reachability, flow analysis, ...

~

/




Comparison with Traditional Approach
(Control Flow Analysis)

¢ Control flow analysis
Control flow

graph

Higher-order_ [ Flow > (finite state — |verification

program Analysis

or pushdown
machines)

¢ Our approach

Higher-order

Drogram  — Program _, Recursion _,

Transformation| scheme

verification

Only information about
infinite data domains
is approximated!



Comparison with Traditional Approach
(Software Model Checking)

Program Classes Verification Methods
Programs with Finite state model checking
while-loops
Programs with Pushdown model checking infinite
1st-order recursion state
Higher-order functional Recursion scheme model model.

) checking
programs checking




Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking
- Goal and motivation
- Type system equivalent to model checking

¢ Type checking (=model checking) algorithm
¢ TRecS: Type-based RECursion Scheme model checker
¢ Future perspectives



Goal

Construct a type system TS(A) s.t.
Tree(G) is accepted by APT A
if and only if
G is typable in TS(A)

Model Checking as

Type Checking
(c.f. [Naik & Palsberg, ESOP2005])




Why Type-Theoretic
Characterization?

¢ Simpler decidability proof of model
checking recursion schemes

- Previous proofs [Ong, 2006][Hague et. al, 2008]
made heavy use of game semantics

¢ More efficient model checking algorithm

- Known algorithms [0Ong, 2006][Hague et. al, 2008]
always require n-EXPTIME



Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

- Goal and motivation

- Type system
¢ Type checking (=model checking) algorithm
¢ TRecS: Type-based RECursion Scheme model checker

¢ Future perspectives



Model Checking Problem
(Simple Case, for safety properties)

Given
G: higher-order recursion scheme
A: trivial automaton

(Biichi tree automaton where
all the states are accepting states)
does A accept Tree(6)?

‘See [K.&Ong, LICSO9] for the general case ‘




(Trivial) tree automaton
for infinite trees

q0
qlec /“Q 5(q0, a) = q1 qO
atb, a® 5(q1, b) = q2
| 9%~ > a0 3(q2, b) = q2
g2c b
q2t|) bql 8(ql, c) = ¢
2| ||Dq2 8((,2, C) - €&
Qcc i ,
b9



Types for Recursion Schemes

¢ Automaton state as the type of trees
- q: trees accepted from state q

A

- qlAq2: trees accepted from both q1 and q2



Types for Recursion Schemes

¢ Automaton state as the type of trees

- q1—> q2: functions that take a tree of type ql
and return a tree of q2

i

ql

v A =




Types for Recursion Schemes

¢ Automaton state as the type of trees
- qlAq2 — q3:
functions that take a tree of type qiAq2 and
return a tree of type q3




Types for Recursion Schemes

¢ Automaton state as the type of trees
(91 - q2) — q3:
functions that take a function of type q1 — q2
and return a tree of type q3

q3




Typing

S(q, Cl) = q1--Qn

|'0:q1—>...—>qn—>q




Soundness and Completeness
[K., POPL2009]

Let
G: Rec. scheme with initial non-terminal S
A: Trivial automaton with initial state q,
TS(A): Intersection type system
derived from A

Then,
Tree(G) is accepted by A
if and only if
S has type q, in TS(A)



Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
- Naive algorithm
- Practical algorithm

¢ TRecS: Type-based RECursion Scheme model checker
¢ Future perspectives



Typing

S(Q, Cl) = q1--Qn T x:it I'X -

|-0:q1—>...—>qn—>q

Tt 1AAT, =T
T, Xxi1y,..., xX:t, Ftt I Ft,t (i=1,..n)
[ FAXt T ALAT, = T Tkttt

T T, : T (for every F,:tel’)
|'{F1—>'|‘1,..., Fn —)fn} B




Naive Type Checking Algorithm

[S has type qo]

