
ZooBerry: A Software Framework for Global
Sparse Analyzers and Their Verified Validators

Sungkeun Cho, Jeehoon Kang, Chung-Kil Hur, and Kwangkeun Yi

Seoul National University, Korea

Abstract. We report a software framework, called ZooBerry, that fills
the gap between static analysis designs (abstract semantics and their
soundness proofs) and their faithful yet scalable implementations (industrial-
strength global analyzers whose results can be automatically checked
correct). The input to ZooBerry is an abstract semantics (an analysis
specification) and its soundness proof, both in Coq. For scalable imple-
mentation, ZooBerry automatically integrates into the abstract seman-
tics the general sparse analysis technology [27,26] that streamlines both
the spatial and temporal footprints of the generated analyzers. For faith-
ful implementation, ZooBerry also generates a verified validator (and its
safety proof in Coq) that will check the correctness of each analysis result
of the generated sparse analyzer. This validator will continue to check
the correctness of posterior changes of the generated analyzers for further
cost reduction.
ZooBerry’s performance is tested in realistic settings. We have imple-
mented two analyzers for C programs, together with their validators,
that detect buffer overrun and format string bugs. Both analyzers’ cost
performance is like they take 10-20 minutes to globally analyze 100KLoC
of C benchmarks. From the format string bug analyzer we were able to
find two security vulnerabilities that are confirmed (CVE-2015-8106 and
CVE-2015-8107) by the security community. The generated validators
took additional 5-9% of the analysis time to check the correctness of
analysis results.

1 Problem and Our Solution

Designing a correct static analysis and implementing it for a scalable analyzer
in realistic setting have been two separate things. Designing a correct static
analysis is exercising a theory such as abstract interpretation. Implementing the
design into an executable analyzer that scales to realistic code size (million lines
of code) is a different, onerous process that involves a lot of implementation
engineering.

During the implementation phase, it is easy to have an analyzer that is not
faithful to the design. Engineering in the implementation can unwittingly break
the current design. Because achieving a scalable and precise static analyzer in-
volves multiple implementations for design changes, the chance of unfaithful
implementations is not low. When the analysis scalability or the precision is

low, we often have to redesign the analysis and change the implementation ac-
cordingly. After several iterations of this process can we arrive at an analyzer
that are useful at least for a target set of code base. During this repetitive pro-
cess it is not unusual that the correctness proof of the design becomes just a
decorum rather than a trustworthy correctness guarantee of the analysis result
of the final implementation.

We report a software framework, called ZooBerry, that fills the gap between
static analysis designs (abstract semantics and their soundness proofs) and their
faithful & scalable implementations (industrial-strength global analyzers whose
results can be automatically checked correct). The input to ZooBerry is an ab-
stract semantics (an analysis specification) and its soundness proof, both in Coq.
For scalable implementation, ZooBerry automatically integrates into the abstract
semantics the general sparse analysis technology [27,26] that streamlines both
the spatial and temporal footprints of the generated analyzers. For faithful im-
plementation, ZooBerry also generates a verified validator (and its safety proof
in Coq) that will check the correctness of each analysis result of the generated
sparse analyzer. We can continue to use this validator to assure that posterior
changes for further cost reduction of the generated analyzers still conforms to
the original, proven-correct design.

ZooBerry generates analyzers for an imperative language, into which C-like
programs must first be translated. The generated analyzer is a global static
analyzer that computes a table from the program points to abstract memories
that safely summarize all possible memories that can occur at each program
point.

The general sparse analysis techniques [27,26] that ZooBerry integrates into
the generated analyzers is the optimizations that exploit the spatial and tem-
poral sparsity of the semantics. For “spatial sparsity”, the abstract memories
entering to each program point is a sparse table whose entries are restricted to
those to be accessed at the program point. For “temporal sparsity”, the changed
entries in the output memory after each program point is delivered directly to
their use points. ZooBerry implements the sparse analysis framework [27,26] that
guarantees the sparse version to preserve the precision of the given analysis, i.e.,
fix F̂ ≈ fix F̂sprs where F̂sprs is a sparse version of the abstract semantic function

F̂ .

ZooBerry also generates a verified validator, with its correctness proof. The
validator safely checks, for each analysis result from the generated analyzer,
whether the result is a fixpoint of the designed abstract semantic function. This
validator will be particularly useful in the following common situations in devel-
oping realistic analyzers. Once we have an automatically generated analyzers we
sometimes manually engineer them further to squeeze additional performance
gains. In this case too we can use the same validator to assure that the analysis
results of such additionally tuned analyzers are faithful to the proven-correct
design(specification).

Our following experience also motivates us to develop ZooBerry:

2

– Hard to implement: Implementing the sparse analysis is an onerous process.
Sparse analyzer developers have to implement a pre-analysis, which gathers
information about which abstract locations will be accessed by each program
point, and its sparse data-dependence graph constructors. In our previous
implementation [27], such additional code took about 2KLoC in OCaml,
which accounted for 13% of the entire sparse analyzer code.

