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Abstract. In this article we present SparrowBerry: a verified valida-
tor for Sparse Sparrow, an industrial-strength static analyzer for the
C language. Sparse Sparrow is a sound, global, yet scalable static an-
alyzer whose design is proven correct by the abstract interpretation and
our general sparse analysis frameworks. However, it does not necessarily
mean that the implementation, which has lots of engineering, is also cor-
rect conforming to the design. To solve this problem, we attach a verified
validator to the analyzer: the validator checks if the analysis result from
Sparse Sparrow is indeed a sound abstract semantics of the input C
program. The validator is extracted from our 20K-line Coq proof for the
correctness of the underlying “vanilla” abstract interpreter of Sparse
Sparrow. We have demonstrated the feasibility of this verified validator
by experiments with realistic benchmarks.

1 Introduction

Motivation. Sparse Sparrow [9–12, 15, 17–20] is our industrial-strength static
analyzer for C, whose design is proven correct in the abstract interpretation [7,
8] and the general sparse analysis [18] frameworks. Sparse Sparrow chases
C’s whole semantic behavior by estimating numbers, pointers, dynamic mem-
ory allocations, procedure calls, etc. in order to find safety errors such as buffer
overrun and null dereference. Sparse Sparrow globally analyzes the whole pro-
gram as one unit starting from the input C program’s main procedure, yet it is
scalable too: built on top of the general sparse analysis framework [18], Sparse
Sparrow can globally analyze up to million lines of C code with a practically
useful precision.

Though the design is correct, guaranteeing that the analysis result is always
a sound approximation of the input program’s all executions, the implementa-
tion that achieved a realistic cost-accuracy performance is fairly complex and
thus can easily lead to unsound analysis results. Sparse Sparrow consists of
150,000 lines of OCaml code with lots of optimizations, among which one key
optimization is to make the analysis sparse [18]. For example, we had to eco-
nomically and safely estimate the data dependencies between abstract locations
across procedural boundaries. For this engineering, we used the static single
assignment (SSA) transformation [22] with binary decision diagrams [5], etc.



We thus have developed a verified validator that checks whether the the anal-
ysis results from Sparse Sparrow is correct. The analysis result is supposed,
in design, to be a fixpoint of a correct abstract semantic function. Our valida-
tor SparrowBerry has a proven-correct abstract semantic function. Given the
analysis result from Sparse Sparrow, SparrowBerry checks if the result is
actually a fixpoint of the correct abstract semantic function. We mechanized the
correctness proof of the abstract semantic function in Coq and SparrowBerry
is extracted by Coq from this mechanization. Our trust base is largely the Coq
system and analysis-result translations from Sparse Sparrow to Sparrow-
Berry.

Overview. Figure 1 shows an overview of the validation process using Spar-
rowBerry. Sparse Sparrow analyzes an input program and returns an anal-
ysis result (a fixpoint of F̂ in OCaml). Given an input program and an analysis
result, SparrowBerry checks whether the analysis result is correct (a post-
fixpoint of F̂ in Coq). If it is, the analysis result is guaranteed to be a sound
approximation of the concrete semantics of the input program; otherwise, it
guarantees nothing.

input
program Sparse Sparrow

F̂ in OCaml

analysis
result

SparrowBerry

F̂ in Coq

yes/no

Fig. 1. The overview of validation using SparrowBerry. The F̂ is the analysis func-
tion (an abstract semantic function).

Contributions. Our contributions are as follows.

– We present a formally verified validator SparrowBerry for Sparse Spar-
row, our industrial-strength sound static analyzer for full C. By this combi-
nation, we acquire trusted real-world static analysis results for C. To the best
of our knowledge, no previous static analyzer achieves this: trusted analysis
results from an industrial-strength safety-error-detecting static analyzer for
full C.

– We experimentally demonstrate SparrowBerry’s feasibility in validating
Sparse Sparrow’s results for realistic C benchmarks.



