
Sound Non-statistical Clustering
of Static Analysis Alarms

Woosuk Lee, Wonchan Lee, and Kwangkeun Yi

Seoul National University

VMCAI Õ12 @ Philadelphia

1

1Tuesday, January 24, 2012

Contents

¥ Problem & Our approach

¥ Overall result

¥ Clusterings

¥ Framework

¥ Conclusion

2

2Tuesday, January 24, 2012

Contents

¥ Problem & Our approach

¥ Overall result

¥ Clusterings

¥ Framework

¥ Conclusion

3

3Tuesday, January 24, 2012

Motivation

¥ Manual alarm investigation is painful!

¥ Our commercial tool

¥ For 3.5 MLOC program

¥ Over 1060 alarms are reported.

4

4Tuesday, January 24, 2012

Our approach

¥ Cluster similar alarms of the same origin

¥ Clusters have its own representatives
(= dominant alarms).

¥ Users may inspect only dominant alarms.

5

5Tuesday, January 24, 2012

How It Works

3 buffer-overßow alarms

void pqdownheap(int k)
{
 int j = 2 * k;
 while(j <= heap_len)
 { !
! ! heap[k] = heap[j] ;
! ! k = j;!!
 j = 2 * j;
! }
 heap[k] = ...;
}

gzip-1.2.4

6

6Tuesday, January 24, 2012

How It Works

A user identiÞes heap[j] to be false

void pqdownheap(int k)
{
 int j = 2 * k;
 while(j <= heap_len)
 { !
! ! heap[k] = heap[j] ;
! ! k = j;!!
 j = 2 * j;
! }
 heap[k] = ...;
}

gzip-1.2.4

7

7Tuesday, January 24, 2012

How It Works

The others are automatically deduced false.

(loop invariant : j = 2k)

void pqdownheap(int k)
{
 int j = 2 * k;
 while(j <= heap_len)
 { !
! ! heap[k] = heap[j] ;
! ! k = j;!!
 j = 2 * j;
! }
 heap[k] = ...;
}

gzip-1.2.4

∵
8

8Tuesday, January 24, 2012

How It Works

Users may check only heap[j] instead of all.

void pqdownheap(int k)
{
 int j = 2 * k;
 while(j <= heap_len)
 { !
! ! heap[k] = heap[j] ;
! ! k = j;!!
 j = 2 * j;
! }
 heap[k] = ...;
}

gzip-1.2.4

9

9Tuesday, January 24, 2012

Contents

¥ Problem & Our approach

¥ Overall result

¥ Clusterings

¥ Framework

¥ Conclusion

10

10Tuesday, January 24, 2012

char invmergerules[8];
char invmergerules_nn[8];

int lookup (char *rule) {
 for (i = 1; invmergerules[i] ; i++)
 if (strcasecmp(rule, invmergerules_nn[i] == 0)
 return (i);
}

int rule (struct sketch *s, int rule , int rcount) {
 if (debug)
 printf("%s %d", invmergerules[rule] , rcount);

}

int apply (char *rule, struct sketch *sketch) {
 if (code = lookup (rule))
 res = rule (sketch, code , rcount);
 ...

Appcontour 1.1.0

Inter-procedural alarm dependencies

Results: Example (1/2)

11

11Tuesday, January 24, 2012

char cboard[64];
char ephash[64];

void MakeMove(int side, int *move) {

 fpiece = cboard[f] ;
 tpiece = cboard[t] ;

 if (fpiece == pawn && abs(f-t) == 16) {
 sq = (f + t) / 2;

 HashKey ^= ephash[sq] ;
 }
}

gnuchess-5.05

Results: Example (2/2)

12

12Tuesday, January 24, 2012

Results: Overall Effectiveness

¥ For 16 open source C programs (~100 KLOC)

¥ we reduce the number of alarms by 54% on
average.

Program LOC # Alarms
Alarms after

Clustering
% Reduction

nlkain-1.3 831 124 93 25%
polymorph-0.4.0 1,357 25 13 48%
ncompress-4.2.4 2,195 66 30 55%
sbm-0.0.4 2,467 237 125 47%
stripcc-0.2.0 2,555 194 127 35%
barcode-0.96 4,460 435 302 31%
129.compress 5,585 57 29 49%
archimedes-0.7.0 7,569 711 132 81%
man-1.5h1 7,232 276 165 40%
gzip-1.2.4 11,213 385 263 32%
combine-0.3.3 11,472 733 294 60%
gnuchess-5.05 11,629 976 333 66%
bc-1.06 12,830 593 198 67%
coan-4.2.2 22,414 461 291 37%
grep-2.5.1 31,154 115 85 26%
lsh-2.0.4 110,898 616 264 57%

Total 245,861 6,004 2,744 54%
13

13Tuesday, January 24, 2012

Contents

¥ Problem & Our approach

¥ Overall result

¥ Clusterings

¥ Framework

¥ Conclusion

14

14Tuesday, January 24, 2012

Clusterings

¥ On top of the interval-domain-based industrialized
commercial tool

¥ Three alarm clustering analyses

1. Syntactic clustering

2. Semantic clustering with non-relational analysis

3. Semantic clustering with relational analysis

15

15Tuesday, January 24, 2012

1. Syntactic Clustering

¥ Expressions are the same.

¥ Variables have the same deÞnition point.

while (*optarg && *optarg >= Õ0Õ && *optarg <= Õ9Õ)

 val = *optarg - Õ0Õ;

 optarg++;

16

16Tuesday, January 24, 2012

2. Semantic Clustering
(w/ non-relational analysis)

int buffer[10];
...
buffer[i] = 10; // i = [0,]
...
j = i / 3; // j = [0,]
foo = buffer[j] ; // j = [0,]

Two alarms occurred.