– Hard to debug: Debugging realistic static analyzers is hard because of its
complicated abstract semantics and huge analysis results. In our previous
work [15], using the formal verification technique, we found 13 bugs from
our sparse analyzer implementation. The found bugs were so tricky that had
not been detected in spite of extensive testings on large benchmark programs
for years. Bug-free analyzers are especially difficult to develop because (i)
tiny test cases cannot cover all corner cases of analyses, even though they
were designed carefully; (ii) the analysis results of real-world software are
too big to inspect manually for human; and (iii) even worse, as time goes on,
many optimizations are applied to the analyzer and it becomes complicated
more and more.

The ZooBerry framework is depicted in Fig. 1. The ZooBerry framework
integrates the abstract semantics with other ready-made components for their
faithful & sparse analyzers, which consist of pre-analyzers for sparsity exploita-
tion and the worklist-based optimized fixpoint iteration engine.

Fig. 1. Inputs and outputs of ZooBerry

ZooBerry’s performance is tested in realistic settings. Using ZooBerry, we
implemented two kinds of analyzers, an interval domain analyzer for buffer over-
run bug detection and a taint analyzer for format string bug detection. At the
moment of this writing, we could run the generated sparse interval (and taint)
analyzers for up-to 98K (and 45K) lines of C programs. Also, with only 5-9%
overhead to the sparse analysis time, it validated all of the analysis results suc-
cessfully. Meanwhile, the implemented analyzers are practical to find real-world
bugs. By using the ZooBerry-generated taint analyzer, together with our in-
teractive false-alarm classification technology [16], we could identify security
vulnerabilities in latex2rtf and a2ps, which were confirmed by the security
community (two CVE numbers [20,21]).

In this work we make the following contributions.

3

– We report a software framework that fills the gap between static analysis
designs and their faithful yet scalable implementations. The benefits of using
the framework are:

• Users can get global static analyzers that are scalable by the sparse
analysis technique;

• Users can get validators that check if the sparse analysis results for the
input programs are sound approximations of the concrete semantics;

• The correctness of the validator is automatically proven in Coq;

• The framework provides proof libraries (boilerplate proofs) to minimize
the proof parts expected from the users about the abstract semantics.

– We show this formally verified validation approach is useful in practice by
implementing two sparse analyzers with ZooBerry and measuring the vali-
dation overhead.

– We share all of the source code of the ZooBerry framework and implemented
analyzers on http://ropas.snu.ac.kr/zooberry .

Organization. Section 2 presents the input and the output of the framework.
Section 3 and 4 show how to generate the analyzer and the validator. Section 5
discusses the correctness of the validator. Section 6 evaluates the performance
of the framework with case studies, and Section 7 concludes with discussion of
related works.

2 Overview of the ZooBerry Framework

2.1 Target Language

The target language of ZooBerry is a C-like imperative language that is repre-
sented as a control flow graph with commands in its nodes. Every node of the
graph has a command such as pointer, array, and structure accesses. ZooBerry
can analyze any languages that can be translated into the target language, in-
cluding C using the CIL [24] frontend library.

c → lv = e | lv = alloc(e) | assume(e < e) | call(f, x, e) | return(e)

e → n | e+ e | lv | &lv

lv → x | *x | e[e] | e.x

2.2 Input: Analysis Specification

ZooBerry users should give the analysis specification, the abstract semantics and
its soundness proof in Coq. Users do not express anything about sparse analysis
in the abstract semantics.

4

http://ropas.snu.ac.kr/zooberry

Abstract Semantics The ZooBerry framework assumes the basic structure of
the abstract domain in order to enable general application of sparse optimization.

Ŝ , Node→ M̂ M̂ , L̂→ V̂

– An abstract state ŝ ∈ Ŝ is a map from the node set (program points) to
abstract memory.

– An abstract memory m̂ ∈ M̂ is a map from abstract location to abstract
value.

– Then, users define their own domains of abstract locations L̂ and abstract
values V̂.

For users to easily construct their own custom domains, ZooBerry provides
primitive domains and domain constructors, such as the boolean, interval, sum,
product, set, and map domains.

After defining the abstract domain, users should provide an abstract semantic
function f̂ : C × M̂ → M̂ that calculates the next abstract memory when given
a command and a memory. Here, in order for the framework to automatically
generate sparse analyzer, users should use the provided memory management
functions such as lookup : L̂ × M̂ → V̂ and update : L̂ × V̂ × M̂ → M̂ to access
the memory domain M̂. See Sect. 3.2 and 5.1 for more details on this restriction.

Soundness Proof Users need to prove the soundness of the abstract semantic
function defined in Coq, i.e.,

∀c ∈ C,m ∈M, m̂ ∈ M̂. m ∈ γ(m̂)⇒ f(c,m) ∈ γ(f̂(c, m̂)) ,

where c is a command and m and m̂ are respectively concrete and abstract
memories.