Expression e ::= literal(l) (literal)
| bop(b, e, e) (binary operation)
| uop(u, e) (unary operation)
| lv (value-of operator)
| &lv (address-of operator)

l-value lv ::= v (variable)
| *e (dereference)
| e[e] (array access)
| e.m (struct access)

Allocation alloc ::= [e] (array allocation)
| {x} (struct allocation)

Command c ::= lv := e (assignment)
| lv := alloc(label, alloc) (allocation)
| assume(e) (assumption)
| call(list f, list e) (function call)
| returnf (function return)
| libcall(lcall, list e) (library call)
· · ·

Fig. 2. Excerpt of the syntax of the input of Sparse Sparrow

Outline. Section 2 presents the target static analyzer Sparse Sparrow. Sec-
tion 3 explains the correctness proof of our validator which is mechanized in
Coq. Section 4 discusses the proof mechanization issues. Section 5 presents the
experimental results. Section 6 concludes with discussions and related works.

2 Target Analyzer Sparse Sparrow

We introduce Sparse Sparrow, the target analyzer of the validation. It ana-
lyzes C programs and detects safety errors, e.g. buffer overrun, divided by zero,
and null pointer dereference. In this section, we introduce only some key features
of it. Sect. Appendix A has more details of the analysis.

Input and Output. The input C code to Sparse Sparrow is represented as a
control-flow-graph (CFG) whose nodes are basic blocks. A basic block contains
a list of commands. Figure 2 presents an excerpt of the syntax of the input
program [16]. Note that the control-related commands, such as if, goto, and
function call, are desugared to control flow edges and basic blocks with their
conditions explicit by assume command.

The output of Sparse Sparrow is a map from program points to abstract
memories. An abstract memory is in turn a map from abstract locations to
abstract values.



Soundness. Based on the abstract interpretation framework [7], Sparse Spar-
row is sound in design. It is guaranteed that the output abstract memories over-
approximate every reachable concrete memory for each program point. Over-
approximation means for every location and its value of the concrete memory,
the abstract value of the corresponding abstract location in the abstract memory
over-approximates the concrete value. Based on this result, the analyzer alarms
possible safety errors.

Analyzed Semantics. Sparse Sparrow faithfully chases whole C’s semantic
behavior, including numbers, pointers, procedure calls, dynamic allocations, etc.
Sparse Sparrow can track semantic properties across function calls throughout
the whole program.

Scalability. Sparse Sparrow is scalable, based on the global sparse analy-
sis framework [18]. The sparse analysis framework reduces the analysis cost by
saving unnecessary abstract memory propagation during the analysis. In the or-
dinary dense analysis, values are propagated along control flows. In the sparse
analysis, unnecessary propagation is eliminated by exploiting the data depen-
dency [18]. For example of the sparse analysis, in Fig. 3, the value at the location
x defined at the program point a© is not propagated to b©, but directly to c©.
This is because x defined at a© is not used in b© but in c©. In this way, Sparse
Sparrow succeeded in globally analyzing million lines of C code.

a© x = 0

b© y = 1

c© z = x

x 7→ [0, 0] x 7→ [0, 0]

x 7→ [0, 0]
y 7→ [1, 1] y 7→ [1, 1]

x 7→ [0, 0]
y 7→ [1, 1]
z 7→ [0, 0]

z 7→ [0, 0]

dense analysis result sparse analysis result

y

x

Fig. 3. The figure shows the missing entries on the sparse analysis result. Solid lines
represent the data dependency, while dashed lines represent the control flow. In the
sparse analysis, an abstract value is propagated only to the program points where it is
used.



3 Correctness Proof of Validator SparrowBerry

In this section, we present the design of the validator SparrowBerry and prove
its correctness. The validator and its soundness proof are mechanized in Coq.
See our Coq development1 for the full details.

Validation. The result of Sparse Sparrow is expected to be sound with re-
spect to the abstract interpretation framework. Formally, for all program p, the
analysis result Sparse Sparrow(p) is expected to be a post-fixpoint of the
underlying abstract semantics of Sparse Sparrow.

However, the underlying abstract semantics of Sparse Sparrow exists only
in design. Sparse Sparrow is an OCaml program that implements the de-
sign with lots of engineering for performance optimization. The implementation
correctness is not known.