∞

∞
∞

¥ key idea (alarm dependence)

17

17Tuesday, January 24, 2012

int buffer[10];
...
buffer[i] = 10; // i = [0, 9]
...
j = i / 3; // j = [0,]
foo = buffer[j] ; // j = [0,]

assume buffer[i] false

∞
∞

¥ key idea (alarm dependence)

2. Semantic Clustering
(w/ non-relational analysis)

18

18Tuesday, January 24, 2012

int buffer[10];
...
buffer[i] = 10; // i = [0, 9]
...
j = i / 3; // j = [0, 3]
foo = buffer[j] ; // j = [0, 3]

propagate the reÞnement

¥ key idea (alarm dependence)

2. Semantic Clustering
(w/ non-relational analysis)

19

19Tuesday, January 24, 2012

int buffer[10];
...
buffer[i] = 10; // i = [0, 9]
...
j = i / 3; // j = [0, 3]
foo = buffer[j] ; // j = [0, 3]

It kills the other.

¥ key idea (alarm dependence)

2. Semantic Clustering
(w/ non-relational analysis)

20

20Tuesday, January 24, 2012

int buffer[10];
...
buffer[i] = 10; // i = [0, 9]
...
j = i / 3; // j = [0, 3]
foo = buffer[j] ; // j = [0, 3]

If buffer[i] is false, so is the other.

We cluster two alarms.

¥ key idea (alarm dependence)

2. Semantic Clustering
(w/ non-relational analysis)

21

21Tuesday, January 24, 2012

char * p, * str;

for (p = str; *p ; p++) // 0 ! p.offset
 *p = TOLOWER(*p);

if (*str == Ô*Õ) ... // 0 ! str.offset

¥ key idea (alarm dependence)

3. Semantic Clustering
(w/ relational analysis)

Two alarms occurred.

22

22Tuesday, January 24, 2012

char * p, * str;

for (p = str; *p ; p++) // 0 ! p.offset < p.size
 *p = TOLOWER(*p);

if (*str == Ô*Õ) ... // 0 ! str.offset

¥ key idea (alarm dependence)

3. Semantic Clustering
(w/ relational analysis)

assume *p false

23

23Tuesday, January 24, 2012

char * p, * str;

for (p = str; *p ; p++) // 0 ! p.offset < p.size
 *p = TOLOWER(*p);

// Loop inv :
// 0 ! str.offset ! p.offset < p.size = str.size

if (*str == Ô*Õ) ... // 0 ! str.offset < str.size

¥ key idea (alarm dependence)

3. Semantic Clustering
(w/ relational analysis)

propagate the reÞnement

24

24Tuesday, January 24, 2012

char * p, * str;

for (p = str; *p ; p++) // 0 ! p.offset < p.size
 *p = TOLOWER(*p);

// Loop inv :
// 0 ! str.offset ! p.offset < p.size = str.size

if (*str == Ô*Õ) ... // 0 ! str.offset < str.size

¥ key idea (alarm dependence)

3. Semantic Clustering
(w/ relational analysis)

It kills the other.

25

25Tuesday, January 24, 2012

char * p, * str;

for (p = str; *p ; p++) // 0 ! p.offset < p.size
 *p = TOLOWER(*p);

// Loop inv :
// 0 ! str.offset ! p.offset < p.size = str.size

if (*str == Ô*Õ) ... // 0 ! str.offset < str.size

¥ key idea (alarm dependence)

3. Semantic Clustering
(w/ relational analysis)

If *p is false, so is the other.
We cluster two alarms.

26

26Tuesday, January 24, 2012

Result

¥ Syntactic clustering

0%

25%

50%

75%

100%

nl
ka
in
-1
.3

po
lym
or
ph
-0
.4
.0

nc
om
pr
es
s-
4.
2.
4

sb
m
-0
.0
.4

st
rip
cc
-0
.2
.0

ba
rc
od
e-
0.
96

SP
EC
95
/1
29
.co
m
pr
es
s

ar
ch
im
ed
es
-0
.7
.0

m
an
-1
.5
h1

gz
ip
-1
.2
.4

co
m
bi
ne
-0
.3
.3

gn
uc
he
ss
-5
.0
5

bc
-1
.0
6

gr
ep
-2
.5
.1

co
an
-4
.2
.2

lsh
-2
.0
.4

27

27Tuesday, January 24, 2012

Result

¥ Semantic clustering (non-relational)

0%

25%

50%

75%

100%

nl
ka
in
-1
.3

po
lym
or
ph
-0
.4
.0

nc
om
pr
es
s-
4.
2.
4

sb
m
-0
.0
.4

st
rip
cc
-0
.2
.0

ba
rc
od
e-
0.
96

SP
EC
95
/1
29
.co
m
pr
es
s

ar
ch
im
ed
es
-0
.7
.0

m
an
-1
.5
h1

gz
ip
-1
.2
.4

co
m
bi
ne
-0
.3
.3

gn
uc
he
ss
-5
.0
5

bc
-1
.0
6

gr
ep
-2
.5
.1

co
an
-4
.2
.2

lsh
-2
.0
.4

28

28Tuesday, January 24, 2012

Result

¥ Semantic clustering (relational)

0%

25%

50%

75%

100%

nl
ka
in
-1
.3

po
lym
or
ph
-0
.4
.0

nc
om
pr
es
s-
4.
2.
4

sb
m
-0
.0
.4

st
rip
cc
-0
.2
.0

ba
rc
od
e-
0.
96

SP
EC
95
/1
29
.co
m
pr
es
s

ar
ch
im
ed
es
-0
.7
.0

m
an
-1
.5
h1

gz
ip
-1
.2
.4

co
m
bi
ne
-0
.3
.3

gn
uc
he
ss
-5
.0
5

bc
-1
.0
6

gr
ep
-2
.5
.1

co
an
-4
.2
.2

lsh
-2
.0
.4

29

29Tuesday, January 24, 2012

Overall

28% 18% 8%

0%

25%

50%

75%

100%

nl
ka
in
-1
.3

po
lym
or
ph
-0
.4
.0

nc
om
pr
es
s-
4.
2.
4

sb
m
-0
.0
.4

st
rip
cc
-0
.2
.0

ba
rc
od
e-
0.
96

SP
EC
95
/1
29
.co
m
pr
es
s

ar
ch
im
ed
es
-0
.7
.0

m
an
-1
.5
h1

gz
ip
-1
.2
.4

co
m
bi
ne
-0
.3
.3

gn
uc
he
ss
-5
.0
5

bc
-1
.0
6

gr
ep
-2
.5
.1

co
an
-4
.2
.2

lsh
-2
.0
.4

#Alarm!

