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Attack on Software
…

next: read(a); 
…..

assign: X := a
if not_in(X, set) then goto next
else goto print ;
…..

print: print(whatever);
…..
return

• Suppose print has format string error.
• Suppose not_in is a dynamic-linked library with GOT compromised.
• Suppose return address is compromised by buffer overflow.
• Suppose read(a) is in error, possibly format error or size error.
• Suppose a = null and the routine not_in skips checking if input is null.
• …

Overwrite Anywhere,
e.g. function pointer,
via Exploits like:
Buffer Overflow,
Format String error,
Heap Overflow,
Integer Overflow,…
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Software Protection

Attack: 
Possible to overwrite anything anywhere in 
program address space

Protection:
Pattern-based or Case-by-Case protections: No 
protection from future yet-unknown attacks

• Data Mark Machine by Fenton in 1973
• Descriptor Based Architecture in the 60’s

Object-Oriented or Capability-Based

More General, More Formal Solution 
providing Better Protection is in need
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Software Protection Context

Attack Model:
• Hostile Host; system controlled by a malicious user
• Hostile Client; trusted system and un-trusted software

Hostile host

Other hosts Other hosts

Other hosts Other hosts

Other hostssoftware

malicious code

Other hosts

Other hosts

Other hosts

Tamper Resistance

Intrusion Detection

tampered code
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Software Protection

• Intrusion Detection: 
Flow Integrity in execution by checking against 
“reference” behavior

• Tamper Resistance: 
Confidentiality of code by hiding code details to 
make it difficult to analyze the code

Not Solvable theoretically,
akin to social problems like marriage.
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Tamper Resistance

• Self-Hashing (Checksumming)
• Encryption
• Address Randomization

Protecting/Hiding Code
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Cheksumming (Self-Hashing)

Ref. M. Joseph and A. Avizienis, “A Fault Tolerant Approach to Computer Viruses”, 
Proc. of 1988 IEEE Symp. Security and Privacy, pp. 52-58 Apr. 1988

basic block 1

basic block 2 basic block 3

basic block 4

Each block is augmented 
with cryptographic checksum
At the start of a block, checksum is
recalculated and verified

Authenticate Program Code jus like a message
Message Authentication Code: one-way hash based checksum
Hash program code and use it as code authentication
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Checksumming (Self-Hashing)

Checksum; 
• computed at compile time and store it as read-only
• checksum calculating code injected at compile time
• At run time,  if calculated checksum ≠ stored checksum

code tampered!

B. Horne, et.al., “Dynamic Self-checking techniques for improved tamper resistance”, 
Pro. 1st Int’l Workshop on DRM, LNCS – 2320, pp.141-159, May 2002.

Network of Checksums:
create relations between  checksums.
To defeat, (almost) all the checksums 
must be disabled

overlapping code sections for checksum
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Self-Encryption

• hash key for encryption per control flow
• Only one de-hashed section, the one under execution, 

is available at any moment

D. Aucsmith, “Tamper resistant software: An implementation”, 
Pro. 1st Int’l Workshop on Information Hiding, LNCS – 1174, pp.317-333, May 1996.

Statically,
• Divide code into multiple sections (~equal size)
• All sections are hashed (encrypted) with key
• Hashing key is associated with control flow, 

dependent on the previous section key

T0 T1 T2
T1 + k0,1
T2 + k0,1 + k1,2 
T2 + k0,2 + xor

k0,1 k1,2

k0,2



G. Lee University of Illinois at Chicago 10/52

Defeating Self-Hashing

OS modification for aligning within page boundary
and for redirecting TLB load at TLB miss; 
may need to create page-fault manually
to start reloading of TLB for data and instruction
separately.

No need to analyze the code; Just Bypass the code!

For self-hashing, code 
needs to be read from 
memory as data while 
executing the code 
reads memory as 
instructions.

P.C. van Oorschot, et’al.,“Hardware-assisted circumvention of self-hashing software tamper
resistance”, IEEE Trans. Dependable and Secure Computing, Apr.-June, 2005
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Randomization

To mitigate the spread of an attack,
Randomize memory-address-space layout of program.
Each time program restarts, its address-space layout will
change: Same exploit may fail
• Randomizes the base addr. of stack, heap, text segments
• adds random padding to space allocation such as stack 

frame and malloc() calls

Ref. S. B. Hatkar, et.al., “Address Obfuscation: An efficient approach to combat a broad range 
of memory error exploits”, Pro. 12th USENIC Sec. Symp., pp105-120, 2003.