Instead of proving the implementation itself, we develop a verified validator
that checks the analysis result’s correctness. The validator’s correctness is proven
in Coq.

The validator SparrowBerry checks whether the input analysis result is a
post-fixpoint of its own abstract semantic function F̂p : Ŝ→ Ŝ, i.e.

SparrowBerry(p, ŝ) = F̂p(ŝ) v ŝ .

As usual in the abstract interpretation framework, the abstract semantic
function F̂p should “over-approximate” the concrete semantic relation Fp (Lemma 2)
and satisfies some natural properties (Lemma 1, 3). Note that the abstract se-
mantic function F̂p is specific to the validator, and that of Sparse Sparrow is
irrelevant to the soundness of the validator.

Densifying sparse analysis result. The validator SparrowBerry targets on
dense analysis results, so the sparse analysis result from our Sparse Sparrow
cannot be directly checked by SparrowBerry. This is because sparse analysis
eliminates unnecessary propagation, making some entries empty. To address this,
we have to fill entries by exploiting helper data dependency [18]. This process
degrades the scalability of SparrowBerry by increasing the sizes of analysis
results. See Sect. 4.2 for more details on this process.

3.1 Correctness

The validator SparrowBerry is sound in the sense that if the validation suc-
ceeds, the analysis result indeed over-approximates the concrete semantics. In
this section, we state the soundness formally and present a sketch of proof, which
is mechanized in Coq.

We use the proof technique of [3, 4, 13]. The soundness proof has two fea-
tures. First, the soundness is represented by a relation between concrete values
1 http://ropas.snu.ac.kr/sparrowberry/



and abstract values; collecting semantics does not appear in the soundness def-
inition as in the abstract interpretation. Second, the soundness is proved by a
simple induction on the number of execution steps; which is showing that the
relation between concrete and abstract values is preserved on all of the program
executions.

This proof approach reduces the proof burden of the abstract interpretation
framework. First, semantic domains are not required to have hand-to-define-
in-coq structures such as complete partial order or complete lattice. This is
because the least fixpoints are no longer considered: for the concrete semantics,
only reachable states in finite steps are considered by induction; for the abstract
semantics, we validate a post-fixpoint instead of the least fixpoint. Second, the
abstract semantic function F̂p of SparrowBerry is not required to be mono-
tonic. Third, the requirement of the Galois connection is reduced to Lemma 3.

Formally, the validator SparrowBerry is sound as follows:

Theorem 1 (Soundness of SparrowBerry). For all program p, abstract
state ŝ, and reachable state s ∈ [[p]], SparrowBerry(p, ŝ) = true implies
s RState ŝ.

Before presenting a sketch of proof, we elaborate the meaning of the soundness
theorem.

Abstraction relation. We introduce the abstraction relation between concrete and
abstract objects such as values, memories, and states. Simply put, a concrete
object c and an abstract object a are abstractly related if a over-approximates
c. For example, the interval [1, 5] over-approximates 3, so we may define the
abstract relation RZ on integers so that

3 RZ [1, 5] .

In this way, the abstract relation RState on states is designed to satisfy the
auxiliary lemmas in the soundness proof.

The relation Rstate is the abstract relation on the concrete and the abstract
states, which will be defined later in this section. Before presenting a sketch of
proof, we elaborate the meaning of the soundness theorem.

Over-approximation of concrete semantics. For an input program p, let Fp ⊆
S× S be the operational semantic relation of the small-step concrete semantics
for the program p. The semantics [[p]] ∈ 2S is defined as follows:

[[p]] ::= {s | s0 F
∗
p s}

where the initial state s0 is defined as a pair of the global entry node and the
empty memory. An analysis result ŝ over-approximates the concrete semantics
of a program p if for all reachable state s ∈ [[p]], s RState ŝ.

Now we are ready to prove the soundness.



Proof (Theorem 1). Since s ∈ [[p]], there exists n such that

s0 F
n
p s .

We prove by induction on n.
– Case n = 0.