Time" 0% 4% 88%
30

+Semantic
(relational)

+Semantic
(non-relational)

Syntactic

30Tuesday, January 24, 2012

Contents

¥ Problem & Our approach

¥ Overall result

¥ Clusterings

¥ Framework

¥ Conclusion

31

31Tuesday, January 24, 2012

Formalization & Soundness

¥ Three methods have the same strategy.

¥ (1) Assume some alarms are false
(2) propagate the reÞnement
(3) get alarm dependences

¥ We formalize a general alarm clustering method,
and prove the correctness.

32

32Tuesday, January 24, 2012

Alarm Clustering Framework

¥ Three clusterings are instances of the framework.

¥ Applicable to any semantics-based static analysis

¥ Guarantees the soundness of alarm clustering

33

33Tuesday, January 24, 2012

Notations

¥ Set of program points , and set of the states

¥ Concrete semantics

¥ Galois connection

¥ Abstract semantics

¥ Erroneous states

Traces. We write S! for the set of all finite non-empty sequences of states. If

! is a finite sequence of states, ! i will denote the (i+1)th state of the sequence,

! 0 is the first state and ! " the last state. If " is a prefix of ! , we write " ! ! .
A trace of program P is defined as a set [[P]] ! { ! " S! | ! 0 " S! # $ i. ! i %

! i +1 } . The set [[P]] is prefix-closed least fixpoint of the semantic function; i.e.

[[P]] = lfpFP where FP is the semantic function, defined as:

FP : 2S!
% 2S!

FP (E) = { &s! ' | s! " S! }
({ &s0, á á á, sn +1 ' | &s0, á á á, sn ' " E # sn % sn +1 } .

Partitioned Reachable States. Using a well-chosen trace partitioning func-

tion # : $ % 2S!
, where $ is the set of partitioning indices, one can model indexed

collections of program states. Domain $ % 2S is a partitioned reachable-state

domain. The involved abstraction is %0(&)(') ! { ! " | ! " &) #(')} and the

concretization is (0(f) ! { ! | $" ! ! .$' . " " #(') * "" " f (')} . The pair

of functions (%0, (0) forms a Galois connection: 2S!

+++%,+++
" 0

#0
$ % 2S . We write

concrete semantics [[P]] modulo partitioning function # as [[P]]/ ! .

2S +++%,+++
"

#
Ŝ

Abstract Semantics. We think of a static analyzer which is designed over an

abstract domain D̂ = $ % Ŝ with the following Galois connections:

2
S!

+++%,+++
" 0

#0
$ % 2

S
+++%,+++

"

#
$ % Ŝ.

The galois connection of (%, () is easily derived from the one of (%S , (S) between

domains 2S and Ŝ: 2S ++++%,++++
" S

#S
Ŝ.

The abstract semantics of program P computed by the analyzer is a fixpoint

T̂ = lfp# F̂ where lfp#
is a sound, abstract post-fixpoint operator and the func-

tion F̂ : D̂ % D̂ is a monotone or an extensive abstract transfer function such

that %- %0 - FP . F̂ - %- %0. The soundness of the static analysis follows from

the fixpoint transfer theorem [2].

Alarms. The static analyzer raises an alarm at trace partitioning index ' if

(S(T̂(')))) (') /= ! where T̂ is the abstract semantics of a program P and

function) : $ % 2S specifies erroneous states at each partitioning index. In the

rest of the paper, we use partitioning index and alarm interchangeably; alarm '
means the one at the trace partitioning index ' .

The alarm ' is false alarm (resp. true alarm) when the static analyzer raises

the alarm and [[P]]/ ! ('))) (') = ! (resp. [[P]]/ ! ('))) (') /= !).

Alarm Dependence Our goal is to find concrete dependencies between alarms.

Given two alarms ' 1 and ' 2, if alarm ' 2 is always false whenever alarm ' 1 is

false; i.e.

[[P]](' 1))) (' 1) = ! =* [[P]](' 2))) (' 2) = ! ,

[[P]] : ! ! 2S

T̂ : Φ ! Ŝ

! : " ! 2S

! ! " ! ." ([[P]](!)) # öT(!)

öT = fix öF

! S

34

34Tuesday, January 24, 2012

Goal

¥ For any two alarms at ,
to Þnd concrete dependence

¥ Using abstract dependence!

Traces. We write S! for the set of all Þnite non-empty sequences of states. If
σ is a Þnite sequence of states,σi will denote the (i+1)th state of the sequence,
σ0 is the Þrst state andσ" the last state. If τ is a preÞx ofσ, we write τ � σ.

A trace of program P is deÞned as a set [[P]] ! {σ ∈ S! | σ0 ∈ S! ∧ ∀i.σi →
σi +1 } . The set [[P]] is preÞx-closed least Þxpoint of the semantic function; i.e.
[[P]] = lfpFP where FP is the semantic function, deÞned as:

FP : 2S! → 2S!

FP (E) = { �s! � | s! ∈ S! }
∪ { �s0, á á á, sn +1 � | �s0, á á á, sn � ∈ E ∧ sn → sn +1 } .

Partitioned Reachable States. Using a well-chosen trace partitioning func-
tion δ : Φ → 2S!

, whereΦ is the set of partitioning indices, one can model indexed
collections of program states. DomainΦ → 2S is a partitioned reachable-state
domain. The involved abstraction is α0(Σ)(ϕ) ! {σ" | σ ∈ Σ ∩ δ(ϕ)} and the
concretization is γ0(f) ! {σ | ∀τ � σ.∀ϕ. τ ∈ δ(ϕ) ⇒ τ" ∈ f (ϕ)} . The pair
of functions (α0, γ0) forms a Galois connection: 2S

!

−−−→←−−−
" 0

#0
Φ → 2S. We write

concrete semantics [[P]] modulo partitioning function δ as [[P]]/ ! .