Base addr + random offset in 16-bit for PaX ASLR (delta_mmap)
Prior to return_to_libc attack,
Get the 16-bit delta_mmap value by brute force guess 
(only 216 at most)

Defeated with Ret_to_libc attack:
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Return-to-libc Attack

Argu1

Argu2

Argu3

ret_addr

Old $fp

Local var

addr_sys

addr_str

addr_str

addr_sys

addr_sys

addr_str

system()

“/bin/sh”

the only change from usual 
ret_to_libc attack is the need of 
guessing 16-bit random offset

Argu1

Argu2

Argu3

addr_sys

Old $fp

Local var

$sp

pc

$sp

addr_sys

addr_str

Argu3

addr_sys

Old $fp

Local var

$fp$sp

Ret$sp

Ref. H. Shacham, et.al., On the Effectiveness of Address-Space Randomization,
Proc. ACM CCS’04: able to penetrate in 216 sec to get root privilege
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Issues in Tamper Resistance

Static nature of Tamper Resistance and Obfuscation
Does Not provide attack protection

• Verifying static shape of code
Need to protect program behavior not looks

• Added feature for tamper resistance
noticeable and target for attack, 
e.g. Reading code for self-hashing

If there was a hole in program, then there is a hole no matter 
how you transform it. The rationale is to deter/delay attack 
by making it difficult  to analyze code for finding the hole.
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Intrusion Detection

• Call Sequence Model
• Program Counter Encoding
• Proof Carrying Code

Program Behavior Integrity
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Intrusion Detection

Software

Reference Behavior

Behavior Monitor

Security Policy

• How to represent Reference Behavior
• How to incorporate behavior monitoring
• in what scope and granularity

“Anomaly”

Note: not to consider coarse grain pattern-based misuse detection

Hostile Client
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Call Sequence Model

Key Claim:
Normal behavior can be defined by a 
short-range correlations in system call 
sequences.

attack most likely changes system calls 
once he gets the control.

Capturing “normal” behavior 
via a sequence of system calls.
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Forrest’s N-gram
Ref. S. Forrest, et.al., “Intrusion Detection using sequences of system calls”, J. 
Computer Security, Vol. 6, pp151 -180, 1998.

With N=3, Record a sequence of 
3 consecutive system calls:

False Positives:
e.g. S0S3S4S2  cannot happen, but treated OK
as two separate 3-grams, S0S3S4 and S3S4S2

e.g. Attack on S2 at 4; illegal return to S5; S2S5S3

Collect N-grams (fixed N~6)
Check against the collection; Intrusion if not found
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N-gram

False Positive - Impossible Path Exploit
any model is an approximation: gap

Less precise model, Bigger gap
Carefully crafted call-sequence exploits the gap

Worse due to inadequate value of N
Worse due to no context information

N-gram is independent from each other
No flexibility to accommodate variations/extensions 
of captured N-grams

For better precision, Needs Context Information:
calls made at where in program under what program state
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Call Graph

f is called from two different sites; 
if the first call returns to the second call’s return site,
Call-graph alone cannot detect impossible path exploit

Impossible Path

Example:

Ref. D. Wagner and D. Dean, “Intrusion Detection via Static Analysis”, Proc. Of 
IEEE Symp. S&P, 2001
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Abstract Call Stack

Abstract Call Stack; records call-sequence in stack as 
state and transition from call-graph
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Abstract Call Stack with call graph

• Static Build
• Non-deterministic: which calls to be made not 

known - Needs of Non-Deterministic FA
• Storage and Time overhead not only in building 

the NDFA but also in monitoring at run-time –
unsuitable for practical use

Cannot Handle control flow changes:
Between system calls
non-local jumps and non-returning calls 
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Deterministic FSA model

Build the model at run-time with test input set
PC is associated with each system call() and a system call 
graph is maintained.