Recursion Scheme:
{F, »t,, ..., F, o1, }

[(i)l" -t T
for each F,

(i) S:qp € T

for some I

T el

~N

[ Filter out invalid type bindingsj

(5‘% e gfp(H)
where

- N, HN(C. o/ All the possible
k M\ type bindings
E.g. for F:o—o,

—
{:

H(@) = { Fit e T |T |- t,:t}| {F:T >0, F:q0 - q0,

F: q1 — qO,

1_‘max = {F:T | T SO?T(F)} F:qOnql — qO, ...}

\_ -




Naive Algorithm Does NOT Work
[S has ’rypeza
$
-
Siqo € gfp(H) = N HY(Tpg)
where HI') = { FiteT'|T |- 6(F):t}
[pox = {Fi1 |7 ::sort(F)) This is hugel

~N

.
sort # of types (Q={q0.9:.9..95})
0 4 (90.91.92.93)
0 >0 24 x4 = 64 (rS—q. with Sc2R, qcQ)
(0—0) > o0 204 x4 = 266
((0—>0) > 0) >0 | 28 10000000000000000000
2 x4 > 10




Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
for recursion schemes
- Naive algorithm
- Practical algorithm

¢ TRecS: Type-based RECursion Scheme model checker
¢ Future perspectives



More Efficeint Algorithm?
S has type q,

e 1‘*0
Siqo € Ny HYE=)
where

HIT) = {FiteI'| T |-6(F):t}

Challenges:
(i) How can we find an appropriate I’y ?

"Run” the recursion scheme (finitely many steps),
and extract type information

(ii) How can we guarantee completeness?
Iteratively repeat (i) and type checking



Hybrid Type Checking Algorithm

f

Step 1:

~N

Run the recursion scheme

a finite number of steps

’roperty
violated?

yes

Error path

es Property
Is
no Satisfied!
4 )
Step 3: Compute
_ k
T=Ny HT)

/

Step 2: Extract |
type environment

I'g )




Soundness and Completeness of
the Hybrid Algorithm

Given:

- Recursion scheme G

- Deterministic trivial automaton A,
the algorithm eventually terminates, and:

(i) outputs an error path
if Tree(6) is not accepted by A

(ii) outputs a type environment
if Tree(G) is accepted by A



Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
for recursion schemes

¢ TRecS: Type-based RECursion Scheme model checker
¢ Future perspectives



TRecS
http://www_ kb .ecei.tohoku.ac. jp/~koba/trecs/

@Type—Based Model Checker for Higher-0Order Recursion Scheme — Mozilla Firefox

2rE REE LW EES Yeiv-0B V-D o ATFH

@ - C (5] ‘J httpe/ S kb eceitohoku.ac. jp/ kobatrecs/ |_GJ'
8] F{RBA—T b Firefox B(ETHLS 0 BEHT1-A
‘J FrontPage — Kobalab Wiki ‘J Type-Based Model Ghecker for B | o ¥¢7Fe-EEEFEIREN -0

TRecS (Types for RECursion Schemes): Type-Based Model Checker for
Higher-Order Recursion Schemes

Enter a recursion scheme and a specification in the box below, and press the "submit" button, Examples are given below, Currently, our model checker only accepts determunistic Buchy

automata with a trivial acceptance cotdiion,

¢ The first model checker for recursion
schemes (or, for higher-order functions)

¢ Based on the hybrid model checking algorithm,
wn‘h cer"ram addmonal optimizations

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL




Experiments

order |rules |states |result |Time

(msec)
Twofiles 4 P 11 4 Mac
Taken from the compiler of ]

FileWrong |4 Objective Caml, consisting of

about 60 lines of O'Caml code |
TwofilesE |4
FileQcanic -“---
Lock
Orderb 5 9 4 Yes 2

(Environment: Intel(R) Xeon(R) 3Ghz with 2G6B memory)



(A simplified version of)