We have s = s0 since s0 F
0
p s. Lemma 1 proves this initial case.

– Case n = m+ 1.
Since s0 F

m+1
p s, there exists s′ ∈ S such that

s0 F
m
p s′ and s′ Fp s .

For the rest of the proof, see the diagram below. The item numbers match
with the corresponding propositions in the diagram.

s′ s

F̂p(ŝ)

ŝ ŝ

(1) RState

Fp

(2) RState

RState (4)

(3) w

1. By induction hypothesis, we have s′ RState ŝ.
2. By Lemma 2 on the relation between the concrete and the abstract

semantics, we have s RState F̂p(ŝ).
3. We have SparrowBerry(p, ŝ) = true. By the definition of Sparrow-

Berry, we have F̂p(ŝ) v ŝ.
4. By Lemma 3 on the relation between the abstract relation and the order

of the abstract state, we have s RState ŝ.
The figure below summarizes the structure of the proof.

s0 s1 s2 s3

F̂p(ŝ) F̂p(ŝ) F̂p(ŝ)

ŝ ŝ ŝ ŝ

RState

Fp

RState

Fp

RState

RState

Fp

RState

RState

Fp

RState

w w w

ut
It remains to prove Lemma 1, 2, and 3. They all are stated and proved in

Coq, but we omit the proofs here. In the following diagrams, solid lines are the
premises and dashed lines are the conclusions of the Lemmas.

The initial concrete state is a pair of an initial program point and an empty
concrete memory. Lemma 1 means that the initial concrete state has abstract
relations with all abstract memories.



Lemma 1. For all ŝ ∈ Ŝ, we have s0 RState ŝ.

s0

ŝ

RState

The abstract semantic function F̂p, implemented in Coq, is designed to ab-
stract the one-step concrete execution F . For the soundness, it is not required to
be the same with that of the untrusted fixpoint solver. However, for the complete-
ness, the abstract semantic function F̂p should be more precise than that of the
untrusted fixpoint solver. See Sect. 6 for more discussions on the completeness.

Lemma 2 means that the abstract execution over-approximates the concrete
execution. It is the only condition that the abstract semantic function should
satisfy.

Lemma 2. For all concrete state s, s′ ∈ S and abstract state ŝ ∈ Ŝ, s Fp s′ and
s RState ŝ implies s′ RState F̂p(ŝ).

s s′

ŝ F̂p(ŝ)

RState

Fp

RState

Lemma 3 means the abstraction relation should be consistent to the order
relation of abstract states. It is straightforward from the intuitive definitions.

Lemma 3. For all s ∈ S and ŝ ∈ Ŝ, s RState ŝ and ŝ v ŝ′ implies s RState ŝ
′.

s

ŝ

ŝ′

RState

RState

w

3.2 Abstraction Relation

As mentioned, we define abstraction relations between concrete and abstract
domains. A concrete object c and an abstract object a are abstractly related if
a soundly over-approximates c.

The relation is defined constructively from primitive domains such as integer
and location domains to complex ones such as array, record, memory, and state
domains. Since the construction of the relations is quite standard, we only present
examples on interval, memory, and state domain in the paper.



Interval. We define the abstraction relation RInt ⊆ Z× Ẑ on the set of integers
and the interval domain. Note that the set Z∞ = Z ∪ {∞,−∞} is lifted from Z
and the interval domain Ẑ = Z∞×Z∞ is the product of two sets of lifted integers
for lower and upper bounds. Formally, the abstraction relation RInt ⊆ Z× Ẑ on
integers is defined as follows:

z RInt [z1, z2] , z1 ≤ z ≤ z2 .

The order is obviously defined.

Memory. We define the abstraction relation RMem ⊆ Mem× ˆMem on concrete
and abstract memory domains in a pointwise manner. Note that a concrete
memory is a map from locations to values and an abstract memory is a top-
lifted partial map from sets of locations to abstract values (see Sect. A for more
details of domains). Formally, the abstraction relation RMem ⊆ Mem× ˆMem on
the memories is defined as follows:

m RMem m̂ , ∀l ∈ Loc, v ∈ Val : m(l) = v → v RVal m̂ ({l})
∨ m̂ = > .