PC at which a system call is made - state
system call - transition 
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Deterministic FSA model

Compact representation of all possible N-grams
No restriction on the number of calls recorded
Faster convergence
Less storage overhead (~3%)
Less false positives

Less overhead than Abstract Call Stack
Incomplete Coverage via Training – False Alarms

Issues
system call interception overhead (100 ~ 250%)
Granularity issue

Between system calls: attack starting with non-system calls
Non returning calls and exceptions

still suffers from Impossible Path Exploit

Ref. R. Sekar, et.al., “A Fast Automaton-Based Method for Detecting Anomalous 
Program Behaviors”, Proc. IEEE Symp. S&P, 2001
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Program Counter (PC) Encoding
Verifying Call-Sequence with Encryption at finer 
granularity
Encode control data at its definition and decode them 
before de-reference at PC update

 

Last Frame 
Saved registers 
Saved frame 

Local variables (n)

Return 

FFFFF

$fp

Encoding :
at jal
MEM[$sp] ← PC xor $ fp
Decoding :
at ret 
PC ← MEM[$fp + n]  xor MEM[$fp ]

With stack smashing Buffer Overflow, 
saved return address ( MEM[$fp + n])
= saved frame pointer ( MEM[$fp ])

PC ← 0 at decoding

00000

Example – stack smashing with buffer overflow
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Program Counter Encoding
• Beyond call-return pair

Old Frame (Base) Pointer
Function Pointer
Set_jmp/Long_jmp buffer pointer

• Encoding control data at its definition by
• Compiler for internal symbol
• Linker for static external symbol
• Loader for dynamically linked symbol

• Compiler injects Decoding code prior to PC 
update with control data
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PC-Encoding with (Dynamic) Linking

text
data

…
call lib_f
…

PLT0

…
PLTf:   jump *GOT[f]

push offset into stack
jump PLT0

….
….
GOT[f]:
….

lib_f: …
…
…
…
…
…

shared library f

Linker

encoding

decoding
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PC-Encoding Efficacy

Protection from control data attacks, 
independent of memory overwriting exploits 

0020 (100%)PC-encoding

1 memory fault9 (45%)10 (50%)ProPolice

016 (80%)4 (20%)Libsafe

014 (70%)6 (30%)Stack Shield 
Global & Range check

016(80%)4 (20%)StackGuard

ErrorAttack
missed

Attacks
prevented

Tool

e.g. Buffer Overflow; 20 different attack cases

Better than call-sequence model!
finer granularity and less overhead
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Issues in PC-Encoding

• Encoding – weak in crypto (op = XOR; key = $sp)
• Validation: Not Atomic operation
• No Protection from

• Corruption in Branch Predicate
• Pointer arithmetic

• Not well-defined crash at detection

Ref.
G. Lee and C. Pyo, “Run Time Encoding of Function Pointers by Dynamic Linker”, Proc. 
the IEEE Int’l Conf. Dependable Systems and Networks, June 2005.
C. Pyo, et.al., “Run-time Detection of Buffer Overflow Attacks without Explicit Sensor 
Data Objects”, Proc. the IEEE Int’l Conference on Information Technology: Coding & 
Computing (ITCC 2004), Apr. 2004.
G. Lee and A. Tyagi, “Encoded Program Counter: Self-Protection from Buffer Overflow 
Attacks”, Proc. of the First International Conference on Internet Computing, June, 2000.
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Proof-Carrying Code

code customer provides a set of safety rules that 
guarantee safe behavior of programs
code producer creates a formal safety proof that 
proves for the code, adherence to the safety rules. 
At receiver site, a simple and fast proof validator
is provided to check, with certainty, that the proof is 
valid and hence the code is safe to execute. 

Key:  Proof validation is much simpler than proof 
construction

G. C. Necula and P. Lee, Proof-carrying code. Technical Report CMU-CS-96-165, 
Computer Science Department, Carnegie Mellon University, Sept. 1996.
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Code Producer

Code Consumer

Theorem Prover

Safety Policy

Native Code
With Annotations

Proof Checker

Ok

CPU

VCGen

Verification Condition

Safety Policy

Safety Proof Safety Proof

VCGen

Verification Condition

Source Code Touchstone 
Compiler

Native Code
With Annotations

PCC

Safety Policy

Native Code
With Annotations Safety Proof
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Pros and Cons of using PCC

Consumer friendly: the entire burden of ensuring security is 
on the code producer (the compiler side). 
Tamperproof: any code change (either accidental or malicious) 
will result  the proof validation fail.

Code tampered or Proof tampered 
Self-Certifying: no trusted third parties, e.g. secure server for 
code distribution, are required because PCC is checking 
intrinsic properties of the code, not its origin.