FileOcamlC

let readloop fp =

if * then () else readloop fp:; read fp
let read_sect() =

let fp = open “foo” in

{readc=fun x -> readloop fp:

closec = fun x -> close fp}
let loop s =

if * then s.closec() else s.readc():loop s
let main() =

let s = read_sect() in loop s



Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
for recursion schemes

¢ TRecS: Type-based RECursion Scheme model checker

¢ Discussion
- Advantages of our approach
- Remaining challenges



Advantages of our approach

(1) Sound, complete and automatic for a large
class of higher-order programs
- no false alarms!
- no annotations



Advantages of our approach

(1) Sound, complete and automatic for a large
class of higher-order programs
- no false alarms!
- no annotations

(2) Subsumes finite-state/pushdown model
checking

- Order-0 rec. schemes ~ finite state systems
- Order-1 rec. schemes ~ pushdown systems



Advantages of our approach

(3) Take the best of model checking and types

- Types as certificates of successful verification
= applications to PCC (proof-carrying code)

- Counter-example when verification fails
= error diagnosis,
CEGAR (counter-example-guided
abstraction refinement)



Advantages of our approach

(4) Encourages structured programming

Previous techniques:
- Imprecise for higher-order functions and recursions,
hence discourage using them

Main:

fpl ;= open “r' “foo": let copyfile fpl fPZ =

fp2 := open "w" "bar"; try write(read fp2, fpl);
Loop: copyfile fpl fp2

cl := read fpl; V.S. with

if cl=eof then goto E; Eof -> close(fpl):close(fp2)
write(cl, fp2): let main =

goto Loop; let fpl = open "r" file in
E: let fp2 = open "w" file in
close fpl; copyfile fpl fp2

close fp2;




Advantages of our approach

(4) Encourages structured programming

Our technique:

- No loss of precision for higher-order functions and
recursions

- Performance penalty? -- Not necessarily!

- n-EXPTIME in the specification size,
but polynomial time in the program size

- Compact representation of large state space
e.g. recursion schemes generating a™(c)
S—F; ¢, F{ x>F,(F, x),..., F, x—a(a x)
Vs
S—»a 6,, 6, >a6,,..., 6,— ¢ (m=2")



Advantages of our approach

(5) A good combination with testing:
Verification through testing

§ Step 1: h es Property
Run the recursion scheme no Is o
_a finite number of steps ) Satisfied!
’roperty
violated?

yes

Step 3: Compute
=N, HYT,)

L

Step 2: Extract J

type environment

Error path I'o




Outline

¢ Higher-order recursion schemes

¢ From program verification to model
checking recursion schemes

¢ From model checking to type checking

¢ Type checking (=model checking) algorithm
for recursion schemes

¢ TRecS: Type-based RECursion Scheme model checker

¢ Discussion
- Advantages of our approach
- Remaining challenges



Challenges

(1) More efficient recursion scheme
model checker

- More results on language-theoretic
properties of recursion schemes
(e.g. pumping lemmas)

- BDD-like representation for higher-order
functions



Challenges

(2) A software model checker
(on top of a recursion scheme model checker)

- predicate abstraction and CEGAR
for infinite base types (e.g. integers)

- automaton abstraction for algebraic
data types [K. et al. POPL2010]

- imperative features and concurrency



Challenges

(3) Extend the model checking problem:
Tree(G) |= o

- Beyond "simply-typed” recursion schemes
[Tsukada&K., FOSSACS 2010]
- polymorphism
* recursive types

- Beyond regular properties (MSO)
Is there a more expressive, decidable logic?



Conclusion (for Part I)

¢ New program verification technique based on
model checking recursion schemes

- Many attractive features

+ Sound and complete for higher-order programs

» Take the best of model-checking and
type-based techniques

- Many interesting and challenging topics
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Language-Based Security

¢ Enforcing software security
- at a programming language level
- by using programming language techniques
(types, program analysis, compilation, run-time monitoring, ...)
¢ Applications

- information flow/integrity
* Can I run this program without leaking secret information?
* Can I trust the output of this program?

