
Catching SoftwareBugsEarly at Build Time

An Overview of
Sparr ow's Static Program Analysis Technology

July 2007

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

CONTENTS 2

Con ten ts

1 In tro duction 3
1.1 Sparr ow's Value . 3
1.2 QnA . 3

2 Static Program Analysis Tools 4
2.1 Technology Spectrum in Static Analysis 4
2.2 Sparr ow's Competitiv e Positioning 5

3 Ov erview on Sparr ow 6
3.1 Deep Semantic Analysis . 6
3.2 Supporting Various Dialects and Platforms 10

4 Ho w Sparr ow W orks 10
4.1 Step 0: Understanding the Code Genetics 11
4.2 Step 1: Parsing and Distilling the Code 11
4.3 Step 2: Analyzing the Code's Run-Time Behavior 12
4.4 Step 3: Reporting Bugs . 13

5 Conclusion 14
5.1 Why Sparr ow? . 14
5.2 Deploying Sparr ow . 15
5.3 Free Trial . 16

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

1 In tro duction 3

1 In tro duction

Sparr ow is a state-of-the-art static sourcecode analyzer that points to fatal bugs
in C and C++ source.

Sparr ow is a well-founded static tool. Sparr ow's analysis engine is created
by our innovative semantics-basedstatic analysis technology. Sparr ow does not
compile, simulate, nor execute the source. Sparr ow just reads in your source,
analyzesits semantics in its advanced mathematical model, and discovers, if any,
bugs in the source.

1.1 Sparr ow's Value

� Find Bugs Before Testing

Sparr ow analyzes C and C++ source and points to places of fatal a ws.
Neither binary generation, testing, nor simulation is necessary.

� More Bugs Than Others

Sparr ow �nds more bugs than other tools in the market, thanks to its deep
semantic analysis. Sparr ow understandsall constructs of C and C++, hence
can capture tric ky side-e�ects (such as aliasing) of any C and C++ command.

Sparr ow is also equipped with an automatic classi�cation technology that
ranks alarms so that the user should seemore probable alarms earlier.

� All Automatic

Sparr ow is a one-button solution. Just let Sparr ow know of your source
path. Sparr ow understands your build system. No change to your code or
build scripts is necessary.

� Righ t After Your Source Is Ready

Sparr ow analyzesjust your software source,even beforethe software's whole
sourceis ready. BecauseSparr ow doesnot executeyour code, you don't have
to prepare its execution environment.

1.2 QnA

Q: What is Sparr ow?

A: Sparr ow is a static source code analyzer that automatically detects fatal
memory errors(memory leak & bu�er overrun) in C and C++ source code
without actually executing the source.

Q: Who needsit?

A: Software developersand quality assuranceteamswho want to reducethe cost
of software errors. Sparr ow reducesthe high cost of late detection of fatal
a ws in C and C++ programs.

Sparr ow is particularly useful for embedded software, mission-critical soft-
ware(in defense,automobile, aerospaceand etc.), or other hard-to-test quality-
sensitive software.

Q: Is Sparr ow tailored only for somedomain-speci�c C and C++ programs?

A: No. Sparr ow e�ectiv ely analyzesany C and C++ program.

Q: How is Sparr ow di�eren t from testing?

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

2 Static Program Analysis Tools 4

A: Sparr ow detects bugs without executing your source code, and Sparr ow
takes into account all execution scenariosof the code.

On the contrary , testing has to execute your code, delaying bug-detection
until the running environment is ready. Testing cannot cover all inputs to
your code becauseinput combinations are usually in�nite or too many.

Q: What is Sparr ow's core technology?

A: Semantic-basedstatic program analysis. Sparr ow checks, with an engineered
approximation, all the execution behaviors of the input program without ex-
ecuting it. The processis all automatic. The input to Sparr ow is the target
program's sourcecode.