State. A concrete state (pp,m) is a pair of a program point pp and a memory
m. An abstract state is a map from program points of the input program to
abstract memories. A concrete state is abstractly related to an abstract state if
the concrete memory is abstractly related to the corresponding abstract memory
of the program point of the concrete state. Formally, we define the abstraction
relation RState ⊆ State× ˆState on state domains as follows:

(pp,m) RState ŝ , m RMem ŝ(pp) .

4 Proof Mechanization

4.1 Semantic Domains in Coq

In this section, we introduce domain module types and functors defined in Spar-
rowBerry.

Lattice. Figure 4 shows the Lattice module type defined in Coq. The Lattice
module type is defined by the definitions of partial ordered set, join and meet
operations, bottom and top values, and their related properties. The definition
of partial ordered set is omitted since it is trivial [21].

The Lattice module type is based on Pichardie’s work [21]. Most of the
specifications in the module type are exactly the same as his work. However,
there are two main differences between theirs and ours: (1) one is that more
specific lemmas that should be proved for making modules of the module type
are added to avoid the repetition of some useful definitions and proofs, e.g.



Module Type Lattice.
Include Poset.

Parameter join : binop t.
Parameter join_spec_left : forall x y : t, order x (join x y).
Parameter join_spec_right : forall x y : t, order y (join x y).
Parameter join_spec_least : forall x y u : t,

order x u -> order y u -> order (join x y) u.
Parameter join_comm : forall x y : t, eq (join x y) (join y x).

Parameter meet : binop t.
Parameter meet_spec_left : forall x y : t, order (meet x y) x.
Parameter meet_spec_right : forall x y : t, order (meet x y) y.
Parameter meet_spec_greatest : forall x y u : t,

order u x -> order u y -> order u (meet x y).
Parameter meet_comm : forall x y : t, eq (meet x y) (meet y x).

Parameter bottom : t.
Parameter bottom_spec : forall x : t, order bottom x.
Parameter join_bottom_id : forall x, eq x (join x bottom).

Parameter top : t.
Parameter top_spec : forall x : t, order x top.
Parameter top_must : forall x, order top x -> x = top.
Parameter meet_top_id : forall x, eq x (meet x top).

End Lattice.

Fig. 4. The Lattice module type



top_must; (2) another is that it does not include the lemmas related to the
termination of the analysis. Note that the termination guarantee is necessary to
make a verified analyzer, not a verified validator like SparrowBerry.

There is an additional lemma top_must, the meaning of which is that if a
value is bigger than or equal to top then the value is syntactically equal to the
top. This lemma is satisfiable in the lattices we are dealing with, while it is not
satisfiable in lattices in general. This stronger condition for the lattice makes the
proof simple since we can easily use rewrite tactic, which substitutes a term in
a proposition to another syntactically equivalent term in Coq.

Countable. The Countable module type plays an important role in the Map
module type. Figure 5 shows the module type Countable. By the definition of
the countable set, all of the elements in the set should be mapped onto natural
numbers, and the mapping should be an one-to-one function. The represent
function mimics the mapping. A difference between the represent function and
the mapping is that represent is the partial function that returns optional
natural numbers. By means of the difference, finite lists of a set can be defined
as countable sets without using the notion of dependent type in Coq. There are
two lemmas that represent function should satisfy: the function and its inverse
function preserve the equality of t type that is the type of the elements in a
countable set. Hence, it guarantees that different values of the countable set are
mapped onto different natural numbers each other.

Module Type Countable.
Include Equiv.

Parameter represent : t -> option nat.
Parameter represent_preserve_eq : forall (i j : t),

eq i j -> represent i = represent j.
Parameter represent_inv_preserve_eq : forall (i j : t) (n : nat),

represent i = Some n -> represent j = Some n -> eq i j.
End Countable.