2S −−−−→←−−−−
" S

#S öS

Abstract Semantics. We think of a static analyzer which is designed over an
abstract domain öD = Φ → öS with the following Galois connections:

2S!

−−−→←−−−
" 0

#0
Φ → 2S −−−→←−−−

"

#
Φ → öS.

The galois connection of (α, γ) is easily derived from the one of (αS , γS) between
domains 2S and öS: 2S −−−−→←−−−−

" S

#S öS.
The abstract semantics of programP computed by the analyzer is a Þxpoint

öT = lfp# öF where lfp# is a sound, abstract post-Þxpoint operator and the func-
tion öF : öD → öD is a monotone or an extensive abstract transfer function such
that α ◦ α0 ◦ FP � öF ◦ α ◦ α0. The soundness of the static analysis follows from
the Þxpoint transfer theorem [2].

Alarms. The static analyzer raises an alarm at trace partitioning index ϕ if
γS(öT(ϕ)) ∩ Ω(ϕ) �= ! where öT is the abstract semantics of a programP and
function Ω : Φ → 2S speciÞes erroneous states at each partitioning index. In the
rest of the paper, we use partitioning index and alarm interchangeably; alarmϕ
means the one at the trace partitioning indexϕ.

The alarm ϕ is false alarm (resp. true alarm) when the static analyzer raises
the alarm and [[P]]/ ! (ϕ) ∩Ω(ϕ) = ! (resp. [[P]]/ ! (ϕ) ∩Ω(ϕ) �= !).

Alarm Dependence Our goal is to Þnd concrete dependencies between alarms.
Given two alarms ϕ1 and ϕ2, if alarm ϕ2 is always false whenever alarmϕ1 is
false; i.e.

[[P]](ϕ1) ∩Ω(ϕ1) = ! =⇒ [[P]](ϕ2) ∩Ω(ϕ2) = ! ,

! 1, ! 2 ∈ !

35

35Tuesday, January 24, 2012

Abstract Alarm Dependenceϕ1 ! ϕ2

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ∅ =⇒ [[P]](! 1) ∩ " (! 1) �= ∅)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

Refinement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷Tϕ. The deÞnition of ÷Tϕ is,

÷Tϕ = gfp# #Z. öTÂϕ � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂϕ is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂϕ = öT [! �→ öT (!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S! S where the operator
� is a set di! erence and$S! S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{! 1, · · · , ! n } of alarms is false. The reÞnement
÷T{ ϕ1 ,ááá,ϕn} of the Þxpoint öT with respect to these assumptions is,

÷T"#ϕ = gfp# #Z. öTÂ{ ϕ1 ,ááá,ϕn} � öF (Z)

where öTÂ{ ϕ1 ,ááá,ϕn} =
!

ϕi$ { ϕ1 ,ááá,ϕn}
öTÂϕi .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

Definition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷Tϕ1 (! 2)) ∩ " (! 2) = ∅

where

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ! =⇒ [[P]](! 1) ∩ " (! 1) �= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp# #Z. öTÂ! � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! �→ öT(!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S×S where the operator
� is a set di! erence and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n } of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp# #Z. öTÂ{ ! 1 ,ááá,! n } � öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) ∩ " (! 2) = !

where

36

36Tuesday, January 24, 2012

Abstract Alarm Dependenceϕ1 ! ϕ2

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ∅ =⇒ [[P]](! 1) ∩ " (! 1) �= ∅)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

Refinement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷Tϕ. The deÞnition of ÷Tϕ is,

÷Tϕ = gfp# #Z. öTÂϕ � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂϕ is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂϕ = öT [! �→ öT (!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S! S where the operator
� is a set di! erence and$S! S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{! 1, · · · , ! n } of alarms is false. The reÞnement
÷T{ ϕ1 ,ááá,ϕn} of the Þxpoint öT with respect to these assumptions is,

÷T"#ϕ = gfp# #Z. öTÂ{ ϕ1 ,ááá,ϕn} � öF (Z)

where öTÂ{ ϕ1 ,ááá,ϕn} =
!

ϕi$ { ϕ1 ,ááá,ϕn}
öTÂϕi .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

Definition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷Tϕ1 (! 2)) ∩ " (! 2) = ∅

where

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ! =⇒ [[P]](! 1) ∩ " (! 1) �= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp# #Z. öTÂ! � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! �→ öT(!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S×S where the operator
� is a set di! erence and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n } of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp# #Z. öTÂ{ ! 1 ,ááá,! n } � öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) ∩ " (! 2) = !

where

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(! [[P]](! 2) " " (! 2) #= ! =$ [[P]](! 1) " " (! 1) #= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp##Z. öTÂ! % öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! &' öT(!) ö($S(" (!))]

whereF [a &' b] is the same asF except it mapsa to b. The ö(operator should be
a sound abstract slice operator such that$S) (* ö() $S×S where the operator
(is a set difference and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n} of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp##Z. öTÂ{ ! 1 ,ááá,! n } % öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 � ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) " " (! 2) = !

where

÷T! 1 = Þx!X. öTÂ! 1 ! öF (X)

37

(T̂ = fix F̂)

37Tuesday, January 24, 2012

Abstract Alarm Dependenceϕ1 ! ϕ2

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ∅ =⇒ [[P]](! 1) ∩ " (! 1) �= ∅)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

Refinement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷Tϕ. The deÞnition of ÷Tϕ is,

÷Tϕ = gfp# #Z. öTÂϕ � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂϕ is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂϕ = öT [! �→ öT (!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S! S where the operator
� is a set di! erence and$S! S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{! 1, · · · , ! n } of alarms is false. The reÞnement
÷T{ ϕ1 ,ááá,ϕn} of the Þxpoint öT with respect to these assumptions is,

÷T"#ϕ = gfp# #Z. öTÂ{ ϕ1 ,ááá,ϕn} � öF (Z)

where öTÂ{ ϕ1 ,ááá,ϕn} =
!