Additionally, users need to prove that the abstract semantic function meets
a necessary condition for sound sparse analysis: if an abstract memory m̂2 does
not have memory entries that are accessed by f̂(c, m̂1), then the join with m̂2

commutes with the application of f̂ :

∀c ∈ C,m1,m2 ∈ M̂. disjoint(acc(f̂ , c, m̂1), m̂2)⇒ f̂(c, m̂1)tm̂2 = f̂(c, m̂1tm̂2) ,

where acc collects abstract locations accessed during analysis (Def. 4) and disjoint
denotes that a set of abstract locations are disjoint to memory entries that are
bound to non-bottom values (Def. 5). Note that acc can be easily defined thanks
to the restriction that users should use pre-defined memory access functions such
as lookup and update. This condition is easily provable thanks to a set of static-
analysis-specific boilerplate lemmas and proof automation tools in Coq provided
in ZooBerry.

2.3 Output: Sparse Analyzer and Verified Validator

Given an analysis specification described in the previous sections, ZooBerry gen-
erates an executable sparse analyzer implemented in OCaml (Sect. 3), and a

5

validator that is formally verified in Coq (Sect. 4 and 5). The proven validator
is extracted to OCaml and then executed.

Fig. 2 shows how an input program is analyzed and then validated in the
ZooBerry framework (for now, please ignore the densifier). The generated ana-
lyzer is given an input program, and the generated validator is given the input
program and its sparse analysis result. If the result is unsuccessfully validated,
then it is due to one of the three reasons: (i) user-defined analysis specification
is unsound; (ii) sparse analysis components, e.g., data dependency graph gen-
erator or fixpoint iterator, have bugs; or (iii) the validator is incomplete, i.e., it
cannot validate all the correct sparse analysis results. Case (i) is avoided when
users give a soundness proof of the abstract semantics. Regarding cases (ii) and
(iii), ZooBerry has so far been stabilized by debugging validation failures during
the development, and now we can hardly observe the bugs because of (ii) and
(iii).

Fig. 2. Validation process of sparse analysis results.

Provided that users give the soundness proof and the analysis specification,
ZooBerry formally guarantees the correctness of the generated validator: if the
sparse analysis result ŝsprs is successfully validated, then ŝsprs is a sound approx-
imation of the concrete semantics of the input program.

2.4 Components of ZooBerry

ZooBerry contains a sparse analyzer and a verified validator that are parame-
terized by user inputs, which are abstract semantics and its soundness proof, as
depicted in Fig. 3. Except for the user inputs (dashed boxes), the others (solid
boxes) are pre-built in ZooBerry. Most of the pre-built parts except for the con-
crete semantics depend on the user inputs. For example, the pre-/main-analyzers
can run only when the abstract semantics is provided and the correctness proof
of validator is completed when the soundness proof of the abstract semantics is
provided. The user-provided abstract semantics is shared by the sparse analyzer
and the verified validator, but the soundness proof is only used by the latter.

6

" is sound & accesssound."

soundness proof

validator

abstract sem.'s
 soundness
 accesssoundness
validator's
 correctness

property definitions

concrete semantics

fixpnt checker

"Validator is correct."

correctness proof of validator

verified validatorsparse analyzer

abstract semantics

preanalyzer

data dependency
generator

mainanalyzer
user inputs

prebuilt
in ZooBerry

prebuilt &
parameterized
by user inputs

Fig. 3. Components of ZooBerry

x=1

y=2

z=*p

p=&x

(a)

p x

x ⊥

y ⊥

z ⊥

p ⊥

x ⊥

y ⊥

z ⊥

p x

x 1

y ⊥

z ⊥

p x

x 1

y 2

z ⊥

p x

x 1

z ⊥

(b)

x=1

y=2

z=*p

p=&x

(c)

p

x
x=1

y=2

z=*p

p=&x

y ⊥

x ⊥

p ⊥

p x

x 1

z ⊥

y ⊥

x ⊥

p ⊥

Fig. 4. An example of sparse analysis: (a) non-sparse analysis; (b) spatial sparsity; (c)
sparse analysis with spatial and temporal sparsities.

7

3 Generation of Sparse Analyzer

3.1 Sparse Analysis

Sparse analysis [27,26] is an optimization technique that reduces analysis costs by
passing only the updated memory portion directly from their def-points (where
some abstract values are defined) to their next use-points (where they are used).
Figure 4 shows an example of the sparse analysis optimization. In the non-
sparse analysis, every abstract memories has all abstract locations as entries
inefficiently. By the spatial sparsity, only accessed entries remain in the input
memories. By the temporal sparsity, the values of the accessed entries are deliv-
ered directly from their def-points to use-points.

3.2 Sparse Analysis Implementation in ZooBerry

The sparse analysis in ZooBerry-generated analyzer is performed in the four
steps:

Step 1. Pre-analysis: We have to collect information for sparse analysis. It
performs flow-insensitive analysis to get a conservative analysis result.

Step 2. Calculating access information: From the pre-analysis result, it cal-
culates a conservative access information about which abstract locations
can be defined or used at each program points.