Fig. 5. The Countable module type

Set. Figure 6 shows the Set functor constructing set domains. The element type
of Set (ind_t) is defined by two cases: (1) one is a finite set of the elements typed
t using the Coq standard library MSetWeakList; (2) another is top. The input of
the functor is an Equiv-typed module which is used to make decidability module
Dec. Finally the set module DSet is generated by the decidability module.



Module DSetEquiv (Import equiv : Equiv) <: Equiv.
Module Dec <: DecidableType.DecidableType.

Definition t : Type := equiv.t.
Definition eq : t -> t -> Prop := fun x y => equiv.eq x y.
...

End Dec.
Module DSet := MSetWeakList.Make Dec.

Inductive ind_t : Type :=
| T_top : ind_t
| T_value : DSet.t -> ind_t.
Definition t : Type := ind_t.
...

End DSetEquiv.

Fig. 6. The Set functor

Map. Our map domain is implemented by the trie datatype. It is similar to
radix search tree which Appel et al. used for implementing maps [1], but simpler
and less efficient; when the key of a map is a sequence of elements, each edge
in trie is labeled with a single element of the key, while those in radix search
tree can be labeled with subsequences of the key. Figure 7 shows the definition
of the Map functor. The inputs of the functor are two modules which represent
keys and values of the map. The binary form of the key value guides the root to
the node in which the corresponding value is stored.

In general, functions on Map have two phases: (1) one is to translate a key
value to a binary number; (2) another is to operate some functionalities using the
binary number. For example, the addition on Map is defined by the functions add
and add_pos in Fig. 7. First in the add function, key k is translated to a binary
number by represent and P_of_succ_nat functions. Note that P_of_succ_nat
is a standard function translating natural numbers to binary numbers in Coq. If
the key is not representable by represent, it returns None. Using the translated
binary number p, the add_pos function finds the node corresponding to the input
key.

In our map design, key values are stored in nodes, although it is not essential
for designing maps. The design choice helps making the fold function that is using
key values in its operation. The key values do not need to be stored if they can be
restored from the binaries which are the positions the values are stored. However,
to restore the original key values, the reverse function of represent should be
defined for every module typed Countable. To simply solve the problem, we just
store the original key values in the map datatype and they are used by the fold
function directly.



Module DMapEquiv (Import key : Countable) (Import val : Equiv) <: Equiv.
Inductive ind_t :=
| T_leaf: ind_t
| T_node: ind_t -> option (key.t * val.t) -> ind_t -> ind_t.
Definition t : Type := ind_t.
...

Fixpoint add_pos (p:positive) (k:key.t) (v:val.t) (m:t) :=
match p,m with

| xH,T_leaf => T_node T_leaf (Some (k,v)) T_leaf
| xH,T_node ls oldv rs => T_node ls (Some (k,v)) rs
| xO p’,T_leaf => T_node (add_pos p’ k v T_leaf) None T_leaf
| xO p’,T_node ls oldv rs => T_node (add_pos p’ k v ls) oldv rs
| xI p’,T_leaf => T_node T_leaf None (add_pos p’ k v T_leaf)
| xI p’,T_node ls oldv rs => T_node ls oldv (add_pos p’ k v rs)

end.
Definition add : key.t -> val.t -> t -> option t := fun k v m =>

match key.represent k with
| None => None (* key is invalid *)
| Some n => let p := P_of_succ_nat n in

Some (add_pos p k v m)
end.

...
End DMapEquiv.

Fig. 7. The Map functor



4.2 Translating Sparse Analysis Results into Dense Ones

Because SparrowBerry targets on dense analysis results, sparse one from the
Sparse Sparrow must be transformed into its dense version. Without this
densification SparrowBerry will always fail to validate the result. For example,
in Fig. 8, SparrowBerry fails to validate the sparse abstract memory because
of the edge from the program point a© to b©: the value of x should be propagated
down the control flows.

a© x = 0

b© y = 1

c© z = x

x 7→ [0, 0] x 7→ [0, 0]

y 7→ [1, 1] x 7→ [0, 0]
y 7→ [1, 1]

z 7→ [0, 0] x 7→ [0, 0]
y 7→ [1, 1]
z 7→ [0, 0]

before filling entries after filling entries

y

x

y

x

x

Fig. 8. The figure shows the abstract memories before and after filling the missing
entries. Solid lines represent the helper data dependency, while dashed lines represent
the control flow. The dense analysis result is restored from the sparse analysis result.

