
Higher-Order Model Checking:
 Principles and Applications to Program

Verification and Security

Naoki Kobayashi
 Tohoku University

Part I: Types and Recursion Schemes
for Higher-Order Program Verification

Part II: Higher-Order Program Verification
and Language-Based Security

Why (Automated) Program Verification?
Increasing Use of Software in Critical Systems
–

ATM, online banking, online shopping

–

Airplanes, automobiles
–

Nuclear power plant

⇒ Reliability is becoming the primary concern

Increase of Size/Complexity of Software
⇒

Manual debugging is infeasible

Program Verification Techniques
Model checking (c.f. 2007 Turing award)
–

Applicable to first-order procedures (pushdown
model checking), but not to higher-order
programs

Type-based program analysis
–

Applicable to higher-order programs

–

Sound but imprecise
Dependent types/theorem proving
–

Requires human intervention

Sound and precise verification techniques for
higher-order programs (e.g. ML/Java programs)?

This Talk
New program verification technique
for higher-order languages (e.g. ML)
–

Sound, complete, and automatic

for

•

A large class of higher-order programs
•

A large class of verification problems

–

Built on recent/new advances in
•

Type theories

•

Automata/formal language theories
(esp. higher-order recursion schemes)

•

Model checking

Applications to language-based security
(part II)

Relevance to Security?
(for ASIAN audience)

Program verification is relevant to software
security
–

Prevent security holes

–

Verification techniques have been used for:
•

information flow analysis

•

access control
•

protocol verification

Higher-order program verification brings
new advantages
–

precise for higher-order programs

–

applicable to infinite-state systems

Outline
Part I: Types and Recursion Schemes for
Higher-Order Program Verification
–

Higher-order recursion schemes

–

From program verification to model checking
recursion schemes [K. POPL09][K.,Tabuchi&Unno POPL10]

–

From model checking to type checking
[K. POPL09][K.&Ong LICS09]

–

Type checking

(=model checking) algorithm [K.PPDP09]

–

TRecS:

Type-based RECursion

Scheme model checker

–

Future perspectives
Part II: Higher-order program verification for
language-based security

Higher-Order Recursion Scheme
Grammar for generating an infinite tree
Order-0 scheme
(regular tree grammar)

 S →

a c B
B →

b S

→

a

c B c b

→

a

S

c b

→

a

a

c B

→

... →
c b

a

c b

a

c b

a

S

S →

a
c B

B →

b
 S

Higher-Order Recursion Scheme

Grammar for generating an infinite tree
Order-1 scheme

 S →

A c
 A →

λx. a x (A (b x))

S: o, A: o→

o
→A

c

c A(b

c)

→

a →

... →

c a

→

a

b A(b(b

c))

c

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

Tree whose paths
are labeled by

 am+1

bm

c

S

Model Checking Recursion Schemes

e.g.
-

Does every finite path end with “c”?

 -

Does “a”

occur eventually whenever “b”

occurs?

Given
 G: higher-order recursion scheme

 A: alternating parity tree automaton (APT)
 (a formula of modal μ-calculus or MSO),
 does A accept Tree(G)?

n-EXPTIME-complete [Ong, LICS06]
 (for order-n recursion scheme)

Why Recursion Schemes?
Expressive:
-

Subsumes many other MSO-decidable tree classes

 (regular, algebraic, Caucal

hierarchy, HPDS, ...)

High-level (c.f. higher-order PDS):
–

Recursion schemes

 ≈
 Simply-typed λ-calculus

+ recursion
+ tree constructors (but not destructors)

 (+ finite data domains such as booleans)

Suitable models for higher-order programs

Outline
Higher-order recursion schemes
From program verification to model
checking recursion schemes
From model checking to type checking
Type checking (=model checking)
algorithm for recursion schemes
TRecS: Type-based RECursion Scheme model checker

Ongoing and future work

From Program Verification
 to Model Checking Recursion Schemes

 [K. POPL 2009]

Program
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all
event sequences

and outputs)
+

Tree automaton,
recognizing

valid event sequences

Model
Checking

From Program Verification to Model Checking:
 Example

let f(x) =
if ∗

then close(x)

else read(x); f(x)
in
let y = open “foo”
in

f (y)

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

F x k →

+

(c k) (r(F

x k))
S →

F d

From Program Verification to Model Checking:
 Example

let f(x) =
if ∗

then close(x)

else read(x); f(x)
in
let y = open “foo”
in

f (y)

F x k →

+

(c k) (r(F

x k))
S →

F d

c
+

+

c
+

c
...

r

r

r

Is the file “foo”
accessed according

to read* close?
Is each path of the tree

labeled by r*c?