Step 3. Drawing data dependency graph: It draws a data dependency graph
using the calculated access information in Step 2. For that, it uses a
conventional SSA transformation algorithm [11] because drawing de-
pendency edges are similar to matching every use of variables to static
assignments in the SSA transformation.

Step 4. Main analysis: It performs flow-sensitive analysis using the data de-
pendency graph drawn in Step 3. The information from Step 2 and
3 is used for spatial and temporal locality. During the analysis only
those accessed memory portions (spatial sparsity) flow around the data-
dependence edges (temporal sparsity).

Calculating Access Information Calculating access information of an arbi-
trary abstract semantics is almost impossible. For example, if users define and
use their own abstract memory domains and functions modifying values of them,
it is hard to observe which abstract locations are accessed.

In order to avoid such too-general situations, ZooBerry restricts the abstract
memory domain and associated functions as briefly mentioned in Sect. 2.2.

– Users define their own abstract location and abstract memory domains, then
the abstract memory domain is constructed by ZooBerry as a map from the
former to the latter.

– Users should use given lookup or update functions by ZooBerry to manipulate
abstract memories in their abstract semantic function.

8

With the above restriction, the ZooBerry system can control them to collect
accessed abstract locations during analysis. For example, memory access func-
tions, lookup′, update′, and wupdate′ are defined below and they are instrumented
to collect accessed abstract locations—in which, wupdate is a weak-update func-
tion. By the instrumentation, they can collect used and defined abstract locations
into global variables use and def , respectively.

lookup(l̂, m̂) , m̂[l̂] lookup′(l̂, m̂) , use ← use ∪ {l̂} ; m̂[l̂]

update(l̂, v̂, m̂) , m̂[l̂ 7→ v̂] update′(l̂, v̂, m̂) , def ← def ∪ {l̂} ; m̂[l̂ 7→ v̂]

wupdate(l̂, v̂, m̂) , m̂[l̂ 7→ m̂[l̂] t v̂]

wupdate′(l̂, v̂, m̂) , def ← def ∪ {l̂} ; use ← use ∪ {l̂} ; m̂[l̂ 7→ m̂[l̂] t v̂]

With the instrumented memory access functions and the pre-analysis re-
sult, ZooBerry can calculate accessed locations at each program node: (i) the
get access function first initializes the global variables of def and use; (ii) it

applies the modified abstract semantic function f̂ ′ using instrumented memory
access functions with the pre-analysis result m̂pre; then (iii) finally, it returns
def and use in which accessed abstract locations are collected.

get access : C× M̂→ 2L̂ × 2L̂

get access(c, m̂pre) , def ← φ ; use ← φ ; f̂ ′(c, m̂pre) ; (def , use)

Note that, in ZooBerry’s implementation, the instrumented memory access
functions are written with a monad type, just because Coq is pure functional
and does not have reference.

Monotonicity of Abstract Semantic Function In order for a data depen-
dency graph to be conservatively drawn before the main analysis, i.e., not to
miss data dependency of the main analysis, a user-defined abstract semantic
function f̂ should be monotone not only in return values but also in its memory
accesses.

∀c, m̂1, m̂2. m̂1 v m̂2 ⇒ f̂(c, m̂1) v f̂(c, m̂2) ∧ get access(c, m̂1) v get access(c, m̂2)

Suppose there is an abstract semantic function f̂ and an abstract memory m̂
at a program point with a command c during the main analysis. At this time,
we want to be sure that get access(c, m̂) v get access(c, m̂pre), otherwise, it may
omit to draw some data dependency edges. It is easy to show the condition is
satisfied if f̂ is monotone w.r.t. both its return values and memory accesses.

– Since f̂ is monotone w.r.t. its return values and more imprecise flow-insensitive
analysis is used as the pre-analysis, it is guaranteed that m̂pre is bigger than
m̂, i.e., m̂ v m̂pre.

– Thus, from the fact of m̂ v m̂pre and f̂ ’s monotonicity, we can conclude
get access(c, m̂pre) is bigger than get access(c, m̂).

If the user-defined abstract semantics does not satisfies the monotonicities,
validations may fail because the data dependency graph may not be correct.

9

Safe Approximation of Access Information ZooBerry-generated sparse
analyzers meet the safe approximation conditions of access information in the
sparse analysis framework [27, Lemma 2 on p. 4], if the user-defined f̂ satisfies
the above monotonicities.1

4 Validation of Sparse Analysis Results

The validation is a fixpoint check. When an analysis result ŝ is a post-fixpoint
of the sound abstract semantic function F̂ , we can say it soundly approximates
concrete semantics by the abstract interpretation framework [7,8]. The validator
V can be defined by,

V(p, ŝ) , F̂p(ŝ) v ŝ

However, the above validation is not that straightforward because of the
sparsity. For example, at the first node in Fig. 4, the input memory is {p 7→ ⊥}
and the memory at its output position is {x 7→ ⊥}. This sparse result cannot

be a post-fixpoint of f̂ ; by the spatial sparsity, the input memory of the second
does not have an entry for p.

f̂(p=&x, {p 7→ ⊥}) 6v {x 7→ ⊥}

We solved this problem by: (i) recovering a dense result from the sparse
result; then (ii) performing the simple-minded fixpoint check to the densified
one. We elaborate the validation method in the following sections.