Figure 1: Technology Leapsby Semantic-based Static Program Analysis

As illustrated in Figure 1, it is semantic-basedstatic analysis technology that
has enabled an innovative leap forward to software quality assurance. Our
research laboratory in academiahas pioneereda research on this technology
for more than 15 years.

Q: Is there any limitation or a hidden cost?

A: The user has to check if each reported alarm is a real bug or a false positive.
Sparr ow minimizes false alarms and its user interface is specialized to help
the user's veri�cation step.

2 Static Program Analysis Tools

2.1 Technology Spectrum in Static Analysis

A wide spectrum of technologiesunderpins the existing static tools in the market.
One end are \syntactic" (also known as\pattern matching") tools. They emphasize
on �nding shallow bugs with small cost. Opposite end are \semantic" tools. They
follow in varied degreesthe run-time semantics of the input source.

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

2.2 Sparr ow's Comp etitiv e Positioning 5

It is semantic approach that �nds most of hard-to-�nd bugs. Yet, we have to
pay an increasedanalysis cost. As illustrated in the following �gure, even within
the semantic approach though, di�ers the balance between the analysis cost and
the depth of the bug-�nding coverage.

Figure 2: The Spectrum of Static Program Analysis Technologies

2.2 Sparr ow's Comp etitiv e Positioning

Deep Analysis in a Cost-E�ectiv e Manner
In terms of Figure 2, Sparr ow stands at the beginning of the secondplateau of
the \Bugs Found" curve. Sparr ow hits right before the steepcost-increasepoint
yet capableof �nding most bugs in your code.

In other words, Sparr ow's analysis engine strikes a careful balance between
its analysis cost and its coverage of discovering targeted bugs. This balance has
beenachieved by our �rm-founded semantic technology that has beentempered by
extensive testing against a wide rangeof real-world, open-sourceand proprietary C
and C++ software.

� Sparr ow analyzes deep. Sparr ow's deepsemantic analysis�nds bugsthat
other tools miss. Sparr ow traces the input program's all execution scenarios
yet in an economicalway. This tracing, static analysis processis based on
the semantics of the C and C++ languages.Example casesthat demonstrates
Sparr ow's deepanalysis capabilities are shown in Section 3.1.

Sometools may be faster than Sparr ow but only with shortcomings.

{ Such tools are e�ectiv e in a limited way. They �nd bugs only if the
bugs are among their trained set. If the set of trained bug patterns is
di�eren t from your code's bug patterns, they fail to spot your bugs. It
is analogousthat they add numbers by looking up the addition table. If
the input numbers are not in the addition table, they fail to add.

{ Such tools have a hidden cost. They may �nd bugsbut has little basisto
claim about the overall quality of the analyzedcode. If they found only

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

3 Ov erview on Sparr ow 6

one bug in your source, they can hardly claim that rest of your source
has no bugs. They can only say that \y our code has one bug in our bug
patterns."

Sparr ow's technology di�ers to be more considerate. Suppose Sparr ow
�nds only one memory-leak position in your code. Though Sparr ow may
take sometime to �nd the single leak, we can claim about your code's quality
that the discovered leak is very likely the only one leak in your code. This
likelihood is becauseSparr ow spends time to follow all possibleexecution
scenarios,to be more exhaustive than other tools, rather than focusing on
discovering particular patterns.

� Sparr ow is scalable. Sparr ow has virtually no limitation on the size of
the input code. So far, Sparr ow could analyze up to 10 million lines of C
and C++ code at once. Sparr ow achieves this scalability by analyzing the
source�les oneby one, respecting the dependenciesbetweenthem. Sparr ow
utilizes the disc spacein order to always securethe main memory spacewhile
it analyzesan arbitrary number of large source�les.

� Sparr ow aligns with the future. Sparr ow's semantic analysistechnology
is aligned with the evolution line of the future static bug-�nding technology:
veri�cation.

Sparr ow's �rm theoretical foundation is generalenoughto be easily instan-
tiated into a \v eri�cation"-lev el analysis. Sparr ow is basedon a clear design
speci�cation which has beensystematically derived from C and C++'s formal
semantic de�nitions.