CPS
Transformation!

From Program Verification
 to Model Checking Recursion Schemes

 [K. POPL 2009]

Program
Transformation

Higher-order
program

+
specification

Rec. scheme
(describing all

event sequences)
+

automaton for
 infinite trees

Model
Checking

Sound, complete, and automatic for:
-

A large class of higher-order programs:

 simply-typed λ-calculus + recursion
+ finite base types

-

A large class of verification problems:
 resource usage verification [Igarashi&K. POPL2002],

reachability, flow analysis, ...

Comparison with Traditional Approach
(Control Flow Analysis)

Control flow analysis

Our approach

Flow
Analysis

Higher-order
program

Control flow
graph
(finite state
or pushdown
machines)

verification

Program
Transformation

Higher-order
program

Recursion
scheme verification

Only information about
infinite data domains
is approximated!

Comparison with Traditional Approach
(Software Model Checking)

Program Classes Verification Methods
Programs with
while-loops

Finite state model checking

Programs with
1st-order recursion

Pushdown model checking

Higher-order functional
programs

Recursion scheme model
checking

infinite
state
model
checking

Outline
Higher-order recursion schemes
From program verification to model
checking recursion schemes
From model checking to type checking
–

Goal and motivation

–

Type system equivalent to model checking
Type checking (=model checking) algorithm
TRecS: Type-based RECursion Scheme model checker

Future perspectives

Goal

Construct a type system TS(A) s.t.
Tree(G) is accepted by APT A

if and only if

G is typable

in TS(A)

Model Checking as
Type Checking
(c.f. [Naik

& Palsberg, ESOP2005])

Why Type-Theoretic
Characterization?

Simpler decidability proof of model
checking recursion schemes
–

Previous proofs [Ong, 2006][Hague et. al, 2008]

 made heavy use of game semantics

More efficient model checking algorithm
–

Known algorithms [Ong, 2006][Hague et. al, 2008]

 always

require n-EXPTIME

Outline
Higher-order recursion schemes
From program verification to model
checking recursion schemes
From model checking to type checking
–

Goal and motivation

–

Type system
Type checking (=model checking) algorithm
TRecS: Type-based RECursion Scheme model checker

Future perspectives

Model Checking Problem
 (Simple Case, for safety properties)

Given
 G: higher-order recursion scheme

 A: trivial automaton
(Büchi

tree automaton where

 all the states are accepting states)
 does A accept Tree(G)?

See [K.&Ong, LICS09] for the general case

(Trivial) tree automaton
for infinite trees

c a
a

b
c

a
b
b
c

a
b
b
b
c

...

δ(q0, a) = q1 q0
δ(q1, b) = q2
δ(q2, b) = q2
δ(q1, c) = ε
δ(q2, c) = ε

q0

q0q1
q0q1

q2
q0q1

q2

q2

q1
q2

q2

q2

Types for Recursion Schemes
Automaton state as the type of trees
–

q: trees accepted from state q

–

q1∧q2: trees accepted from both q1 and q2

q

Types for Recursion Schemes
Automaton state as the type of trees

–

q1→

q2: functions that take a tree of type q1
and return a tree of q2

q2

q1 + =
q1

q2

q1

Types for Recursion Schemes
Automaton state as the type of trees
–

q1∧q2 →

q3:

functions that take a tree of type q1∧q2 and
return a tree of type q3

+ =
q1, q2

q3

q1 q2

q3

q1 q2

Types for Recursion Schemes
Automaton state as the type of trees
(q1 →

q2) →

q3:

functions that take a function of type q1 →

q2
and return a tree of type q3

+ =

q3

q1

q2

q1

q2

q3

q1

q2

Typing

Γ┝ t1 : τ1

∧…∧τn

→ τ
Γ┝ t2 :τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2 :τ

Γ, x:τ1

,..., x:τn

┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1

∧…∧τn

→ τ

Γ┝ tk

:

τ (for every Fk

:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1

→t1

,..., Fn

→

tn} : Γ

δ(q, a) = q1

…qn
−−−−−−−−−−−−−−−−−−−
┝ a

:q1 →

…

→

qn

→

q

Γ, x:τ

┝ x

:τa

…

q

q1 qn

Soundness and Completeness
 [K., POPL2009]

Let
 G: Rec. scheme with initial non-terminal S

 A: Trivial automaton with initial state q0
 TS(A): Intersection type system

derived from A
Then,
Tree(G) is accepted by A

 if and only if
 S has type q0

in TS(A)

Outline
Higher-order recursion schemes
From program verification to model
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
–

Naive algorithm

–

Practical algorithm
TRecS: Type-based RECursion Scheme model checker

Future perspectives

Typing

Γ┝ t1 : τ1

∧…∧τn

→ τ
Γ┝ t2 :τi (i=1,..n)

−−−−−−−−−−−−−−−−−−−−
Γ┝ t1 t2 :τ

Γ, x:τ1

,..., x:τn

┝ t:τ
−−−−−−−−−−−−−−−−−−
Γ┝ λx.t: τ1

∧…∧τn

→ τ

Γ, x:τ

┝ x

:τ

Γ┝ tk

:

τ (for every Fk

:τ∈Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−
┝ {F1

→t1

,..., Fn

→

tn} : Γ

δ(q, a) = q1

…qn
−−−−−−−−−−−−−−−−−−−
┝ a

:q1 →

…

→

qn

→

q

Naïve Type Checking Algorithm
Recursion Scheme:
{F1

→t1

, ..., Fm

→tm

}
S has type q0

(i)

Γ |− tk

: τ
for each Fk

:τ ∈ Γ
(ii) S:q0

∈ Γ
for some Γ

S:q0

∈

gfp(H) = ∩k

Hk(Γmax

)
where

H(Γ) = { Fk

:τ

∈

Γ | Γ |−

tk

:τ

}
Γmax

= {F:τ

| τ :: sort(F)

}

All the possible
type bindings
E.g. for F:o→o,
{F:T → q0, F:q0 → q0,
F: q1 → q0,
F:q0∧q1 → q0,…}

Filter out invalid type bindings

Naïve Algorithm Does NOT Work

sort # of types (Q={q0

,q1

,q2

,q3

})
o 4 (q0

,q1

,q2

,q3

)
o → o 24

×4 = 64 (∧S→ q, with S∈2Q, q∈Q)

(o→o) → o 264

×4 = 266

((o→o) → o) → o 266

10000000000000000000
2 ×4 > 10

S has type q0

S:q0

∈

gfp(H) = ∩k

Hk(Γmax

)
where H(Γ) = { F:τ

∈

Γ | Γ |−

G(F):τ

}

Γmax

= {F:τ

| τ :: sort(F)

} This is huge!

Outline
Higher-order recursion schemes
From program verification to model
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
for recursion schemes
–

Naive algorithm

–

Practical algorithm
TRecS: Type-based RECursion Scheme model checker

Future perspectives

More Efficeint Algorithm?
S has type q0
⇔

S:q0

∈

∩k

Hk(Γmax

)
where

H(Γ) = { F:τ

∈

Γ | Γ |−

G(F):τ

}

Γ0
⇐

Challenges:
(i) How can we find an appropriate Γ0 ?

(ii) How can we guarantee completeness?

“Run”

the recursion scheme (finitely many steps),
and extract type information

Iteratively repeat (i) and type checking

Hybrid Type Checking Algorithm

Step 1:
Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes

no Step 2: Extract
type environment

Γ0

Step 3: Compute
Γ

= ∩k

Hk(Γ0)

S:q0 ∈ Γ ?no
yes Property

Is
Satisfied!