ϕi$ { ϕ1 ,ááá,ϕn}
öTÂϕi .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

Definition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷Tϕ1 (! 2)) ∩ " (! 2) = ∅

where

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ! =⇒ [[P]](! 1) ∩ " (! 1) �= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp# #Z. öTÂ! � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! �→ öT(!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S×S where the operator
� is a set di! erence and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n } of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp# #Z. öTÂ{ ! 1 ,ááá,! n } � öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) ∩ " (! 2) = !

where

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(! [[P]](! 2) " " (! 2) #= ! =$ [[P]](! 1) " " (! 1) #= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp##Z. öTÂ! % öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! &' öT(!) ö($S(" (!))]

whereF [a &' b] is the same asF except it mapsa to b. The ö(operator should be
a sound abstract slice operator such that$S) (* ö() $S×S where the operator
(is a set difference and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n} of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp##Z. öTÂ{ ! 1 ,ááá,! n } % öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 � ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) " " (! 2) = !

where

÷T! 1 = Þx!X. öTÂ! 1 ! öF (X)

38

38Tuesday, January 24, 2012

Abstract Alarm Dependenceϕ1 ! ϕ2

öTÂϕ1 = öT{! 1 �→ öT(! 1) ö� " (!(! 1))}

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ∅ =⇒ [[P]](! 1) ∩ " (! 1) �= ∅)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

Refinement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷Tϕ. The deÞnition of ÷Tϕ is,

÷Tϕ = gfp# #Z. öTÂϕ � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂϕ is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂϕ = öT [! �→ öT (!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S! S where the operator
� is a set di! erence and$S! S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{! 1, · · · , ! n } of alarms is false. The reÞnement
÷T{ ϕ1 ,ááá,ϕn} of the Þxpoint öT with respect to these assumptions is,

÷T"#ϕ = gfp# #Z. öTÂ{ ϕ1 ,ááá,ϕn} � öF (Z)

where öTÂ{ ϕ1 ,ááá,ϕn} =
!

ϕi$ { ϕ1 ,ááá,ϕn}
öTÂϕi .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

Definition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷Tϕ1 (! 2)) ∩ " (! 2) = ∅

where

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(! [[P]](! 2) " " (! 2) #= ! =$ [[P]](! 1) " " (! 1) #= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp##Z. öTÂ! % öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! &' öT(!) ö($S(" (!))]

whereF [a &' b] is the same asF except it mapsa to b. The ö(operator should be
a sound abstract slice operator such that$S) (* ö() $S×S where the operator
(is a set difference and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n} of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp##Z. öTÂ{ ! 1 ,ááá,! n } % öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 � ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) " " (! 2) = !

where

÷T! 1 = Þx!X. öTÂ! 1 ! öF (X)

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ! =⇒ [[P]](! 1) ∩ " (! 1) �= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp# #Z. öTÂ! � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! �→ öT(!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S×S where the operator
� is a set di! erence and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n } of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp# #Z. öTÂ{ ! 1 ,ááá,! n } � öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) ∩ " (! 2) = !

where

39

39Tuesday, January 24, 2012

Abstract Alarm Dependenceϕ1 ! ϕ2

öTÂϕ1 = öT{! 1 �→ öT(! 1) ö� " (!(! 1))}

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ∅ =⇒ [[P]](! 1) ∩ " (! 1) �= ∅)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

Refinement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷Tϕ. The deÞnition of ÷Tϕ is,

÷Tϕ = gfp# #Z. öTÂϕ � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂϕ is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂϕ = öT [! �→ öT (!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S! S where the operator
� is a set di! erence and$S! S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{! 1, · · · , ! n } of alarms is false. The reÞnement
÷T{ ϕ1 ,ááá,ϕn} of the Þxpoint öT with respect to these assumptions is,

÷T"#ϕ = gfp# #Z. öTÂ{ ϕ1 ,ááá,ϕn} � öF (Z)

where öTÂ{ ϕ1 ,ááá,ϕn} =
!

ϕi$ { ϕ1 ,ááá,ϕn}
öTÂϕi .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

Definition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷Tϕ1 (! 2)) ∩ " (! 2) = ∅

where

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(! [[P]](! 2) " " (! 2) #= ! =$ [[P]](! 1) " " (! 1) #= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp##Z. öTÂ! % öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! &' öT(!) ö($S(" (!))]

whereF [a &' b] is the same asF except it mapsa to b. The ö(operator should be
a sound abstract slice operator such that$S) (* ö() $S×S where the operator
(is a set difference and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n} of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp##Z. öTÂ{ ! 1 ,ááá,! n } % öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 � ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) " " (! 2) = !

where

÷T! 1 = Þx!X. öTÂ! 1 ! öF (X)

slice out error states at in a way that
it approximates

! 1

[[P]](! 1) ! Ω(! 1)

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ! =⇒ [[P]](! 1) ∩ " (! 1) �= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp# #Z. öTÂ! � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! �→ öT(!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S×S where the operator
� is a set di! erence and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n } of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp# #Z. öTÂ{ ! 1 ,ááá,! n } � öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) ∩ " (! 2) = !

where

40

40Tuesday, January 24, 2012

Abstract Alarm Dependenceϕ1 ! ϕ2

öTÂϕ1 = öT{! 1 �→ öT(! 1) ö� " (!(! 1))}

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ∅ =⇒ [[P]](! 1) ∩ " (! 1) �= ∅)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

Refinement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷Tϕ. The deÞnition of ÷Tϕ is,

÷Tϕ = gfp# #Z. öTÂϕ � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂϕ is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂϕ = öT [! �→ öT (!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S! S where the operator
� is a set di! erence and$S! S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{! 1, · · · , ! n } of alarms is false. The reÞnement
÷T{ ϕ1 ,ááá,ϕn} of the Þxpoint öT with respect to these assumptions is,

÷T"#ϕ = gfp# #Z. öTÂ{ ϕ1 ,ááá,ϕn} � öF (Z)

where öTÂ{ ϕ1 ,ááá,ϕn} =
!