Sparr ow positions you to be smoothly migrated into the future, aswe swiftly
and continually o�er additional advancedsolutions along the technology evo-
lution line.

3 Overview on Sparr ow

Sparr ow's analysisenginehas beencarefully designedbasedon necessaryfounda-
tions in theory and su�cien t tunings in practice.

Sparr ow �nitely computes the dynamics of programs at compile-time. Given
as input a program source,it captures the execution semantics of the input source
by a set of �nite equations over an abstract space. Sparr ow's processof setting
up equationsand computing their solutions is basically equivalent to tracing all the
execution paths of the program, yet in an economicalway.

3.1 Deep Semantic Analysis

Sparr ow understandsall constructs of C and C++, hencecan capture tric ky side-
e�ects (such as aliasing) of any C and C++ command. In particular, Sparr ow can
analyze features such as:

� deepcall chains � pointer aliases � dynamic memory allocations
� recursions � in�nite loops � dynamic method bindings
� complex heap structures � function pointers � libraries

� Sparr ow understandsloop-induction variablesand keepstrack of their states
throughout their scope. For example, following code is from Linux Kernel
2.6.4 in cdc-acm.c where Sparr ow discovered a bu�er-o verrun error.

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

3.1 Deep Semantic Analysis 7

570 static int acm_probe (struct usb_interface *intf,
571 const struct usb_device_id *id)
572 {
... ...
625 for (minor = 0; minor < 32 && acm_table[minor]; minor++);
... ...
713 acm_table[minor] = acm;
714 usb_set_intfdata (intf, acm);
... ...
719 }

Sparr ow understands that the for-loop's induction variable minor has 32
after the loop. Sparr ow keeps track of this minor value, understands it
remains as 32 for next 88 lines of code until it overruns the bu�er acm_table
of size32.

� Sparr ow understands pointer o ws acrossproceduresand loops. Following
exampleis from tar-1.13 in rmt.c whereSparr ow discoversa bu�er overrun
error.

045 #define STRING_SIZE64
... ...
125 static void
126 get_string (char *string)
127 {
128 int counter;
129
130 for (counter = 0; counter < STRING_SIZE;counter++)
131 {
132 if (safe_read (STDIN_FILENO, string + counter, 1) != 1)
133 exit (EXIT_SUCCESS);
134
135 if (string[counter] == '\n')
136 break;
137 }
138 string[counter] = '\0';
139 }
... ...
182 int
183 main (int argc, char *const *argv)
184 {
... ...
217 switch (command)
218 {
... ...
221 case 'O':
222 {
223 char device_string[STRING_SIZE];
224 char mode_string[STRING_SIZE];
225
226 get_string (device_string);
227 get_string (mode_string);

From the main procedure,Sparr ow understandsthat the calls to get_string
at lines 226 and 227 passpointers to 64-byte bu�ers. Sparr ow understands
the body of get_string that after the for-loop the argument bu�er can be
accessed(line 138) with index 64, an overrun.

� Sparr ow understands integer arithmetic acrossprocedurecalls.

00 extern int signal;
01 extern int state;
02 int x = 0;

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

3.1 Deep Semantic Analysis 8

03
04 int work(int i) { return i % 11; }
05 int indexof()
06 {
07 int r = 0;
08
09 switch(signal) {
10 case 1:
11 r = 10 * x; break;
12 case 2:
13 r = 20 * x + 2; break;
14 default:
15 r = 110*x + 3;
16 }
17 return work(r);
18 }
19
20 void setx()
21 {
22 if (state > 0) x = 1; else x = 2;
23 }
24
25 int foo()
26 {
27 int arr[10];
28
29 setx();
30 return arr[indexof()];
31 }

Seethe body of foo . Sparr ow understands that the call to setx can set x
to 1 or 2. Sparr ow understands the subsequent call to indexof (line 30)
can make r have 10 to 223, hencethe return value work(r) (line 17) will be
between 0 to 10. Sparr ow thus concludesthat the accessarr[indexof()]
(line 30) can overrun.