Soundness and Completeness of
 the Hybrid Algorithm

Given:
–

Recursion scheme G

–

Deterministic trivial automaton A,
the algorithm eventually terminates, and:
(i) outputs an error path

 if Tree(G) is not accepted by A
(ii) outputs a type environment

 if Tree(G) is accepted by A

Outline
Higher-order recursion schemes
From program verification to model
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
for recursion schemes
TRecS: Type-based RECursion Scheme model checker

Future perspectives

TRecS
 http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

The first model checker for recursion
schemes (or, for higher-order functions)

Based on the hybrid model checking algorithm,
with certain additional optimizations

Experiments
order rules states result Time

(msec)

Twofiles 4 11 4 Yes 2

FileWrong 4 11 4 No 1

TwofilesE 4 12 5 Yes 2

FileOcamlC 4 23 4 Yes 5

Lock 4 11 3 Yes 5

Order5 5 9 4 Yes 2

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

Taken from the compiler of
Objective Caml, consisting of
about 60 lines of O’Caml

code

(A simplified version of)
FileOcamlC

let readloop

fp

=
if * then () else readloop

fp; read fp

let read_sect() =
let fp

= open “foo”

in

{readc=fun x -> readloop

fp;
closec

= fun x -> close fp}

let loop s =
if * then s.closec() else s.readc();loop

s

let main() =
let s = read_sect() in loop s

Outline
Higher-order recursion schemes
From program verification to model
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
for recursion schemes
TRecS: Type-based RECursion Scheme model checker

Discussion
–

Advantages of our approach

–

Remaining challenges

Advantages of our approach
(1) Sound, complete

and automatic

for a large

class of higher-order programs
–

no false alarms!

–

no annotations

Advantages of our approach
(1) Sound, complete

and automatic

for a large

class of higher-order programs
–

no false alarms!

–

no annotations
(2) Subsumes finite-state/pushdown model

checking
–

Order-0 rec. schemes ≈

finite state systems

–

Order-1 rec. schemes ≈

pushdown systems

Advantages of our approach
(3) Take the best of model checking and types

–

Types as certificates of successful verification
⇒

applications to PCC (proof-carrying code)

–

Counter-example

when verification fails
⇒

error diagnosis,
CEGAR (counter-example-guided
abstraction refinement)

Advantages of our approach
(4) Encourages structured programming

Main:
fp1 := open “r”

“foo”;

fp2 := open “w”

“bar”;
Loop:
c1 := read fp1;
if c1=eof

then goto

E;

write(c1, fp2);
goto

Loop;

E:
close fp1;
close fp2;

let copyfile

fp1 fp2 =
try write(read

fp2, fp1);

copyfile

fp1 fp2
with

Eof

-> close(fp1);close(fp2)
let main =

let fp1 = open “r”

file

in
let fp2 = open “w”

file in

copyfile

fp1 fp2

v.s.

Previous techniques:
 -

Imprecise for higher-order functions and recursions,

 hence discourage using them

Advantages of our approach
(4) Encourages structured programming

Our technique:
-

No loss of precision for higher-order functions and
recursions

-

Performance penalty? --

Not necessarily!
-

n-EXPTIME in the specification size,

 but polynomial time in the program size
-

Compact representation of large state space
e.g. recursion schemes generating am(c)

S→F1

c, F1 x→F2

(F2

x),..., Fn x→a(a

x)
 vs

 S→a G1

, G1 →a G2

,..., Gm →

c (m=2n)

Advantages of our approach
(5) A good combination with testing:

 Verification through testing

Step 1:
Run the recursion scheme
a finite number of steps

Property
violated?

Error path
yes no Step 2: Extract

type environment
Γ0

Step 3: Compute
Γ

= ∩k

Hk(Γ0)

S:q0 ∈ Γ ?
no

yes Property
Is
Satisfied!

Outline
Higher-order recursion schemes
From program verification to model
checking recursion schemes
From model checking to type checking
Type checking (=model checking) algorithm
for recursion schemes
TRecS: Type-based RECursion Scheme model checker

Discussion
–

Advantages of our approach

–

Remaining challenges

Challenges

(1) More efficient recursion scheme
model checker
–

More results on language-theoretic
properties of recursion schemes
(e.g. pumping lemmas)

–

BDD-like representation for higher-order
functions

Challenges
(2) A software model checker

(on top of a recursion scheme model checker)

-

predicate abstraction and CEGAR
 for infinite base types (e.g. integers)

-

automaton abstraction for algebraic

 data types [K. et al. POPL2010]

-

imperative features and concurrency

Challenges
(3) Extend the model checking problem:

 Tree(G) |=

ϕ
-

Beyond “simply-typed”

recursion schemes

 [Tsukada&K., FOSSACS 2010]
•

polymorphism

•

recursive types

-

Beyond regular properties

(MSO)
Is there a more expressive, decidable logic?