• Theoretical and Technical Barriers on expressing and 
generating, for “real” programs, Security Policy and Proof

• Tampering during execution
No protection for run-time tampering; little chance if 

program has been verified properly
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Summary - Intrusion Detection
Program Behavior ≈ system call sequence 

• Imprecise
• Incomplete (training and profiling)

False Alarms
• Impossible Path

False Positives
• Coarse grain – larger gap

between system calls
non-return calls

• Overhead 
Storage ~ several 100MB per program
Time penalty in checking ~ several 100%
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Validating Control Flow at Run-Time
with Branch Prediction
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Software Protection

• Self-Hashing for tamper resistance: 
checksum of static code shape

• Call-Sequence Model for intrusion detection: 
checksum of execution trace in system calls

• Proof-Carrying Code for self-authentication:
checksum of execution semantics

Original Code
Code in use

=(?)Digest
(checksum)

Tampered/Attacked
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Semantic Gap

Control Flow – Blinded Instruction Sequencing:
•No Validation

pc := pc + 4 or
pc := target if branch

What you see in program code is not what machine executes
e.g. Control Data Compromise via Memory Overwriting Exploits

Validate Program Counter at every update!

In program specification,
High Level Abstraction ≠ Low Level Behavior

Compounded by the Flaw in machine architecture
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Straightforward Idea

Target Table:
• Collect possible targets per branch and validate an instance 

against them

ld $5,$3(32)
…
jr $5(256)
…

target table (pc)

potential targets
pc

target := ($5) + 256
pc :=  target if target is in target_table(pc)

Overhead, Overhead, Overhead!
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Control Flow Validation via Target_Table

Two Key Aspects:
• Validation Trigger: at branch mis-prediction

• branch predictor holds last used target
• RAS can be enhanced for perfect return prediction

• Target_Table Representation: Bloom filter
• probabilistic data structure for set representation
• a chance of validation failure akin to cryptography

Implementation at Micro-architecture
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Branch Prediction and Target Table

(pc)|target addr
(pc)|target addr

(pc)|target addr

(pc)|target addr

……

……

Branch Target Buffer (BTB):
holds the last utilized branch target for next use

pc for next instruction
(predicted)

pc for current instruction

already inside processor acting like a “cache” of Target_Table.
No need to validate target if branch prediction succeeds

•Conditional Branch
•Indirect Branch
•Return
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Call Sequence Validation

Jump to call

Shell program

Shell program

Invoke Shell

String /bin/sh

Old FP

ATTACK RET

Parameters

Run-time Stack in Memory

(1)

(2)
(3)

RET

RAS for prediction

At return, Predicted RET differs 
from the one in stack (ATTACK )
Invalidate prediction and retract 
to fetch target using ATTACK
because memory is trusted

Trust RAS instead of Run-Time Stack in Memory

No need to build up FSA with call graphs and abstract 
stack; it’s already there: Return Address Stack (RAS)
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Augmenting Return Address Stack

Needs to Avoid RAS Corruption:
Since RAS is a small circular LIFO, deeply nested 
or recursive function calls corrupts the RAS

Spill RAS into reserved protected memory area:

With Speculative Execution, RAS corrupted with 
mis-predicted paths

Create Shadow Registers for RAS states: after prediction 
verified, RAS are actually updated.

For more details, 
See Y.J. Park, Z. Zhang, and G. Lee, “Microarchitectural Protection against 
Stack-Based Buffer Overflow Attacks”, IEEE Micro May-June, 2006.
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Target_Table

Let IBP = (Branch Instruction PC, Target)
Then, control flow validation is a question of

Target_Table for S: not desirable 
size is modest but highly unbalanced and difficult to 
manage in hardware

Wildly varying number of IBP’s per program
277 (gzip) ~ 3537 (MSDOS) ~ 10099 (gcc)

Wildly varying number of targets per pc
1 ~ 597

Time-and-Space Efficient Representation: Bloom Filter

branching instance in S ={all legitimate IBPs}?
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Bloom Filter

Bloom filter allows false positives, 
i.e. incorrect “YES” for membership query

h1(b)

h2(b)

h3(b)

h4(b)

1

1

1

0

1

h1(x)

h2(x)

h4(x)
h3(x)

b is a member while x is not

• set size n (< m)
• vector of m bits 
(initialized to 0)
• k independent     
hash functions

False Positive Rate (FPR) = (1 – (1 – 1/m)kn)k ≈ ( 1 – e -kn/m)k

assuming totally independent random hashing functions.
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Hashing function-Simplehash of XOR

8 independent hash functions. note that more functions 
are possible by taking different shuffles of byte positions 
for XOR-ing. 

