
Catching Software Bugs Early at Build Time

An Overview of

Sparrow’s Static Program Analysis Technology

July 2007

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

CONTENTS 2

Contents

1 Introduction 3

1.1 Sparrow’s Value . 3
1.2 QnA . 3

2 Static Program Analysis Tools 4

2.1 Technology Spectrum in Static Analysis 4
2.2 Sparrow’s Competitive Positioning 5

3 Overview on Sparrow 6

3.1 Deep Semantic Analysis . 6
3.2 Supporting Various Dialects and Platforms 10

4 How Sparrow Works 10

4.1 Step 0: Understanding the Code Genetics 11
4.2 Step 1: Parsing and Distilling the Code 11
4.3 Step 2: Analyzing the Code’s Run-Time Behavior 12
4.4 Step 3: Reporting Bugs . 13

5 Conclusion 14

5.1 Why Sparrow? . 14
5.2 Deploying Sparrow . 15
5.3 Free Trial . 16

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

1 Introduction 3

1 Introduction

Sparrow is a state-of-the-art static source code analyzer that points to fatal bugs
in C and C++ source.

Sparrow is a well-founded static tool. Sparrow’s analysis engine is created
by our innovative semantics-based static analysis technology. Sparrow does not
compile, simulate, nor execute the source. Sparrow just reads in your source,
analyzes its semantics in its advanced mathematical model, and discovers, if any,
bugs in the source.

1.1 Sparrow’s Value

• Find Bugs Before Testing

Sparrow analyzes C and C++ source and points to places of fatal flaws.
Neither binary generation, testing, nor simulation is necessary.

• More Bugs Than Others

Sparrow finds more bugs than other tools in the market, thanks to its deep
semantic analysis. Sparrow understands all constructs of C and C++, hence
can capture tricky side-effects (such as aliasing) of any C and C++ command.

Sparrow is also equipped with an automatic classification technology that
ranks alarms so that the user should see more probable alarms earlier.

• All Automatic

Sparrow is a one-button solution. Just let Sparrow know of your source
path. Sparrow understands your build system. No change to your code or
build scripts is necessary.

• Right After Your Source Is Ready

Sparrow analyzes just your software source, even before the software’s whole
source is ready. Because Sparrow does not execute your code, you don’t have
to prepare its execution environment.

1.2 QnA

Q: What is Sparrow?

A: Sparrow is a static source code analyzer that automatically detects fatal
memory errors(memory leak & buffer overrun) in C and C++ source code
without actually executing the source.

Q: Who needs it?

A: Software developers and quality assurance teams who want to reduce the cost
of software errors. Sparrow reduces the high cost of late detection of fatal
flaws in C and C++ programs.

Sparrow is particularly useful for embedded software, mission-critical soft-
ware (in defense, automobile, aerospace and etc.), or other hard-to-test quality-
sensitive software.

Q: Is Sparrow tailored only for some domain-specific C and C++ programs?

A: No. Sparrow effectively analyzes any C and C++ program.

Q: How is Sparrow different from testing?

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

2 Static Program Analysis Tools 4

A: Sparrow detects bugs without executing your source code, and Sparrow

takes into account all execution scenarios of the code.

On the contrary, testing has to execute your code, delaying bug-detection
until the running environment is ready. Testing cannot cover all inputs to
your code because input combinations are usually infinite or too many.

Q: What is Sparrow’s core technology?

A: Semantic-based static program analysis. Sparrow checks, with an engineered
approximation, all the execution behaviors of the input program without ex-
ecuting it. The process is all automatic. The input to Sparrow is the target
program’s source code.

Figure 1: Technology Leaps by Semantic-based Static Program Analysis

As illustrated in Figure 1, it is semantic-based static analysis technology that
has enabled an innovative leap forward to software quality assurance. Our
research laboratory in academia has pioneered a research on this technology
for more than 15 years.

Q: Is there any limitation or a hidden cost?

A: The user has to check if each reported alarm is a real bug or a false positive.
Sparrow minimizes false alarms and its user interface is specialized to help
the user’s verification step.

2 Static Program Analysis Tools

2.1 Technology Spectrum in Static Analysis

A wide spectrum of technologies underpins the existing static tools in the market.
One end are “syntactic” (also known as “pattern matching”) tools. They emphasize
on finding shallow bugs with small cost. Opposite end are “semantic” tools. They
follow in varied degrees the run-time semantics of the input source.