Conclusion (for Part I)
New program verification technique based on
model checking recursion schemes
–

Many attractive features
•

Sound and complete for higher-order programs

•

Take the best of model-checking and
type-based techniques

–

Many interesting and challenging topics

References
K., Types and higher-order recursion schemes for
verification of higher-order programs, POPL09
From program verification to model-checking, and
from model-checking to typing

K.&Ong, Complexity of model checking recursion
schemes for fragments of the modal mu-calculus,
ICALP09 Complexity of model checking

K.&Ong, A type system equivalent to modal mu-calculus
model-checking of recursion schemes, LICS09

From model-checking to type checking

K., Model-checking higher-order functions, PPDP09
Type checking (= model-checking) algorithm

K., Tabuchi & Unno, Higher-order multi-parameter tree
transducers and recursion schemes for program
verification, POPL10 Extension to transducers and its applications

Higher-Order Model Checking:
 Principles and Applications to Program

Verification and Security

Naoki Kobayashi
 Tohoku University

Part I: Types and Recursion Schemes
for Higher-Order Program Verification

Part II: Higher-Order Program Verification
and Language-Based Security

Language-Based Security
Enforcing software security
–

at a programming language level

–

by using programming language techniques
 (types, program analysis, compilation, run-time monitoring, ...)

Applications
–

information flow/integrity

•

Can I run this program without leaking secret information?
•

Can I trust the output of this program?

–

access control
–

protocol verification

Advantages (c.f. operating system-based approach)
–

static guarantees

–

high-level assurance

Program Verification Techniques
 for Security

Played a key role in language-based security
–

Information flow
•

types [Volpano&Smith] [Myer 99] ...

•

model checking (self-composition)[Barth

et al. 04] ...
•

combination [Terauchi 05][Unno&K. 06]

–

Access control (e.g. JVM)
•

types [Pottier

et al. 01][Higuichi&Ohori, 03]

•

model checking [Nitta et al. 01]

–

Protocol verification
•

types [Gordon&Jefferey] [Kikuchi&K. 09]

•

model checking

This Talk
Higher-order model checking for
language-based security
–

Applications
•

information flow

•

access control (stack inspection)
–

Advantages
•

more precise than previous type-based approach

 (more programs can be statically checked to be safe)
•

more faithful modeling of software

 than previous model-checking
 (higher-order functions and recursion)

–

Limitations

Outline
Model checking higher-order boolean
programs
Information flow
–

Problem definition

–

Reduction to higher-order model checking
Stack-based access control
–

Problem definition

–

Reduction to higher-order model checking

Model-checking Higher-Order
Boolean Programs (HBP)

Language:
simply-typed λ + recursion + booleans
M (terms) ::= x | true | false | fix(f,x,M)

| M1M2 | if M1 then M2 else M3

τ (types) ::= bool | τ → τ

Model checking problem:
Given M:bool and b∈{true,false},
decide whether M⇓b

Decidable, by a straightforward encoding
into recursion scheme model checking

(true = λx.λy.x, false=λx.λy.y

)

Outline
Model checking higher-order boolean
programs
Information flow analysis
–

Problem definition

–

Reduction to higher-order model checking
Stack-based access control
–

Problem definition

–

Reduction to higher-order model checking

Information Flow Analysis
Static program analysis to check flow
of information

Insecure

Secure

pub := if s < passwd

then 0 else 2

tmp

:= if s < passwd

then 0 else 2;
pub := tmp

mod 2

Information Flow Analysis (IFA)
for Higher-Order Boolean Programs

Given a program M: τ → σ → bool,
check whether

M u w ≈bool

M v w

for all u,v∈Val(τ) and w∈Val(σ)

secret
input

public
input

public
output

M u w⇓b iff M v w ⇓b

and b∈{true,false}

IFA via Higher-Order Model Checking
IFA Problem:

 Given a program M: τ → σ → bool,
check whether

M u w⇓b iff M v w ⇓b
for all u,v∈Val(τ), w∈Val(σ) and b∈{true,false}

“Procedure”

based on higher-order model-checking
1. Enumerate all u, v, w (up to ≈τ and ≈σ

)
2. Check M u w⇓b and M v w⇓b

for each u,v,w,b

Theorem: IFA is decidable if τ

=

σ = bool

IFA via Higher-Order Model
Checking: Limitations

IFA for HBP is undecidable in general,
due to undecidability of finitary PCF [Loader01]

Only finite base types are allowed

“Procedure”

based on higher-order model-checking
1. Enumerate all u, v, w (up to ≈τ and ≈σ

) No such algorithm!
2. Check M u w⇓b and M v w⇓b

for each u,v,w,b

Solution: Over-approximate definable functions,
to get a sound but incomplete IFA algorithm

Solution: Use self-composition [Barthe

et al. 04]
 and predicate abstraction

Outline
Model checking higher-order boolean
programs
Information flow analysis
Stack-based access control
–

Problem definition

–

Reduction to higher-order model checking

Java’s Stack-Based Access Control (SBAC)

Prevent untrusted code’s indirect access to
resources

System: /* trusted, allowed to access files */
void grepfile(file, key) {

fp

= open(file);
... /* print a line that contains key */

}

Applet: /* untrusted, not allowed to access files */
grepfile(“/etc/passwd”, “kobayashi”);

A callee

is given the least privilege in the call sequence

Security Violation!

λ-calculus with SBAC
 [Pottier

et al. 01][Gordon&Fournet 01]

M ::= x | fix(f,x,M) | M1M2
| R[M] | check r then M | ...

System: /* trusted */
void grepfile(file, key) {

fp

= open(file);
...

}
Applet: /* untrusted*/
grepfile(“/etc/passwd”,“koba”);

let grepfile

f k =
{open}[
check open then ...] in

∅[grepfile

...]
→*
∅[{open}[

 check open then ...
]]

Evaluate M
with permissions R

Check that r is in the
current permission

Fails, as the current permission is
∅ ∩ {open} = ∅

λ-calculus with SBAC
 [Pottier

et al. 01][Gordon&Fournet 01]

M ::= x | fix(f,x,M) | M1M2
| R[M] | check r then M | ...

Evaluate M
with permissions R

Check that r is in the
current permission

Static SBAC Problem:
Given a (closed) SBAC program M,
decide whether M →* FAIL

From SBAC to
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call tree”

R1[]

R2[] R3[]

R2[]checkP1

checkP2
end

…

…

From SBAC to
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call tree”

let f x = Trusted[check

Trusted in x] in
let g x = Untrusted[f

x] in

g d

F x k

→

k (trusted (checkT

end)) x
G x k

→

F x (λt.λx.k

(untrusted

t) x)

S →

G d (λt.λx.t)

Continuation that takes a call tree
as an additional argument

From SBAC to
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call trees”

let f x = Trusted[check

Trusted in x] in
let g x = Untrusted[f

x] in

g d

F x k →

k (trusted (checkT

end)) x
G x k

→

F x (λt.λx.k

(untrusted

t) x)

S →

G d (λt.λx.t)
S →

G d (λt.λx.t)

→ F x (λt.λx. (λt.λx.t)

(trusted t) x)
→ F x (λt.λx.

(untrusted

t))

→

(λt.λx.

(untrusted

t)) (trusted (checkT

end)) x
→

untrustd

(trusted (checkT

end))

Continuation that takes a call tree
as an additional argument

From SBAC to
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call trees”

let f x = Trusted[check

Trusted in x] in
let g x = Untrusted[f

x] in

g d

F x k →

k (trusted (checkT

end)) x
G x k

→

F x (λt.λx.k

(untrusted

t) x)

S →

G d (λt.λx.t)
S →* untrusted

(trusted (checkT

end)) = untrusted

trusted

end
checkT

From SBAC to
Higher-Order Model Checking

Transform a SBAC program into
a recursion scheme that generates “call trees”

let f x = Trusted[check

Trusted in x] in
let g x = Untrusted[f

x] in

g d

F x k →

k (frameT

(checkT

end)) x
G x k

→

F x (λt.λx.k

(frameU

t) x)