To address this, we fill missing entries by exploiting helper data dependency
[?]. As our example of filling missing entries, in Fig. 8, the value at the location
x defined at the program point a© is propagated to b©, c©, and anywhere the
definition reaches to. The global sparse analysis framework ensures that in this
way, we can obtain the dense analysis result from the sparse analysis result [?].
This process degrades the scalability of SparrowBerry by increasing the sizes
of analysis results to about 50 times in our benchmarks.

5 Experiments

In this section, we evaluate SparrowBerry. The validation of SparrowBerry
has three phases: (1) filling missing entries on sparse abstract result from Sparse
Sparrow; (2) translating the data type of an input program and the analysis
result into being appropriate for SparrowBerry; (3) validating the analysis
result by SparrowBerry. We measured times and peak memory usages for
each phase. All experiments were conducted on a Linux 2.6 system running on
a single core of Intel 2.40GHz box with 24GB of main memory.



Programs Size Analysis Validation
Fill. Trs. Val. Total

LOC Blocks Time Mem Time Time Time Time Mem
spell-1.0 2K 583 1 39 10 3 5 18 83
gzip-1.2.4a 7K 4,152 6 65 408 576 1,058 2,042 1,287
bc-1.06 13K 4,731 20 97 1,038 1,661 2,823 5,522 1,950
tar-1.13 20K 8,586 28 110 6,432 3,009 5,754 15,195 6,409
make-3.76.1 27K 9,094 81 176 15,465 9,503 16,819 41,787 10,804

Table 1. The table shows the validation costs, time and memory, of 5 software pack-
ages. Blocks reports the number of basic blocks in each input program. Analysis,
Fill., Trs., and Val. are phases for analysis, filling, translating, and validating, respec-
tively, and Total reports the total costs for the whole validation process. Units for
Time and Mem are seconds and MB, respectively.

SparrowBerry have succeeded in validating 5 software packages from GNU
open-source project: spell, gzip, bc, tar, and make. Table 2 shows the experiment
results. The results show that the validations of the analysis results of Sparse
Sparrow come at a price. For the 5 benchmarks, the whole validation process
takes more time by 19–544 times and memory by 2–61 times and all phases
contribute to increment of the time.

The main reason for the time and memory overhead is the densifying process.
As explained in Sect. 4.2, by the filling, each abstract sparse memory gets bigger
than the original one by 36–85 times in average. These big abstract memories
obviously delay not only the filling but also the translation and the validation; the
number of locations that have to be translated and validated increases heavily.

6 Discussion

6.1 Trust Base

C code IL Sparse
Sparrow

analysis
result

SparrowBerry

parser+
IL translator entry filler

translator
translator yes/no

Fig. 9. Trust base of the validation



SparrowBerry trusts the following components: language parser, transla-
tors, entry filler, the Coq proof assistant, and its extractor. We give the details of
the entry filler and the translators only; others are obvious and not interesting.

First, we have to fill missing entries of the sparse analysis result. This is
because SparrowBerry is designed to check the result whose entries are fully
filled while Sparse Sparrow gives a sparse result. Details of the entry filling
was already explained in Sect. 4.2. Since the process is considered direct, we
employ it undoubtedly.

In addition, a target program and the analysis result of the program must be
translated to fit for SparrowBerry to validate the result. These translations
are considered to be simple, since translations are almost like the one-to-one
correspondence.

6.2 Completeness

While the validator SparrowBerry is sound by Theorem 1, it is not formally
guaranteed to be complete. To be complete with respect to Sparse Sparrow,
SparrowBerry should succeed in validating every correct analysis result of
Sparse Sparrow. Considering the structure of SparrowBerry, the lack of
formal completeness is inevitable. For a formal guarantee of completeness, the
analyzer should be written and its properties should be proved in Coq. Note
that the validator only depends on its own concrete, abstract semantics and
abstraction relations.