ϕi$ { ϕ1 ,ááá,ϕn}
öTÂϕi .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

Definition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷Tϕ1 (! 2)) ∩ " (! 2) = ∅

where

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(! [[P]](! 2) " " (! 2) #= ! =$ [[P]](! 1) " " (! 1) #= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp##Z. öTÂ! % öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! &' öT(!) ö($S(" (!))]

whereF [a &' b] is the same asF except it mapsa to b. The ö(operator should be
a sound abstract slice operator such that$S) (* ö() $S×S where the operator
(is a set difference and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n} of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp##Z. öTÂ{ ! 1 ,ááá,! n } % öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 � ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) " " (! 2) = !

where

÷T! 1 = Þx!X. öTÂ! 1 ! öF (X)

slice out error states at in a way that
it approximates

propagate the reÞnement until Þxpoint

! 1

[[P]](! 1) ! Ω(! 1)

we say that alarm ! 2 has a concrete dependence on alarm! 1. If we Þnd this
concrete dependence of alarm! 2 on alarm ! 1, we also have another dependence
as contraposition.

(⇔ [[P]](! 2) ∩ " (! 2) �= ! =⇒ [[P]](! 1) ∩ " (! 1) �= !)

Since concrete dependence is not computable in general, we use abstract
dependence which is sound with respect to concrete dependence. The idea is
that if we can kill the alarm ! 2 from the abstract semantics reÞned under the
assumption that alarm ! 1 is false, it also means that alarm! 2 has concrete
dependence on alarm! 1. It is easy to see that this is correct because, even
though the reÞned abstract semantics is smaller than the original Þxpoint, it is
still sound abstraction of concrete semantics if the assumption of alarm! 1 false
holds.

In the rest of the section, we deÞne the notion of sound reÞnement by refu-
tation and abstract dependence. We also prove the soundness of abstract depen-
dence.

ReÞnement by Refutation. Using the assumption of alarm! being false, we
can get a sliced abstract semantics÷T! . The deÞnition of ÷T! is,

÷T! = gfp# #Z. öTÂ! � öF (Z)

wheregfp# is a pre-Þxpoint operator and öTÂ! is the same as the original Þxpoint
öT except the erroneous states at partitioning index! sliced out:

öTÂ! = öT[! �→ öT(!) ö� $S(" (!))]

whereF [a �→ b] is the same asF except it mapsa to b. The ö� operator should be
a sound abstract slice operator such that$S ◦� � ö�◦$S×S where the operator
� is a set di! erence and$S×S is an abstraction lifted for pairs. We assume that
the abstract domain öS has meet operator and abstract slice operator.

We can extend this reÞnement to the case of refuting multiple alarms. Sup-
pose that we assume that set{ ! 1, á á á, ! n } of alarms is false. The reÞnement
÷T{ ! 1 ,ááá,! n } of the Þxpoint öT with respect to these assumptions is,

÷T−→! = gfp# #Z. öTÂ{ ! 1 ,ááá,! n } � öF (Z)

where öTÂ{ ! 1 ,ááá,! n } =
!

! i ∈{ ! 1 ,ááá,! n }
öTÂ! i .

Abstract Alarm Dependence. We now deÞne abstract alarm dependence.

DeÞnition 1 (! 1 ! ! 2) Given two alarms ! 1 and ! 2,
alarm ! 2 has abstract dependence on alarm ! 1 if and only if,

%(÷T! 1 (! 2)) ∩ " (! 2) = !

where

41

41Tuesday, January 24, 2012

ϕ1 ! ϕ2

 ϕ1 ! ϕ2 =⇒ (alarm ϕ1 false =⇒ alarm ϕ2 false)

Soundness of

can be lifted to a set of alarms! 1

!" ! ! ! =# (($! i %!" ! . alarm ! i false) =# alarm ! false)

We write ! 1 ! ! 2 when an alarm ! 2 has abstract dependence on alarm! 1. We
prove the soundness of abstract alarm dependence as the following lemma.

Lemma 1 Given two alarms ! 1 and ! 2, if ! 1 ! ! 2, then alarm ! 2 is false
whenever alarm! 1 is false.

Proof. Let H = " X.TÂ! 1 ! F (X) , and öH = " öX.(öTÂ! 1 ! öF (öX)) where T = lfpF ,
and TÂ! 1 = T { ! 1 "# T (! 1) $ # (! 1)} .

If T (! 1) %# (! 1) = then $0 & $ &H ' öF & $ & $0. By Þxpoint transfer
theorem ??, $ lfpH ' fix öH ' gfp öH.

lfpF = lfpH ' % $lfpH ' %gfp öH = %÷T! 1

lfpF %# (! 2) ' %%÷T! 1 %# (! 2) = ∅
" lfpF %# (! 2) = ∅

As a contraposition of lemma 1, we also have a di! erent sense of soundness
of abstract alarm dependence.

Lemma 2 Given two alarms ! 1 and ! 2, if ! 1 ! ! 2, then alarm ! 1 is true
whenever alarm! 2 is true.

We extend the notion of the abstract dependence for more than two alarms.

DeÞnition 2 ({ ! 1, á á á, ! n } ! ! 0) Given set { ! 0, á á á, ! n } of alarms, we write
{ ! 1, á á á, ! n } ! ! 0, and say that alarm ! 0 has abstract dependence on set
{ ! 1, á á á, ! n } of alarms, iff the reÞnement÷T{ ! 1 ,ááá,! n } by refuting set{ ! 1, á á á, ! n }
of alarms satisÞes

%S(÷T{ ! 1 ,ááá,! n } (! 0)) %# (! 0) = ∅.

Lemma 3 Given set { ! 0, á á á, ! n } of alarms, if { ! 1, á á á, ! n } ! ! 0, then alarm
! 0 is false whenever all alarms! 1, á á á, ! n are false.

The contraposition of lemma 3 is not quite useful since it speciÞes only some
alarms among set{ ! 1, á á á, ! n } of alarms are true when{ ! 1, á á á, ! n } ! ! 0 and
alarm ! 0 is true.

In the rest of paper, we sometimes write(#! to denote a set of alarms.

2.2 Alarm Clustering

Using abstract alarm dependencies, we can cluster alarms in two di! erent ways.

DeÞnition 3 (False Alarm Cluster) Let A be set of all alarms in program
P and ! be the dependence relation. A false alarm clusterCF

!" !) A with its
dominant alarms (#! is { ! * A | (#! ! ! } .