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

2.2 Sparrow’s Competitive Positioning 5

It is semantic approach that finds most of hard-to-find bugs. Yet, we have to
pay an increased analysis cost. As illustrated in the following figure, even within
the semantic approach though, differs the balance between the analysis cost and
the depth of the bug-finding coverage.

Figure 2: The Spectrum of Static Program Analysis Technologies

2.2 Sparrow’s Competitive Positioning

Deep Analysis in a Cost-Effective Manner

In terms of Figure 2, Sparrow stands at the beginning of the second plateau of
the “Bugs Found” curve. Sparrow hits right before the steep cost-increase point
yet capable of finding most bugs in your code.

In other words, Sparrow’s analysis engine strikes a careful balance between
its analysis cost and its coverage of discovering targeted bugs. This balance has
been achieved by our firm-founded semantic technology that has been tempered by
extensive testing against a wide range of real-world, open-source and proprietary C
and C++ software.

• Sparrow analyzes deep. Sparrow’s deep semantic analysis finds bugs that
other tools miss. Sparrow traces the input program’s all execution scenarios
yet in an economical way. This tracing, static analysis process is based on
the semantics of the C and C++ languages. Example cases that demonstrates
Sparrow’s deep analysis capabilities are shown in Section 3.1.

Some tools may be faster than Sparrow but only with shortcomings.

– Such tools are effective in a limited way. They find bugs only if the
bugs are among their trained set. If the set of trained bug patterns is
different from your code’s bug patterns, they fail to spot your bugs. It
is analogous that they add numbers by looking up the addition table. If
the input numbers are not in the addition table, they fail to add.

– Such tools have a hidden cost. They may find bugs but has little basis to
claim about the overall quality of the analyzed code. If they found only

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

3 Overview on Sparrow 6

one bug in your source, they can hardly claim that rest of your source
has no bugs. They can only say that “your code has one bug in our bug
patterns.”

Sparrow’s technology differs to be more considerate. Suppose Sparrow

finds only one memory-leak position in your code. Though Sparrow may
take some time to find the single leak, we can claim about your code’s quality
that the discovered leak is very likely the only one leak in your code. This
likelihood is because Sparrow spends time to follow all possible execution
scenarios, to be more exhaustive than other tools, rather than focusing on
discovering particular patterns.

• Sparrow is scalable. Sparrow has virtually no limitation on the size of
the input code. So far, Sparrow could analyze up to 10 million lines of C
and C++ code at once. Sparrow achieves this scalability by analyzing the
source files one by one, respecting the dependencies between them. Sparrow

utilizes the disc space in order to always secure the main memory space while
it analyzes an arbitrary number of large source files.

• Sparrow aligns with the future. Sparrow’s semantic analysis technology
is aligned with the evolution line of the future static bug-finding technology:
verification.

Sparrow’s firm theoretical foundation is general enough to be easily instan-
tiated into a “verification”-level analysis. Sparrow is based on a clear design
specification which has been systematically derived from C and C++’s formal
semantic definitions.

Sparrow positions you to be smoothly migrated into the future, as we swiftly
and continually offer additional advanced solutions along the technology evo-
lution line.

3 Overview on Sparrow

Sparrow’s analysis engine has been carefully designed based on necessary founda-
tions in theory and sufficient tunings in practice.

Sparrow finitely computes the dynamics of programs at compile-time. Given
as input a program source, it captures the execution semantics of the input source
by a set of finite equations over an abstract space. Sparrow’s process of setting
up equations and computing their solutions is basically equivalent to tracing all the
execution paths of the program, yet in an economical way.

3.1 Deep Semantic Analysis

Sparrow understands all constructs of C and C++, hence can capture tricky side-
effects (such as aliasing) of any C and C++ command. In particular, Sparrow can
analyze features such as:

· deep call chains · pointer aliases · dynamic memory allocations
· recursions · infinite loops · dynamic method bindings
· complex heap structures · function pointers · libraries

• Sparrow understands loop-induction variables and keeps track of their states
throughout their scope. For example, following code is from Linux Kernel

2.6.4 in cdc-acm.c where Sparrow discovered a buffer-overrun error.

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

3.1 Deep Semantic Analysis 7

570 static int acm_probe (struct usb_interface *intf,

571 const struct usb_device_id *id)

572 {

... ...

625 for (minor = 0; minor < 32 && acm_table[minor]; minor++);

... ...