� Sparr ow understandsthe loop-inducing state changes.

00 int foo()
01 {
02 int i;
03 int s = 1;
04 int arr[10];
05
06 for (i=0;i<10;i++)
07 {
08 arr[s] = 0;
09 s = s+1;
10 }
11 return 0;
12 }

See the for-loop. Sparr ow understands that, inside the loop, variable s
has 1 to 10, always larger than the loop-induction variable i by one. Hence
Sparr ow concludesthat the accessarr[s] overruns.

� Sparr ow understands structure �elds, pointers, and their inter-procedural
e�ects.

00 struct Pair { char *x; char *y; };
01
02 struct Pair *make_pair(char *x, char *y)
03 {

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

3.1 Deep Semantic Analysis 9

04 struct Pair *p = (struct Pair *)malloc(sizeof(struct Pair));
05 p->x = x;
06 return p;
07 }
08
09 struct Pair *pair_this_big(int n)
10 {
11 char *p = (char *)malloc(n);
12 char *q = (char *)malloc(n);
13 return make_pair(p,q);
14 }

Seethe body of pair_this_big . Sparr ow knows the pointers p and q point
to two di�eren t memory blocks. Sparr ow understandsthe call to make_pair
will return a pointer to a structure whoseone �eld points to what p points
to, and that no �eld of the structure will contain the q pointer (line 5 and 6).
Sparr ow understandsthat the p-pointed memory block can be reached after
the return (line 6) but the q-pointed one cannot. Sparr ow concludesthat
the q-pointed memory block leaks at line 13.

� Sparr ow understands loops, loop-escapingconditions, and global e�ects.

00 extern int g_num;
01
02 int loop()
03 {
04 int i;
05 int *p = (int *)malloc(sizeof(int)*100);
06
07 for (i=0; i<=10; i++) {
08 if (g_num < i) {
09 free(p);
10 return;
11 }
12 }
13 }

Seethe loop body. Sparr ow knows that the p-pointed memory block can
leak when g_numis larger than the loop bound 10. Sparr ow knows that
external variable g_numcan be bigger than 10, henceSparr ow detects that
the p-pointed memory may not be recycled.

� Sparr ow understands inter-procedural e�ects on heap structures.

00 struct List{ int a; struct List * next; };
01
02 struct List *relink(struct List *x)
03 {
04 struct List *y, *t;
05 y = x->next;
06 free(x);
07 x = y;
08 while(x!=0){
09 t = x->next;
10 x->next = y;
11 y = x;
12 x = t;
13 }
14 t = (struct List *) malloc(sizeof(struct List*));
15 t->next = y;
16 return t;
17 }
18

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

3.2 Supp orting Various Dialects and Platforms 10

19 struct List *foo()
20 {
21 struct List *node, *ret_val;
22 node = (struct List *) malloc(sizeof(struct List*));
23 node->next = NULL;
24 ret_val = relink(node);
25 return ret_val;
26 }

Seethe body of relink . Sparr ow understands that the argument x's �rst
node is freed, its internal linked nodes are reversed(line 8-13), the reversed
result is pointed to by a newly allocatednode(line 15), and the newly allocated
node pointer is returned. Sparr ow concludesno leak for relink .

Seethe body of foo . Sparr ow understands that the allocated node passed
to relink will be freed inside relink . Sparr ow henceconcludesno leak for
foo too.

� Sparr ow understandsmalloc-and-freee�ects acrossrecursive calls.

00 int *rec_free(int n)
01 {
02 int *y = (int *)malloc(sizeof(int)*10);
03
04 if(n>0){
05 free(y);
06 return rec_free(n-1);
07 } else {
08 free(y);
09 return (int *)malloc(sizeof(int)*10);
10 }
11 }

Sparr ow understandsthat ref_free recursively calls itself, while it freesits
allocated memory (line 2) either before its recursive call (line 5) or before its
return (line 8). Sparr ow hencedetects no leak.