DeÞnition 4 (True Alarm Cluster) Let A be set of all alarms in program
P and ! be the dependence relation. A true alarm clusterCT

!) A with its

dominant alarms ! is { ! # * A | ! # +! ! } (+! is the transitive closure of !
between only singleton alarms).

We write ϕ1 ! ϕ2 when an alarmϕ2 has abstract dependence on alarmϕ1. We
prove the soundness of abstract alarm dependence as the following lemma.

Lemma 1 Given two alarms ϕ1 and ϕ2, if ϕ1 ! ϕ2, then alarm ϕ2 is false
whenever alarmϕ1 is false.

Proof. Let H = λX.T Â! 1 �F (X) , and öH = λ öX. (öTÂ! 1 � öF (öX)) where T = lfpF ,
and TÂ! 1 = T{ϕ1 �→ T(ϕ1) �Ω(ϕ1)} .

If T(ϕ1) ∩ Ω(ϕ1) = then α0 ◦ α ◦ H � öF ◦ α ◦ α0. By Þxpoint transfer
theorem ??, α lfpH � fix öH � gfp öH .

lfpF = lfpH � γ α lfpH � γgfp öH = γ ÷T! 1

lfpF ∩Ω(ϕ2) � γγ ÷T! 1 ∩Ω(ϕ2) = !
" lfpF ∩Ω(ϕ2) = !

As a contraposition of lemma 1, we also have a di! erent sense of soundness
of abstract alarm dependence.

Lemma 2 Given two alarms ϕ1 and ϕ2, if ϕ1 ! ϕ2, then alarm ϕ1 is true
whenever alarmϕ2 is true.

We extend the notion of the abstract dependence for more than two alarms.

Definition 2 ({ϕ1, á á á,ϕn } ! ϕ0) Given set {ϕ0, á á á,ϕn } of alarms, we write
{ϕ1, á á á,ϕn } ! ϕ0, and say that alarm ϕ0 has abstract dependence on set
{ϕ1, á á á,ϕn } of alarms, i! the reÞnement÷T{ ! 1 ,ááá,! n } by refuting set{ϕ1, á á á,ϕn }
of alarms satisÞes

γS(÷T{ ! 1 ,ááá,! n } (ϕ0)) ∩Ω(ϕ0) = ! .

Lemma 3 Given set {ϕ0, á á á,ϕn } of alarms, if {ϕ1, á á á,ϕn } ! ϕ0, then alarm
ϕ0 is false whenever all alarmsϕ1, á á á,ϕn are false.

The contraposition of lemma 3 is not quite useful since it speciÞes only some
alarms among set{ϕ1, á á á,ϕn } of alarms are true when{ϕ1, á á á,ϕn } ! ϕ0 and
alarm ϕ0 is true.

In the rest of paper, we sometimes write−→ϕ to denote a set of alarms.

2.2 Alarm Clustering

Using abstract alarm dependencies, we can cluster alarms in two di! erent ways.

Definition 3 (False Alarm Cluster) Let A be set of all alarms in program
P and ! be the dependence relation. A false alarm clusterCF

!" ! ⊆ A with its
dominant alarms −→ϕ is {ϕ ∈ A | −→ϕ ! ϕ} .

Definition 4 (True Alarm Cluster) Let A be set of all alarms in program
P and ! be the dependence relation. A true alarm clusterCT

! ⊆ A with its

dominant alarms ϕ is {ϕ# ∈ A | ϕ# +! ϕ} (+! is the transitive closure of !
between only singleton alarms).

42

42Tuesday, January 24, 2012

Alarm Cluster C�ϕ

dominant alarms of cluster !" ! # A :

We write ! 1 ! ! 2 when an alarm ! 2 has abstract dependence on alarm! 1. We
prove the soundness of abstract alarm dependence as the following lemma.

Lemma 1 Given two alarms ! 1 and ! 2, if ! 1 ! ! 2, then alarm ! 2 is false
whenever alarm ! 1 is false.

Proof. Let H = " X.T Â! 1 ! F (X) , and öH = " öX. (öTÂ! 1 ! öF (öX)) where T = lfpF ,
and TÂ! 1 = T{ ! 1 "# T(! 1) $ # (! 1)} .

If T(! 1) %# (! 1) = then $0 & $ & H ' öF & $ & $0. By Þxpoint transfer
theorem ??, $ lfpH ' fix öH ' gfp öH .

lfpF = lfpH ' % $lfpH ' %gfp öH = %÷T! 1

lfpF %# (! 2) ' %%÷T! 1 %# (! 2) = !
" lfpF %# (! 2) = !

As a contraposition of lemma 1, we also have a di! erent sense of soundness
of abstract alarm dependence.

Lemma 2 Given two alarms ! 1 and ! 2, if ! 1 ! ! 2, then alarm ! 1 is true
whenever alarm ! 2 is true.

We extend the notion of the abstract dependence for more than two alarms.

Definition 2 ({ ! 1, á á á, ! n } ! ! 0) Given set { ! 0, á á á, ! n } of alarms, we write
{ ! 1, á á á, ! n } ! ! 0, and say that alarm ! 0 has abstract dependence on set
{ ! 1, á á á, ! n } of alarms, i! the refinement ÷T{ ! 1 ,ááá,! n} by refuting set { ! 1, á á á, ! n }
of alarms satisfies

%S(÷T{ ! 1 ,ááá,! n} (! 0)) %# (! 0) = ! .

Lemma 3 Given set { ! 0, á á á, ! n } of alarms, if { ! 1, á á á, ! n } ! ! 0, then alarm
! 0 is false whenever all alarms ! 1, á á á, ! n are false.

The contraposition of lemma 3 is not quite useful since it speciÞes only some
alarms among set{ ! 1, á á á, ! n } of alarms are true when{ ! 1, á á á, ! n } ! ! 0 and
alarm ! 0 is true.

In the rest of paper, we sometimes write(#! to denote a set of alarms.

2.2 Alarm Clustering

Using abstract alarm dependencies, we can cluster alarms in two di! erent ways.