S →

G d (λt.λx.t)

Static SBAC problem is decidable
for simply-typed programs with finite base types

if the set of permissions is finite

Limitations of higher-order
model checking for SBAC

Applicable only to simply-typed programs
with recursion and finite base types

For infinite base types (e.g. integers),
use predicate abstractions
to get a sound but incomplete algorithm

Summary (for Part II)

Higher-order model checking provides:
–

sound, complete, and certifying verification methods

–

for various security-related problems,
–

with some intrinsic restrictions on target programs
•

simply-typed

•

only finite base types
•

closed programs of low order types
(c.f. undecidability

of λ-definability)

For practical programming languages,
–

predicate abstraction may be applicable

 to get a sound but incomplete method
–

more studies are required to evaluate effectiveness

Lessons Learned
As a researcher on program verification
–

Keep an eye on new theoretical results
(esp. on decision problems)

–

Do not worry too much about the worst-case
complexity (e.g. SAT, recursion schemes), or

 undecidability

(e.g. termination analysis)
As a researcher on language-based security
–

Keep an eye on new verification techniques

 (e.g. program analysis based on linear
programming [Terauchi&Aiken], SAT solvers,
recursion schemes)

	Higher-Order Model Checking:�Principles and Applications to Program Verification and Security
	Why (Automated) Program Verification?
	Program Verification Techniques
	This Talk
	Relevance to Security? �(for ASIAN audience)
	Outline
	Higher-Order Recursion Scheme
	Higher-Order Recursion Scheme
	Model Checking Recursion Schemes
	Why Recursion Schemes?
	Outline
	From Program Verification�to Model Checking Recursion Schemes�[K. POPL 2009]
	From Program Verification to Model Checking: �Example
	From Program Verification to Model Checking: �Example
	From Program Verification�to Model Checking Recursion Schemes�[K. POPL 2009]
	Comparison with Traditional Approach (Control Flow Analysis)
	Comparison with Traditional Approach (Software Model Checking)
	Outline
	Goal
	Why Type-Theoretic Characterization?
	Outline
	Model Checking Problem�(Simple Case, for safety properties)
	(Trivial) tree automaton �for infinite trees
	Types for Recursion Schemes
	Types for Recursion Schemes
	Types for Recursion Schemes
	Types for Recursion Schemes
	Typing
	Soundness and Completeness�[K., POPL2009]
	Outline
	Typing
	Naïve Type Checking Algorithm
	Naïve Algorithm Does NOT Work
	Outline
	More Efficeint Algorithm?
	Hybrid Type Checking Algorithm
	Soundness and Completeness of�the Hybrid Algorithm
	Outline
	TRecS�http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/
	Experiments
	(A simplified version of) FileOcamlC
	Outline
	Advantages of our approach
	Advantages of our approach
	Advantages of our approach
	Advantages of our approach
	Advantages of our approach
	Advantages of our approach
	Outline
	Challenges
	Challenges
	Challenges
	Conclusion (for Part I)
	References
	ASIAN2009.pdf
	Higher-Order Model Checking:�Principles and Applications to Program Verification and Security
	Language-Based Security
	Program Verification Techniques�for Security
	This Talk
	Outline
	Model-checking Higher-Order Boolean Programs (HBP)
	Outline
	Information Flow Analysis
	Information Flow Analysis (IFA) �for Higher-Order Boolean Programs
	IFA via Higher-Order Model Checking
	IFA via Higher-Order Model Checking: Limitations
	Outline
	Java’s Stack-Based Access Control (SBAC)
	l-calculus with SBAC�[Pottier et al. 01][Gordon&Fournet 01]
	l-calculus with SBAC�[Pottier et al. 01][Gordon&Fournet 01]
	From SBAC to �Higher-Order Model Checking
	From SBAC to �Higher-Order Model Checking
	From SBAC to �Higher-Order Model Checking
	From SBAC to �Higher-Order Model Checking
	From SBAC to �Higher-Order Model Checking
	Limitations of higher-order model checking for SBAC
	Summary (for Part II)
	Lessons Learned