3.2 Supp orting Various Dialects and Platforms

Sparr ow can analyzeyour sourcewritten in almost all C and C++ dialects includ-
ing:

ANSI C Arm CC GNU C/C ++ Intel C/C ++ TI C

Sparr ow runs on various operating systemsincluding:

Cygwin IBM AIX FreeBSD Linux Mac OS X
Solaris Windows

4 How Sparr ow Works

Sparr ow is a one-button solution, from analyzing to bug-reporting. No changeto
your code or build scripts is necessary.

Sparr ow's processconsistsof four all-automatic steps: understanding the code
genetics,parsing and distilling the code, analyzing the code's run time behaviors,
and reporting detected bugs.

Using Sparr ow iterates. Sparr ow reports bugs. The user veri�es and �xes
them, and runs Sparr ow again to check the new revisions.

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

4.1 Step 0: Understanding the Co de Genetics 11

4.1 Step 0: Understanding the Code Genetics

Sparr ow �rst identi�es the source code that constitutes the target software.
Sparr ow infers from the build scripts of the target software which source �les
constitute the target and how their C/C ++macrosand library �les arepreprocessed.

After this step, Sparr ow has the complete set of vanila C/C ++ code for the
target, ready for the subsequent steps.

4.2 Step 1: Parsing and Distilling the Code

Sparr ow parsesthe extracted sourcecode into syntax trees. The syntax trees
are two-dimensional structures that show how the target source is composed of

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

4.3 Step 2: Analyzing the Co de's Run-Time Beha vior 12

which languagecomponents in which order. BecauseSparr ow's parsing processis
the sameas in compilers, Sparr ow has the complete understanding of the input
source'ssyntactic structure.

Sparr ow then distills the syntax trees to simplify the subsequent semantic
analysis step.

4.3 Step 2: Analyzing the Code's Run-Time Behavior

After understanding and distilling the syntactic structure of the code, Sparr ow
launchesits semantic analysisphase. The semantic analysis is to analyzethe input
program's all possibleexecution scenarios.

This analysis phase can be explained in several ways. One way to explain it
is rather mathematical. Sparr ow captures the dynamics of the whole program
executions in a set of equations. The unknowns of the equations are the program
states during all possibleexecutions. Becausethe exact solution of the equations
(e.g., exact program states) cannot be computable or too costly, the equations
must be approximately solved. From such approximate solutions (e.g., approximate
program states) we �nd out where the program may have bugs.

Another more intuitiv e explanation is also possible. Sparr ow's analysis is a
simluation of the input program's executionsover a simpli�ed, approximate space.
Supposethe input program's real execution behavior includes the following three
execution sequences,each of which corresponds to progam's three di�eren t inputs:

Nodes in the execution sequencediagram represent the computer states at the
corresponding program points. Edgesrepresents the execution o w. The �rst se-
quencebranchesto the left, the secondbranchesto the right, and the third iterates
the right branch four times.

In reality, the program can have in�nite or in�nitely many execution sequences
for varied input cases.Sparr ow approximates such all possibleexecutionsequences
into a single or more, yet �nite graphs:

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

4.4 Step 3: Rep orting Bugs 13

=)

The multiple, exact program states at the sameprogram point in di�eren t exe-
cution sequencesis approximated to a single one.

This approximation is inevitable. Exact simulation covering all execution sce-
narios is too costly or simply impossible. The exact simulation cannot terminate
if the program has an in�nite loop, or needsan in�nite number of scenariosif the
program's input can be in�nitely many.

Though the approximation blurs the analysis, letting Sparr ow sometimesspot
non-bug places,such false alarms are minimized.

4.4 Step 3: Rep orting Bugs

Having found bugs from analyzing the input program's approximate execution
model, Sparr ow reports the results to the user.