Definition 3 (Alarm Cluster) Given set A of all alarms and dependence re-
lation ! , a false alarm cluster C−→! is { !) A | (#! ! ! } .

Definition 4 (True Alarm Cluster) Given set A of all alarms and depen-
dence relation ! , a true alarm cluster CT

! * A is { ! �) A | ! � ! ! } .

Note that we cannot exploit dependencies like{ ! 1, á á á, ! n } ! ! 0 to make true
alarm cluster. As we mentioned in 2.1, it does not tell us exactly which alarms
among set{ ! 1, á á á, ! n } of alarms are true when alarm! 0 is true.

The soundness of true and false alarm clusters directly follow the soundness
of abstract alarm dependence.

C−→!

43

43Tuesday, January 24, 2012

Clustering Algorithm

¥ Dependences determine the clustering.

¥ Brute-force search requires Þxpoint
computation.

¥ Our algorithm requires one Þxpoint computation.

¥ but misses some dependences.

¥ The algorithm derives sound dependences.

2#Alarms

44

Not in the paper. Please refer to technical memo : http://ropas.snu.ac.kr/~wslee/vmcai12_techmemo.pdf

44Tuesday, January 24, 2012

http://ropas.snu.ac.kr/~wslee/vmcai12_techmemo.pdf
http://ropas.snu.ac.kr/~wslee/vmcai12_techmemo.pdf

Conclusion

Thank you!

A sound, general, and effective way
 to reduce alarm-investigation efforts

45

45Tuesday, January 24, 2012

Backup slides

46

46Tuesday, January 24, 2012

Example

¥ Clustering result

¥ Naive algorithm

int large[7];
int medium[5];
int small[3];

large[i] = ...;

... = medium[i] ;

... = large[i] ;

... = medium[i-1] ;

... = small[i-1] ;

ϕ1

! 2

! 3

ϕ4

! 5

R
{! 1}

{ϕ2}

{ϕ2}

{! 2, ! 4}

{! 2, ! 4}

C! 2 = { ! 3}

C{ ϕ2 ,ϕ4 } = { ! 5}

Cϕ1 = {! 3}

C! 2 = { ! 3}

C{ ϕ2 ,ϕ4 } = { ! 5}

T̃A

[0, 4]

[0, 4]

[1, 4]

[1, 4]

[0, 6]

47

47Tuesday, January 24, 2012

Experimental result
Table 1. Alarm clustering results.
B : baseline analysis, S: syntactic alarm clustering, I : semantic alarm clustering with
interval domain, O : semantic clustering with octagon domain.

Alarms % Reduction Time(s)Program LOC
B S S+I S+I+O S +I +O S+I+O B I O

nlkain-1.3 831 124 118 96 93 5% 18% 2% 25% 0.17 0.03 0.1
polymorph-0.4.0 1,357 25 19 13 13 24% 24% 0% 48% 0.12 0 0.06
ncompress-4.2.4 2,195 66 50 38 30 24% 18% 12% 55% 0.54 0.03 0.69
sbm-0.0.4 2,467 237 230 185 125 3% 19% 25% 47% 2.28 0.3 1.15
stripcc-0.2.0 2,555 194 165 143 127 15% 11% 8% 35% 2.76 0.07 25.44
barcode-0.96 4,460 435 386 329 302 11% 13% 6% 31% 3.23 0.1 2.59
129.compress 5,585 57 56 29 29 2% 47% 0% 49% 2.46 0.02 0.19
archimedes-0.7.0 7,569 711 342 215 132 52% 18% 12% 81% 6.48 0.27 16.11
man-1.5h1 7,232 276 226 189 165 18% 13% 9% 40% 11.65 0.28 1.86
gzip-1.2.4 11,213 385 341 278 263 11% 16% 4% 32% 10.03 0.3 2.92
combine-0.3.3 11,472 733 468 297 294 36% 23% 0% 60% 19.74 0.81 26.93
gnuchess-5.05 11,629 976 744 343 333 24% 41% 1% 66% 42.49 4.78 8.66
bc-1.06 12,830 593 330 320 198 44% 2% 21% 67% 33.75 7.04 27.23
grep-2.5.1 31,154 115 100 96 85 13% 3% 10% 26% 4.19 0.01 11
coan-4.2.2 22,414 461 350 332 291 24% 4% 9% 37% 126.66 1.91 6.14
lsh-2.0.4 110,898 616 387 319 264 37% 11% 9% 57% 115.13 2.12 204.12
TOTAL 245,861 6,004 4,312 3,222 2,744 28% 18% 8% 54% 381.68 15.94 335.19

(for cost reduction) and paralleize it. For each function, we do dependence anal-
ysis [18] to Þnd the set of alarm-related variables and pack only those variables
to make octagons. We use the straightforward translation between the baseline,
interval analysis results and their octagon representations.

4.2 Experiment Results

We apply our clustering analyzer on 16 packages from three di! erent categories
(Bugbench [15], GNU softwares, and SourceForge open source projects). Table 1
shows our benchmark.

Effectiveness. To evaluate how much our clustering can reduce the alarm-
investigation e! ort, we measure the number of distinct dominant alarms of alarm
clusters and compare it to the number of reported alarms. In table 1, the columns
labeled Ò# AlarmsÓ show the numbers of alarms reported by baseline analyzer
(B), reduced by syntactic clustering (S), reduced further by semantic clustering
with interval domain (S+I), and reduced further by semantic clustering with oc-
tagon domain (S+I+O), respectively. The next columns labeled Ò% ReductionÓ
show the reduction ratios of each additional alarm clustering analysis (S, +I,
and +O) and the total (S+I+O).

As shown in table 1, our alarm clustering reduces 54% of alarms on aver-
age. Note that even though the syntactic clustering reduces 28% of alarms, the
semantic clustering reduces 26% additionally (18% by clustering with interval
domain and 8% by the other). This means that semantic clustering analyses suc-
cessfully Þnd intricate alarm dependencies which can never be found by syntactic
clustering.

We investigate the most e! ective and the least e! ective cases of the interval
domain-based alarm clustering. Our interval domain-based algorithm turned out

48

48Tuesday, January 24, 2012