713 acm_table[minor] = acm;

714 usb_set_intfdata (intf, acm);

... ...

719 }

Sparrow understands that the for-loop’s induction variable minor has 32
after the loop. Sparrow keeps track of this minor value, understands it
remains as 32 for next 88 lines of code until it overruns the buffer acm_table
of size 32.

• Sparrow understands pointer flows across procedures and loops. Following
example is from tar-1.13 in rmt.c where Sparrow discovers a buffer overrun
error.

045 #define STRING_SIZE 64

... ...

125 static void

126 get_string (char *string)

127 {

128 int counter;

129

130 for (counter = 0; counter < STRING_SIZE; counter++)

131 {

132 if (safe_read (STDIN_FILENO, string + counter, 1) != 1)

133 exit (EXIT_SUCCESS);

134

135 if (string[counter] == ’\n’)

136 break;

137 }

138 string[counter] = ’\0’;

139 }

... ...

182 int

183 main (int argc, char *const *argv)

184 {

... ...

217 switch (command)

218 {

... ...

221 case ’O’:

222 {

223 char device_string[STRING_SIZE];

224 char mode_string[STRING_SIZE];

225

226 get_string (device_string);

227 get_string (mode_string);

From the main procedure, Sparrow understands that the calls to get_string
at lines 226 and 227 pass pointers to 64-byte buffers. Sparrow understands
the body of get_string that after the for-loop the argument buffer can be
accessed (line 138) with index 64, an overrun.

• Sparrow understands integer arithmetic across procedure calls.

00 extern int signal;

01 extern int state;

02 int x = 0;

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

3.1 Deep Semantic Analysis 8

03

04 int work(int i) { return i % 11; }

05 int indexof()

06 {

07 int r = 0;

08

09 switch(signal) {

10 case 1:

11 r = 10 * x; break;

12 case 2:

13 r = 20 * x + 2; break;

14 default:

15 r = 110*x + 3;

16 }

17 return work(r);

18 }

19

20 void setx()

21 {

22 if (state > 0) x = 1; else x = 2;

23 }

24

25 int foo()

26 {

27 int arr[10];

28

29 setx();

30 return arr[indexof()];

31 }

See the body of foo. Sparrow understands that the call to setx can set x

to 1 or 2. Sparrow understands the subsequent call to indexof (line 30)
can make r have 10 to 223, hence the return value work(r) (line 17) will be
between 0 to 10. Sparrow thus concludes that the access arr[indexof()]

(line 30) can overrun.

• Sparrow understands the loop-inducing state changes.

00 int foo()

01 {

02 int i;

03 int s = 1;

04 int arr[10];

05

06 for (i=0;i<10;i++)

07 {

08 arr[s] = 0;

09 s = s+1;

10 }

11 return 0;

12 }

See the for-loop. Sparrow understands that, inside the loop, variable s

has 1 to 10, always larger than the loop-induction variable i by one. Hence
Sparrow concludes that the access arr[s] overruns.

• Sparrow understands structure fields, pointers, and their inter-procedural
effects.

00 struct Pair { char *x; char *y; };

01

02 struct Pair *make_pair(char *x, char *y)

03 {

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

3.1 Deep Semantic Analysis 9

04 struct Pair *p = (struct Pair *)malloc(sizeof(struct Pair));

05 p->x = x;

06 return p;

07 }

08

09 struct Pair *pair_this_big(int n)

10 {

11 char *p = (char *)malloc(n);

12 char *q = (char *)malloc(n);

13 return make_pair(p,q);

14 }

See the body of pair_this_big. Sparrow knows the pointers p and q point
to two different memory blocks. Sparrow understands the call to make_pair

will return a pointer to a structure whose one field points to what p points
to, and that no field of the structure will contain the q pointer (line 5 and 6).
Sparrow understands that the p-pointed memory block can be reached after
the return (line 6) but the q-pointed one cannot. Sparrow concludes that
the q-pointed memory block leaks at line 13.

• Sparrow understands loops, loop-escaping conditions, and global effects.

00 extern int g_num;

01

02 int loop()

03 {

04 int i;

05 int *p = (int *)malloc(sizeof(int)*100);

06

07 for (i=0; i<=10; i++) {

08 if (g_num < i) {

09 free(p);

10 return;

11 }

12 }

13 }

See the loop body. Sparrow knows that the p-pointed memory block can
leak when g_num is larger than the loop bound 10. Sparrow knows that
external variable g_num can be bigger than 10, hence Sparrow detects that
the p-pointed memory may not be recycled.