4.1 Correctness of Validator

In this section, we redefine the validator and its correctness for the context of
sparse analysis. There are mainly two revision points.

– The validator conducts the fixpoint check on the densified result, not on the
sparse one—as of now, suppose there exists a densifier that recovers densified
analysis results from sparse ones, which will be addressed thoroughly in the
next sections.

– The validator checks the consistency between the sparse and densified re-
sults. By consistency we mean non-bottom values in the sparse results should
coincide with those in the densified one. The consistency ensures that the
sparse result is meaningful: if it has a value for a location, it actually over-
approximates the concrete value for the location.

1 In the condition [27, Lemma 2 on p. 4], “D(c)” and “U(c)” are respectively the sets of
defined and used abstract locations when analyzing command c. “D̂(c)” and “Û(c)”
are their approximations. In ZooBerry’s implementation, they are as follows:

D(c) = fst(get access(c, m̂)) D̂(c) = fst(get access(c, m̂pre))

U(c) = snd(get access(c, m̂)) Û(c) = snd(get access(c, m̂pre))

where m̂ and m̂pre are abstract memories appearing in the main and pre analyses.

10

V(p, ŝsprs, ŝdns) , F̂p(ŝdns) v ŝdns and ŝsprs ∼ ŝdns
ŝsprs ∼ ŝdns , ∀n ∈ Node, l̂ ∈ L̂. ŝsprs(n, l̂) = ⊥ ∨ ŝsprs(n, l̂) = ŝdns(n, l̂) ,

where ŝsprs and ŝdns are respectively sparse and densified analysis results.
The correctness of validator should also take into account the consistency

between the sparse and densified states. For a correct validator, a validation
success implies the soundness of the non-bottom values in the sparse state.

Definition 1 (Correctness of validator). A validator V is correct if success-
ful validations imply that the validated analysis result ŝsprs is a sound approxi-
mation of concrete semantics [[p]] with regard to non-bottom values in it,

∀p, ŝsprs, ŝdns. V(p, ŝsprs, ŝdns) = true⇒ [[p]] ∈ γ(ŝdns) ∧ ŝsprs ∼ ŝdns .

4.2 Densification

For validation successes, a densifier that recovers ŝdns from ŝsprs should satisfy
two conditions: (i) the densified abstract state should be a post-fixpoint of the
non-sparse abstract semantic function, i.e., F̂ (ŝdns) v ŝdns; (ii) densification
must not change non-bottom values from the sparse analysis result, ŝsprs ∼ ŝdns.

A naive approach is repeatedly applying the non-sparse abstract semantic
function F̂ until the abstract state becomes a post-fixpoint, but it is too expen-
sive. In our early experiments, it took much more time than the current imple-
mentation, because it required many comparisons of abstract states for fixpoint
checking, which nullified the gains from the sparse analysis optimization.

In order to efficiently densify the analysis result, we devise a densification
algorithm that visits every node only once by exploiting data dependency graphs.

Observation Suppose an abstract semantic function at node n does not use
an abstract location l̂ and the value of l̂ is defined at some ancestor nodes of n.
Note that this is the only case that requires densification, i.e., if the value of l̂
is used at n already or is never defined at any ancestors of n, then n does not
need to have the value of l̂.

– When the value of l̂ is not defined between n and its immediate dominator,
idom(n): If we somehow densifies the abstract memory of idom(n) first, then

the value of l̂ at idom(n) can be used to densify the value of l̂ at n, because the
value should not change between the n node and its immediate dominator.

– When the value of l̂ is defined between n and its immediate dominator,
idom(n): In this case, the value of l̂ should have been written at the n node
because our algorithm drawing data dependency graphs mimics the SSA
transformation [11]. If a value is defined between n and idom(n), the n node
should be a phi node in the SSA transformation. Thus, our algorithm consid-
ers the phi node as both a use-point and a def-point of the value and draws
dependency edges for them, though an actual phi command is not added to
the node.

11

According to the observation, we design a simple efficient densification algo-
rithm, which is presented in Fig. 5. During the densification, (i) all of the nodes
are visited once in a domination order, thus, when visiting a node n, assume
that the immediate dominator of n was densified before; (ii) if the node n has

the value of l̂, i.e., l̂ 6= ⊥, the densifier leaves it unchanged, otherwise, the value
of l̂ is densified with that of the immediate dominator of n.

Require: ŝsprs (sparse abstract state), dom tree (dominator tree of program CFG)
Ensure: ŝdns (densified abstract state)

1: ŝ← ŝsprs
2: for all n ∈ dom tree in BFS order do
3: if n 6= root then
4: m̂← ŝ(n), m̂idom ← ŝ(immediate dominator of(n))
5: ŝ(n)← {l̂ 7→ v̂ | (m̂[l̂] 6= ⊥ ∧ v̂ = m̂[l̂]) ∨ (m̂[l̂] = ⊥ ∧ v̂ = m̂idom[l̂])}
6: ŝdns ← ŝ

Fig. 5. Densification algorithm

Note that the densification algorithm is tightly coupled with the algorithm
drawing data dependency graphs in Sect. 3.2. If the drawing algorithm changes,
the densifier should also change, otherwise validations would fail with incorrectly
densified states.