- access control
- protocol verification

¢ Advantages (c.f. operating system-based approach)
- static guarantees
- high-level assurance



Program Verification Techniques
for Security

¢ Played a key role in language-based security

- Information flow
* types [Volpano&Smith] [Myer 99] ...

- model checking (self-composition)[Barth et al. 04] ...

- combination [Terauchi 05][Unno&K. 06]

- Access control (e.g. JVM)
* types [Pottier et al. 01][Higuichi&Ohori, 03]
- model checking [Nitta et al. 01]

- Protocol verification
* types [Gordon&Jefferey] [Kikuchi&K. 09]
- model checking



This Talk

¢ Higher-order model checking for
language -based security

- Applications
» information flow
- access control (stack inspection)

- Advantages

* more precise than previous type-based approach
(more programs can be statically checked to be safe)

* more faithful modeling of software

than previous model-checking
(higher-order functions and recursion)

- Limitations



Outline

¢ Model checking higher-order boolean
programs
¢ Information flow
- Problem definition
- Reduction to higher-order model checking
¢ Stack-based access control
- Problem definition
- Reduction to higher-order model checking



Model-checking Higher-Order
Boolean Programs (HBP)

¢ Language:
simply-typed A + recursion + booleans
M (terms) ::= x | true | false | fix(f,x,M)
| MM, | if M; then M, else M,

t (types) ::= bool | T > 1

¢ Model checking problem:
Given M:bool and be{true, false},
decide whether MUb

" Decidable, by a straightforward encoding
info recursion scheme model checking
L (true = Ax.Ay.x, false=Ax.\y.y ) )

\




Outline

¢ Model checking higher-order boolean
programs
¢ Information flow analysis
- Problem definition
- Reduction to higher-order model checking
¢ Stack-based access control
- Problem definition
- Reduction to higher-order model checking



Information Flow Analysis

¢ Static program analysis to check flow
of information

[ pub := if s < passwd then O else 2 ]

Insecure

(Tmp := if s < passwd then O else 2; )
\pub := tmp mod 2

J

Secure



Information Flow Analysis (IFA)
for Higher-Order Boolean Programs

secret public public
iInput Input output

¢ Given a program M: T —> G — bool,
check whether

Muwlb iff Mvwlb

for all u,veVal(t) and weVal(oc)
and be{true,false}




IFA via Higher-Order Model Checking

(IFA Problem: )
Given a program M: t - ¢ — bool,
check whether

Muwlb iff Mvwlb
\_ for all u,veVal(z), weVal(c) and be{true, false} /

- D
"Procedure” based on higher-order model-checking

1. Enumerate all u, v, w (up to ~.and ~_)
L 2. Check M u wlb and M v wllb for each u,v,w,b

[Theor'em: IFA is decidable if T = ¢ = bool ]




IFA via Higher-Order Model
Checking: Limitations

¢ IFA for HBP is undecidable in general,

due to undecidability of finitary PCF [LoaderO1]

r )
"Procedure” based on higher-order model-checking

1. Enumerate all u, v, w (up to ~.and =~,) No such algorithm!

2. Check M u wib and M v wlb for each u,v,w,b
\_ )

Solution: Over-approximate definable functions,
to get a sound but incomplete IFA algorithm

¢ Only finite base types are allowed
[Solu’rion: Use self-composition [Barthe et al. 04] ]

and predicate abstraction




Outline

¢ Model checking higher-order boolean
programs

¢ Information flow analysis

¢ Stack-based access control
- Problem definition
- Reduction to higher-order model checking



Java's Stack-Based Access Control (SBAC)

¢ Prevent untrusted code's indirect access to
resources

System: /* trusted, allow iles *
void grepfile(file, key) { Security Violation!
fp = open(file):
... /™ print a line that contains _key */

Applet: /* untrusted, not allowed to access files */
grepfile("/etc/passwd”, “kobayashi”);

A callee is given the least privilege in the call sequence ‘




A-calculus with SBAC
[Pottier et al. 01][Gordon&Fournet 01]