• Sparrow understands inter-procedural effects on heap structures.

00 struct List{ int a; struct List * next; };

01

02 struct List *relink(struct List *x)

03 {

04 struct List *y, *t;

05 y = x->next;

06 free(x);

07 x = y;

08 while(x!=0){

09 t = x->next;

10 x->next = y;

11 y = x;

12 x = t;

13 }

14 t = (struct List *) malloc(sizeof(struct List*));

15 t->next = y;

16 return t;

17 }

18

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

3.2 Supporting Various Dialects and Platforms 10

19 struct List *foo()

20 {

21 struct List *node, *ret_val;

22 node = (struct List *) malloc(sizeof(struct List*));

23 node->next = NULL;

24 ret_val = relink(node);

25 return ret_val;

26 }

See the body of relink. Sparrow understands that the argument x’s first
node is freed, its internal linked nodes are reversed (line 8-13), the reversed
result is pointed to by a newly allocated node (line 15), and the newly allocated
node pointer is returned. Sparrow concludes no leak for relink.

See the body of foo. Sparrow understands that the allocated node passed
to relink will be freed inside relink. Sparrow hence concludes no leak for
foo too.

• Sparrow understands malloc-and-free effects across recursive calls.

00 int *rec_free(int n)

01 {

02 int *y = (int *)malloc(sizeof(int)*10);

03

04 if(n>0){

05 free(y);

06 return rec_free(n-1);

07 } else {

08 free(y);

09 return (int *)malloc(sizeof(int)*10);

10 }

11 }

Sparrow understands that ref_free recursively calls itself, while it frees its
allocated memory (line 2) either before its recursive call (line 5) or before its
return (line 8). Sparrow hence detects no leak.

3.2 Supporting Various Dialects and Platforms

Sparrow can analyze your source written in almost all C and C++ dialects includ-
ing:

ANSI C Arm CC GNU C/C++ Intel C/C++ TI C

Sparrow runs on various operating systems including:

Cygwin IBM AIX FreeBSD Linux Mac OS X
Solaris Windows

4 How Sparrow Works

Sparrow is a one-button solution, from analyzing to bug-reporting. No change to
your code or build scripts is necessary.

Sparrow’s process consists of four all-automatic steps: understanding the code
genetics, parsing and distilling the code, analyzing the code’s run time behaviors,
and reporting detected bugs.

Using Sparrow iterates. Sparrow reports bugs. The user verifies and fixes
them, and runs Sparrow again to check the new revisions.

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

4.1 Step 0: Understanding the Code Genetics 11

4.1 Step 0: Understanding the Code Genetics

Sparrow first identifies the source code that constitutes the target software.
Sparrow infers from the build scripts of the target software which source files
constitute the target and how their C/C++ macros and library files are preprocessed.

After this step, Sparrow has the complete set of vanila C/C++ code for the
target, ready for the subsequent steps.

4.2 Step 1: Parsing and Distilling the Code

Sparrow parses the extracted source code into syntax trees. The syntax trees
are two-dimensional structures that show how the target source is composed of

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

4.3 Step 2: Analyzing the Code’s Run-Time Behavior 12

which language components in which order. Because Sparrow’s parsing process is
the same as in compilers, Sparrow has the complete understanding of the input
source’s syntactic structure.

Sparrow then distills the syntax trees to simplify the subsequent semantic
analysis step.

4.3 Step 2: Analyzing the Code’s Run-Time Behavior

After understanding and distilling the syntactic structure of the code, Sparrow

launches its semantic analysis phase. The semantic analysis is to analyze the input
program’s all possible execution scenarios.

This analysis phase can be explained in several ways. One way to explain it
is rather mathematical. Sparrow captures the dynamics of the whole program
executions in a set of equations. The unknowns of the equations are the program
states during all possible executions. Because the exact solution of the equations
(e.g., exact program states) cannot be computable or too costly, the equations
must be approximately solved. From such approximate solutions (e.g., approximate
program states) we find out where the program may have bugs.

Another more intuitive explanation is also possible. Sparrow’s analysis is a
simluation of the input program’s executions over a simplified, approximate space.
Suppose the input program’s real execution behavior includes the following three
execution sequences, each of which corresponds to progam’s three different inputs:

Nodes in the execution sequence diagram represent the computer states at the
corresponding program points. Edges represents the execution flow. The first se-
quence branches to the left, the second branches to the right, and the third iterates
the right branch four times.