On the other hand, the densifier and the data dependency drawing algorithm
are not in the trust bases in the ZooBerry system. Namely, the correctness of
the validator does not depend on them as shown in Def. 1, instead the validator
checks whether or not the densified one is correct afterwards. Therefore, even if
we change the data dependency drawing algorithm and the densifier accordingly,
the correctness of proof of the validator remains intact.

5 Formal Correctness Proof of Validator

In Coq, we formally proved that the validator is correct (Def. 1), if the cor-
rectness proofs of user-defined abstract semantic function are given. In this sec-
tion, we define the two correctness requirements, soundness (Def. 2) and access-
soundness (Def. 3), that a user-defined abstract semantics function should satisfy
in ZooBerry.

Theorem 1. If a user-defined abstract semantic function f̂ is sound and access-
sound, the validator Vf̂ instantiated with f̂ is correct.

5.1 Proofs of Abstract Semantic Function

The definition of the soundness is conventional in that the abstract semantic
function should approximates the pre-defined concrete semantics. The abstrac-
tion is represented by only the concretization function γ because sometimes

12

the abstraction function α is non-constructive, which is hard to deal with in
Coq [29]. The abstraction should be written by users because users define their
own abstract domains and the abstraction cannot be pre-defined by ZooBerry.

Definition 2 (Soundness). An abstract semantic function f̂ is sound if it
approximates concrete semantics soundly.

∀c,m, m̂. m ∈ γ(m̂)⇒ f(c,m) ∈ γ(f̂(c, m̂))

In addition to the soundness, users should prove another condition, called
access-soundness, which says that an abstract semantic function never influences
or be influenced by non-accessed abstract values. When analyzing a command c
in sparse analysis, an input abstract memory is divided into two pieces: one has
memory entries that is known to be accessed by pre-analysis (m̂1) and the other
has disjoint memory entries known to be not accessed (m̂2). In a usual analysis,

they are all given for analysis, i.e., f̂(c, m̂1 t m̂2). On the other hand, in sparse

analysis, only the former one, m̂1, is given like f̂(c, m̂1). In order to prove that
the sparse result is the same as the non-sparse case with regard to its accessed
memory entries, it is sufficient to show that f̂(c, m̂1) t m̂2 = f̂(c, m̂1 t m̂2).
The condition dictates that the sparse result does not affect m̂2 and also is not
affected by m̂2.

Definition 3 (Access-soundness). Suppose a set of accessed abstract loca-

tions are l̂s when applying an abstract semantic function f̂ to an abstract mem-
ory m̂1. The f̂ function is access-sound if every application of f̂ influences and
is influenced by only abstract values associated with l̂s.

∀c,m1,m2. disjoint(acc(f̂ , c, m̂1), m̂2)⇒ f̂(c, m̂1) t m̂2 = f̂(c, m̂1 t m̂2)

Definition 4 (acc function). Given an abstract semantic function f̂ , a com-
mand c, and an abstract memory m̂, the function acc returns a set of abstract
locations accessed during the function application of f̂ to (c, m̂).

acc(f̂ , c, m̂) , let (def , use) = get accessf̂ (c, m̂) in

def ∪ use

Definition 5 (Disjoint). An abstract memory m̂ and a set of abstract locations

l̂s ∈ 2L̂ are disjoint if m̂ does not include a mapping from an abstract location l̂
in l̂s into a non-bottom value, i.e., all of the images of l̂s in m̂ are the bottom
value.

disjoint(l̂s, m̂) , ∀l̂ ∈ l̂s. m̂[l̂] = ⊥

Note that the property is relatively easy to prove, because it is compositional
in the sense that if functions f1 and f2 (∈ M̂ → M̂) is access-sound, then their
composition f1 ◦ f2 is also access-sound. Therefore, users just can decompose
the abstract semantic function into subfunctions, then prove each of them is
access-sound.

13

5.2 Trusted Computing Base

The trusted computing base (TCB) of ZooBerry contains the Coq proof checker,
the OCaml code extractor translating Coq code to OCaml code, the OCaml
runtime, and frontend such as the CIL parser and a translation function from
input programs in CIL to ZooBerry’s target language.

The sparse analyzer, the densifier, and the validator are not included in the
TCB. The generated validator in OCaml is not TCB because it is extracted
from a validator in Coq, the correctness of which is completed and checked by
Coq from the user-provided correctness proof of the abstract semantics. The
generated sparse analyzer and the densifier are not TCB because their outputs
do not affect the correctness of the final faithful result as shown in Fig. 2. Note
that the faithful ŝsprs is available only when the validation is correct.