SparrowBerry may fail in validation if the abstract semantic function un-
derlying SparrowBerry is less precise than that of Sparse Sparrow. In this
case, it is possible that a sound analysis result from Sparse Sparrow is not a
post-fixpoint of SparrowBerry, and SparrowBerry says false.

However, experiment results indicate that SparrowBerry can be consid-
ered to be “complete” enough. As shown in Sect. 5, we experimented with 5
well-known benchmarks and the validator said true for all cases. Since we at-
tained the results from our analyzer Sparse Sparrow, we may regard that
SparrowBerry is complete, at least experimentally.

6.3 Related Work

There have been various approaches to implement verified static analyzers [3,
6, 13] but all their target languages are not realistic compared to ours. Bertot
[3] and Leroy [13] gaved tutorials on how to design verified analyzer for simple
imperative languages. Since their tutorials are giving full explanations of sound-
ness proofs of the analyzers, they contributed greatly to our soundness proof
design of SparrowBerry. As explained in Sect. 3, the proof strategy reduces
the proof burden. Cachera and Pichardie [6] designed verified static analyzer for
a simple functional language. The work is focusing on the termination guarantee
of a verified analyzer; they formalized lattice domain including widenning and



narrowing in Coq. But in SparrowBerry, we do not have to prove the widen-
ing and narrowing operators, since we just checks whether each analysis result
is a post-fixpoint.

Besson et al. [4] developed a verified validator that validates the interval
analysis results of bytecode programs, but the benchmarks they used in their
experiments are simple; the benchmarks are array manipulation-intensive Java
programs the sizes of which are about 1KB.
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A Details of Sparse Sparrow

In this section, we present the main parts of the analysis of Sparse Sparrow:
abstract memory, state, semantics of program, and the soundness. You can find
the full description of the analysis in Oh’s thesis [16].

Memory and State The domains of the state and the memory are defined as
follows.

S ::= Label×M Ŝ ::= Label fin.→ M̂ (state)
M ::= L fin.→ V M̂ ::= L̂ fin.→ V̂ (memory)

Concrete and abstract memories are maps from concrete and abstract locations
to concrete and abstract values, respectively. A concrete state is a pair of a label



and a memory and an abstract state is a map from labels to abstract memories.
Note that the labels are partitioning indices.

The powerset of the concrete states and the set of abstract states are Galois-
connected:

2S = 2Label×M −−−→←−−−
α1

γ1 Label fin.→ 2M −−−→←−−−
α2

γ2 Label fin.→ M̂ = Ŝ .

We define the required Galois-connection between the powerset 2M of the con-
crete memories and the set M̂ of the abstract memory as follows:

αM ∈ 2M → M̂
αM ::= λn.λl̂.αV({m(l) ∈ V | m ∈ n and φ(l) = l̂})
γM ∈ M̂→ 2M

γM ::= λm̂.{m ∈M | ∀l ∈ L,m(l) ∈ γV(m̂(φ(l)))} .

To make them Galois-connected indeed, i.e. 2M −−−−→←−−−−
αM

γM M̂, we require two con-
ditions. First, we require the set L̂ of abstract locations is a partition of the
set L of locations, i.e. there exists φ : L fin.→ L̂. We also require the powerset
of the concrete values and the set of the abstract values are Galois-connected:
2V −−−→←−−−

αV

γV V̂.

Semantics and Soundness For an input program p, let Fp ⊆ S × S be the
small-step concrete operational semantics for the program p. The semantics [[p]] ∈
2S is inductively defined as follows:

[[p]] ::= {s | s0 F
∗
p s} .

Let F̂p : Ŝ→ Ŝ be the abstract semantic function that satisfies,

αS ◦ Fp v F̂p ◦ αS .

We also require that V̂ has the bottom element ⊥. Then Ŝ also has the bottom
element ⊥, and assume that αS(∅) = ⊥. Finally we have the soundness, i.e. the
least fixpoint of the abstract semantic function over-approximates the concrete
semantics: for all program p,we have [[p]] ⊆ γS(lfp F̂p).