M ::= x | fix(f,x,M) | M1M2
| RIM] | check r then M | ...
Evaluate M Check that r is in the j
with permissions R current permission
System: /* trusted */

let grepfile f k = void grepfile(file, key) {
{open}[ fp = open(file):
check open then ...] in y
<[ grepfile ...] Applet: /* untrusted*/
—* grepfile("/etc/passwd”, "koba"):
Dl{open}{

check open then Fails, as the current permission is

1] & N {open} = O



A-calculus with SBAC
[Pottier et al. 01][Gordon&Fournet 01]

M ::i= x | fix(f,x,M) | M1M2

| RIM] | check r then M | ...
Evaluate M WMT risin the :l
with permissions R current permission

4 )

Static SBAC Problem:
Given a (closed) SBAC program M,
decide whether M ->* FAIL
\_ J




From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates “call tree”

R1[ ]

/N
RZ‘[ ] R3[ ]
checkP1 R2[ ]\
enld checkP2




From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates “call tree”

(let f x = Trusted[check Trusted in x] in ]
let g x = Untrusted[f x] in

" gd r Continuation that takes a call tree :I
as an additional argument

F x k > k (trusted (checkT end)) x )
6 x k > F x (A\t.Ax.k (untrusted t) x)
S - 6. d (At.Ax.1) y




From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates "call trees”

(let f x = Trusted[check Trusted in x] in ]
let g x = Untrusted[f x] in

" gd r Continuation that takes a call tree :I
as an additional argument

F x k > k (trusted (checkT end)) x )
6 x k > F x (A\t.Ax.k (untrusted t) x)
S > 6 d (At.Ax.1) y

S > 6d(\.Ax.1)
- F x (\t.Ax. (At.Ax.1) (frusted t) x)
— F x (A\t.Ax. (untrusted t))
— (At.Ax. (untrusted t)) (trusted (checkT end)) x
— untrustd (trusted (checkT end))



From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates “call trees”

(let f x = Trusted[check Trusted in x] in )
let g x = Untrusted[f x] in
N gd

‘ y,
F x k — k (trusted (checkT end)) x )

6 x k > F x (A\t.Ax.k (untrusted t) x)
S > 6 d (At.Ax.1)

S —* untrusted (trusted (checkT end)) = untrusted
trusted

|
chclackT
end

J




From SBAC to
Higher-Order Model Checking

¢ Transform a SBAC program into
a recursion scheme that generates "call trees”

(let f x = Trusted[check Trusted in x] in )
let g x = Untrusted[f x] in

__94d ‘ y
(F x k > k (frameT (checkT end)) x
6 x k > F x (A\t.Ax.k (frameU 1) x)
S > 6 d (At.Ax.1) y
g Static SBAC problem is decidable b
for simply-typed programs with finite base types
X if the set of permissions is finite y




Limitations of higher-order
model checking for SBAC

¢ Applicable only to simply-typed programs
with recursion and finite base types

(For infinite base types (e.g. integers),
use predicate abstractions
_to get a sound but incomplete algorithm




Summary (for Part II)

¢ Higher-order model checking provides:
- sound, complete, and certifying verification methods
- for various security-related problems,
- with some intrinsic restrictions on target programs
- simply-typed
- only finite base types
» closed programs of low order types
(c.f. undecidability of A-definability)
¢ For practical programming languages,

- predicate abstraction may be applicable
to get a sound but incomplete method

- more studies are required to evaluate effectiveness



Lessons Learned

¢ As a researcher on program verification

- Keep an eye on new theoretical results
(esp. on decision problems)

- Do not worry too much about the worst-case
complexity (e.g. SAT, recursion schemes), or
undecidability (e.g. termination analysis)

¢ As a researcher on language-based security

- Keep an eye on new verification techniques
(e.g. program analysis based on linear
programming [Terauchi&Aiken], SAT solvers,
recursion schemes)
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