In reality, the program can have infinite or infinitely many execution sequences
for varied input cases. Sparrow approximates such all possible execution sequences
into a single or more, yet finite graphs:

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

4.4 Step 3: Reporting Bugs 13

=⇒

The multiple, exact program states at the same program point in different exe-
cution sequences is approximated to a single one.

This approximation is inevitable. Exact simulation covering all execution sce-
narios is too costly or simply impossible. The exact simulation cannot terminate
if the program has an infinite loop, or needs an infinite number of scenarios if the
program’s input can be infinitely many.

Though the approximation blurs the analysis, letting Sparrow sometimes spot
non-bug places, such false alarms are minimized.

4.4 Step 3: Reporting Bugs

Having found bugs from analyzing the input program’s approximate execution
model, Sparrow reports the results to the user.

Sparrow uses statistical post-analysis. Given the reported alarms, classifica-
tion methods compute a “strength” of each alarm being true. Sparrow uses the
quantities, called “Sparrow scores” to rank the alarms, so that the user can check
highly probable errors first. Sparrow uses the quantities also to sift out probable
false alarms. Only the alarms that have trueness higher than a threshold are re-
ported to the user. Sparrow’s analysis result page lists discovered probable bugs
with their Sparrow scores:

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

5 Conclusion 14

Sparrow’s user interface is web-based. The interface is hyper-linked in-between
source pages, helping the user to quickly traverse the source to verify the alarms.

Sparrow explains bugs. Because Sparrow in effect follows the execution flows
of the source code, it can replay its analysis process back from the bug point. This
replay is shown as hyper-linked “Reason Point” boxes overlayed in the source code.
The chain of the reason points explains why a bug can happen. An example page
of the source code with a bug point and its reason point chain is as follows:

5 Conclusion

5.1 Why Sparrow?

Your software size increases too fast. Conventional software quality assurance pro-
cess fails to catch up.

You need an automatic tool suite to reduce the software quality assurance cost.
A high-end, semantic-based static analysis technology is what is necessary in such
tools.

Particularly, in the spectrum of the technology, you need one that finds most
critical and relevant bugs with a reasonable price. You need a tool that sits in front
of the second plateau of the technology spectrum curve. Sparrow stands there,
right before the steep cost-increase point yet capable of finding most bugs in your
code.

Sparrow’s return on your investment is:

• Early Detection

Sparrow enables you to fix bugs as early as possible – right when your
source code is ready. If you find a bug of a large program at testing, it

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

5.2 Deploying Sparrow 15

Figure 3: Sparrow’s Position in the Spectrum of Static Analysis Technologies

is very costly to trace its cause back in the source code and even worse, if
demands another round of expensive testing. Sparrow is a non-intrusive
tool to your development environment. You can run it any time your source
code is available.

• Catch Deadly Bugs

Sparrow finds the most deadly bugs in C and C++ software. Buffer over-
runs and memory leaks are most common yet hard-to-find bugs that lead to
serious malfunctions whose patterns are complicated and irregular. It is very
expensive to locate such bugs simply by testing, failing to meet your tight
time-to-market constraint.

• Cost Reduction

Sparrow catches bugs early in the development cycle. Without extra adjust-
ments or implentation for testing environment, you can save quite significant
amount of testing time and resources with Sparrow. Early detection of bugs
– and the most deadly ones – is what Sparrow guarantees, providing inno-
vative cost reduction benefits for software debugging and testing.

5.2 Deploying Sparrow

Sparrow is used in two ways:

• As a tool in daily build process

• As a tool in periodic code-review process

In the first case, Sparrow is integrated with the machine that does the nightly
build. Sparrow scans new versions of code every time it is compiled. The ouput
is reviewed by the developers to quickly fix any unnoticed error.

In the second case, Sparrow scans software source before the software is re-
leased or shipped, usually before regular pre-release tests. The output is reviewed
by the developers or independent verification and validation test teams. Sparrow

is also used to quality-check source code provided by subcontractors.

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

5.3 Free Trial 16

5.3 Free Trial

We offer a free trial of Sparrow and comparison benchmark tests. To find out
more, contact us at sales@spa-arrow.com.

Sparrow homepage: http://www.spa-arrow.com

Inquiry: sales@spa-arrow.com

2

Copyright c© 2007 Fasoo.com, Inc. All rights reserved.