Sparr ow usesstatistical post-analysis. Given the reported alarms, classi�ca-
tion methods compute a \strength" of each alarm being true. Sparr ow usesthe
quantities, called \ Sparr ow scores"to rank the alarms, so that the user can check
highly probable errors �rst. Sparr ow usesthe quantities also to sift out probable
false alarms. Only the alarms that have truenesshigher than a threshold are re-
ported to the user. Sparr ow's analysis result page lists discovered probable bugs
with their Sparr ow scores:

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

5 Conclusion 14

Sparr ow's userinterface is web-based.The interface is hyper-linked in-between
sourcepages,helping the user to quickly traversethe sourceto verify the alarms.

Sparr ow explainsbugs. BecauseSparr ow in e�ect follows the execution o ws
of the sourcecode, it can replay its analysisprocessback from the bug point. This
replay is shown ashyper-linked \Reason Point" boxesoverlayed in the sourcecode.
The chain of the reasonpoints explains why a bug can happen. An example page
of the sourcecode with a bug point and its reasonpoint chain is as follows:

5 Conclusion

5.1 Wh y Sparr ow?

Your software size increasestoo fast. Conventional software quality assurancepro-
cessfails to catch up.

You needan automatic tool suite to reducethe software quality assurancecost.
A high-end, semantic-based static analysis technology is what is necessaryin such
tools.

Particularly , in the spectrum of the technology, you need one that �nds most
critical and relevant bugswith a reasonableprice. You needa tool that sits in front
of the secondplateau of the technology spectrum curve. Sparr ow stands there,
right before the steepcost-increasepoint yet capableof �nding most bugs in your
code.

Sparr ow's return on your investment is:

� Early Detection

Sparr ow enables you to �x bugs as early as possible { right when your
source code is ready. If you �nd a bug of a large program at testing, it

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

5.2 Deplo ying Sparr ow 15

Figure 3: Sparr ow's Position in the Spectrum of Static Analysis Technologies

is very costly to trace its causeback in the source code and even worse, if
demands another round of expensive testing. Sparr ow is a non-intrusive
tool to your development environment. You can run it any time your source
code is available.

� Catc h Deadly Bugs

Sparr ow �nds the most deadly bugs in C and C++ software. Bu�er over-
runs and memory leaks are most common yet hard-to-�nd bugs that lead to
seriousmalfunctions whosepatterns are complicated and irregular. It is very
expensive to locate such bugs simply by testing, failing to meet your tight
time-to-market constraint.

� Cost Reduction

Sparr ow catchesbugsearly in the development cycle. Without extra adjust-
ments or implentation for testing environment, you can save quite signi�cant
amount of testing time and resourceswith Sparr ow. Early detection of bugs
{ and the most deadly ones{ is what Sparr ow guarantees, providing inno-
vative cost reduction bene�ts for software debuggingand testing.

5.2 Deplo ying Sparr ow

Sparr ow is usedin two ways:

� As a tool in daily build process

� As a tool in periodic code-reviewprocess

In the �rst case,Sparr ow is integrated with the machine that does the nightly
build. Sparr ow scansnew versionsof code every time it is compiled. The ouput
is reviewed by the developers to quickly �x any unnoticed error.

In the secondcase,Sparr ow scanssoftware sourcebefore the software is re-
leasedor shipped, usually before regular pre-releasetests. The output is reviewed
by the developers or independent veri�cation and validation test teams. Sparr ow
is also usedto quality-check sourcecode provided by subcontractors.

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

5.3 Free Trial 16

5.3 Free Trial

We o�er a free trial of Sparr ow and comparison benchmark tests. To �nd out
more, contact us at sales@spa-arrow.com.

Sparr ow homepage: http://www.spa-arrow.com
Inquiry: sales@spa-arrow.com

2

Copyrigh t c 2007 Fasoo.com, Inc. All rights reserved.