6 Evaluation

We evaluate the performance of ZooBerry with two cases of using ZooBerry: an
interval domain analyzer for buffer overrun bug detection and a taint analyzer
for format string bug detection. We tested these two sparse analyzers for C
benchmark program on a Linux machine with Intel i7 3.2GHz CPU and 24GB
RAM.

Scalability Table 1 and 2 show the analysis cost of the ZooBerry-generated
interval and taint analyzers. In order to make this scalability, many other op-
timizations in addition to the sparse analysis are integrated automatically by
ZooBerry, for example, efficient worklist/widening strategies [3], selective mem-
ory operators [1], and access-based localization [28,25].

In general, taint analysis is known to be faster than interval analysis, but it
was not in our implementation. Our taint analyzer needs more memory resources
than the interval analyzer, because it collects taint source points as a set to make
more informative alarm report, i.e., the abstract taint domain is not the simple
boolean domain. It is why the benchmark programs listed in Table. 1 and 2 are
different; in the experiment tables, we lists the benchmark programs that were
able to analyze within 24GB RAM memory resource.

Validation Overhead We found that the validations take only about 5-9%
more time to the sparse analysis time in average.

Usefulness The analyzers generated by ZooBerry were useful to find real-world
bugs in practice. For example, by using the ZooBerry-generated taint analyzer,
together with our interactive false-alarm classification technology [16], we could
identify 30 true format string vulnerabilities and two of them, from latex2rtf

and a2ps, were confirmed by the security community receiving two CVE num-
bers [20,21] by their significance.

14

Program LoC Total Anal Vali Dens Fixpt Overhead(Vali)

gnuplot-4.2.6 78K 26,077 25,212 864 314 550 +3.4%
lout-3.38 34K 20,034 19,571 463 173 289 +2.3%
guile-1.0 44K 12,225 11,995 230 155 75 +1.9%
raptor-1.4.21 57K 8,346 8,216 129 69 60 +1.5%
latex2rtf-2.3.8 20K 3,288 3,120 168 110 57 +5.3%
gcal-3.6.3 98K 1,498 1,444 54 20 34 +3.7%
bison-2.5 54K 1,413 1,361 52 22 29 +3.8%
urjtag-r1476 42K 1,274 1,163 110 33 77 +9.5%
sextractor-2.4.4 22K 1,168 1,154 14 6 7 +1.2%
wget-1.9 23K 547 520 27 12 15 +5.2%
a2ps-4.14 40K 472 450 22 10 11 +4.9%
lsh-2.0.4 68K 431 409 21 13 8 +5.3%
icecast-server-1.3.12 18K 374 353 21 11 9 +6.0%
tree-puzzle-5.2 45K 204 195 8 3 4 +4.4%
uucp-1.07 53K 125 117 8 4 4 +6.8%
pies-1.2 46K 115 108 7 3 3 +6.7%
sed-4.0.8 18K 94 89 5 2 2 +6.1%
mpg123-1.12.1 28K 87 79 8 2 5 +10.1%
patch-2.7 35K 86 78 7 2 4 +9.1%
daemon-0.6.4 28K 58 51 7 3 3 +14.0%
diffutils-3.2 60K 41 38 3 1 1 +9.1%
enscript-1.6.5 38K 40 39 1 0.7 0.6 +3.2%

Average +5.6%
Table 1. Benchmark test of an interval analyzer generated by ZooBerry. All of the
validations succeeded. LoC denotes sizes of input programs without comments and
empty lines. Anal and Vali denote time, in seconds, spent for sparse analysis and
validation, respectively. The validation time is divided into two phases, densification
(Dens) and fixpoint check (Fixpt). Overhead denotes additional validation costs
compared to the sparse analysis cost, i.e., Vali

Anal
× 100.

15

Program LoC Total Anal Vali Dens Fixpt Overhead(Vali)

icecast-server-1.3.12 18K 992 904 87 44 42 +9.6%
enscript-1.6.5 38K 390 381 9 3 5 +2.3%
tree-puzzle-5.2 45K 291 282 8 3 4 +3.0%
rnv-1.7.10 6K 220 209 11 6 4 +5.2%
sed-4.0.8 18K 132 126 5 2 2 +4.3%
bc-1.06 10K 128 119 9 4 5 +7.9%
aalib-1.4p5 10K 94 92 1 0.8 0.5 +1.4%
gnuchess-5.05 8K 37 34 2 1 1 +8.1%
agedu-8642 3K 37 34 3 1 2 +9.2%
unrtf-0.19.3 5K 22 19 2 1 1 +15.1%
gzip-1.2.4a 5K 20 18 1 0.7 0.6 +6.9%
e2ps-4.34 6K 4 3 0.5 0.2 0.3 +13.5%
gbsplay-0.0.91 5K 4 3 0.8 0.4 0.4 +22.8%
archimedes-0.7.0 4K 8 7 0.7 0.4 0.3 +9.4%

Average +8.5%
Table 2. Benchmark test of a taint analyzer generated by ZooBerry. All of the valida-
tions succeeded. The experiment setting is the same to that of the interval analyzer in
Table. 1.