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

PC

XOR

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

FPR with Simplehash is acceptable: for n=10,000,
k=8, m=1M, FPR=10-7 for Simplehash(TFPR:0.000000036).
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Exploiting False Positives

Similar to Impossible Path Exploit in model based 
intrusion detection, but almost impossible to exploit
FPR is extremely low (< 10-7)

FPR is per pattern, not per validation
akin to breaking encryption

Hashi = permute and diffuse of IBP=(pc|target)
Reverse Hashi for all i 

bit-pattern in legitimate mmap range
instruction pc and its compromised target value

even more difficult with more context-sensitive 
protection, e.g. IBP|BHR(branch history)
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Basic Flow of Control Flow Validation

Bit vector

xor
xor

xor
xor

misprediction

pc=branch instruction address
its actual target address

Branch prediction

next instructions
with predicted target
….
….

Branch verification

Fetch next instructions
with validated target

“invalid” 
exception

01

Note: 
• actual target address is available later; two to five cycles later
• accessing bloom filter: additional penalty
• mis-prediction rate is about one out of 1000 instructions

Bloom Filter
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Initializing Bloom Filter

Training - Convergence in control flow

0
1000
2000
3000
4000
5000
6000
7000
8000

18
9

37
3

55
4

73
8

91
9

11
03

12
84

14
68

16
50

18
34

20
15

Num of indirect Branchs executed (in thousand)

IBP number

preliminary experiment on an http server measures the unique IBP
number against the dynamically encountered indirect branches. An
Apache server runs in Redhat 7.3 OS over Simics, an IA-32 emulator. 

Converge to around 7200 IBPs; no new branch targets added 
after 2105 branch instruction execution instances
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Bloom Filter Design

•estimated by a Verilog HDL implementation and a synthesis with TSMC’s
0.09um library 
•Since CACTI can only simulate a minimum output size of 64 bits, we also 
add a 6-64 MUX in the data path. 

2.30ns/3.05 ns0.79 ns1.023ns /1.774 ns0.49 ns

Total delay6-64MUX & 
Select logics

128K-bit vector with 
1/4 write port(s).

Simple hashing 
logic

0.49ns

1.023ns /1.774 ns

0.79 ns
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Performance degradation

Normalized IPC (to the baseline case without any 
extra delays for validation). Only the benchmarks that 
have IPC degradation more than 0.1% are shown 

Extra delays in cycles
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8 cycles

4-issue superscalar with 7-cycle mis-prediction penalty (EV-6 like)

See, for more details, Y. Shi and G. Lee, “Architectural Support for 
Run-Time Validation of Control Flow Transfer”, to be presented at the 
IEEE ICCD, San Jose, CA., Oct. 2006.
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Performance Overhead

CFI In-line Instrumentation (applicable for static linking only)
crafty 45%
gcc 10% 21% on average
Program Shepherding with trace cache (w. monitoring overhead)
crafty 4%(209%)
gcc 625%(760%) 12%(32%) on average

includes some fp benchmarks
Bloom Filter (in HW) in SW (w. interrupt overhead)
crafty 2.4% 17%(120%)
gcc 0.3% 6%(24%)
avg 0.9% 14%(29%)

Ref. M. Abadi, et. al., “Control Flow Integrity: principles, implementations, and 
applications”, ACM CCS’05, 2005
Ref. V. Kriansky, et.al., “Secure Execution via program shepherding”, 
Proc. Usenix Security Symposium, 2002

Order of Magnitude less than Other Approaches:
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Summary
Initialized Bloom Filter:
Behavior Checksum at finest granularity

Self-carried-out  authentication providing tamper 
resistance and intrusion detection

Carries its own specification and validation
Control System – SCADA

Bloom filter initialization can be done prior to 
deployment
Provides Tamper Resistance and on-the-fly Intrusion 
Detection

Service Oriented Architecture (SOA)
Non-functional aspects

Tolerant to Soft-Faults
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