Implementation Costs In our two analyzer implementations, analysis speci-
fication and its soundness proof account for 17-19% of the entire code for each
analyzer as shown in Table. 3. It took about 3.5 man-months to define the ab-
stract semantics of the interval analyzer and its correctness proof. On the other
hand, the taint analyzer and its proof were developed within two weeks. It was
quick because we did not have to write them from scratch: we copied and mod-
ified the user inputs of the interval analyzer to deal with taint information,
therefore some parts of them were used with just small modifications, e.g., a
specification and proof on points-to information.

ZooBerry Intrvl Anal Tnt Anal
Coq OCaml Spec Proof Spec Proof

LoC 5,042 2,523 689 854 766 945

Total 7,565 1,543 1,711
Table 3. Code size of ZooBerry. LoC denotes sizes of code without comments and
empty lines. Spec and Proof denote user-defined analysis specifications and soundness
proofs of them, respectively.

Dealing with External Function When some part of source code is not given
(such as for external library functions), users can define abstract semantics for
them and use the semantics in their analyzers and validators. When an analyzer
encounters a call statement to an external library function, it uses the abstract
semantics defined by users. If there is no available abstract semantics, the call

16

statement is considered a nop statement. Note that the validator uses the same
abstract semantics (nop) for the external function calls.

Even if there are some abstract semantics on external functions, users can
formally prove the other parts of their abstract semantics sound. In ZooBerry’s
concrete semantics, external function calls are not defined, i.e., there is no small-
step relation on them. Therefore, when proving soundness, users do not need to
prove on the external function calls.

7 Discussion

ZooBerry is the first system of its kind in two aspects: for C-like languages it
generates 1) global semantic-based static analyzers that are tuned for scalable
realistic analyses and 2) their verified validators that check the correctness of
the analysis results. The generated global analyzers are equipped with the gen-
eral sparse techniques [28,25,27,26] that exploit both the spatial and temporal
sparsities of the abstract semantics (analysis specification) while preserving the
analysis precision.

Other systems [17,5,19,2,14] focus on verified analyzers. The scalability of
those verified analyzers is less emphasized than ZooBerry. In those works, test
programs to analyze did not exceed 3KLoC [5,19,2,14] or sometimes the scala-
bility was not even mentioned [17]. They focus on achieving verified analyzers.
ZooBerry focuses on achieving not only scalable (by the sparse analysis frame-
work) but also checkable analyzers (by the verified validator approach).

The main difference from Verasco [14] is the verification targets; while ZooBerry
verifies the validator, Verasco verifies the analyzer directly. The verified validator
approach has pros and cons. It is much cheaper than verifying static analyzers di-
rectly. On the other hand, the validation has runtime overhead because it should
run every time analyzers return results. To decrease the runtime overhead, we
carefully designed the validator and made it has only 5-9% over the analysis
time.

Soot [18], a software framework for static analyzer generator for Java-family
languages, does not generate a verified validator. The framework is also less gen-
eral than ZooBerry. Soot focuses more on simple, data-flow-analysis-like static
analyses than arbitrary abstract semantics. The generated analyzers does not
integrated the general sparse techniques that ZooBerry does.

Infer [12,6] from Facebook is a software framework to compose static an-
alyzers that are scalable by mean of Infer’s modular analysis platform. Infer’s
modular platform is not general enough to support arbitrary abstract semantics.
Infer does not provide any tool to verify the analysis results.

Frama-C [9] does not support formal verification to make the user-provided
parts of the final analyzers faithful.

ZooBerry-generated validators perform a kind of the translation validation [30].
ZooBerry-generated analyzers translate input programs into their abstract se-
mantics. The validator checks whether this translation is correct. The property
to check is whether the translation preserves an abstraction relation between

17

concrete semantics of a program and its approximation, rather than semantic
equivalence between programs as in compilers. ZooBerry-generated sparse an-
alyzers and their validators can also be seen in the proof-carrying code [23]
context. ZooBerry-generated sparse analyzers produce as small proofs (analy-
sis results) as possible by the sparse technique. Such “compressed” proofs are
carried to ZooBerry-generated validators, where the proofs are checked after a
decompression (densification, Sect. 4.2).

References

1. Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static analyzer
for large safety-critical software. In Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implementation, PLDI ’03, pages
196–207, New York, NY, USA, 2003. ACM.

2. Sandrine Blazy, Vincent Laporte, André Maroneze, and David Pichardie. Formal
Verification of a C Value Analysis Based on Abstract Interpretation. In Manuel
Fahndrich and Francesco Logozzo, editors, SAS - 20th Static Analysis Symposium,
volume Lecture Notes in Computer Science of 7935, pages 324–344, Seattle, United
States, June 2013. Springer.

3. Franois Bourdoncle. Efficient chaotic iteration strategies with widenings. In In
Proceedings of the International Conference on Formal Methods in Programming
and their Applications, pages 128–141. Springer-Verlag, 1993.

4. David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting a
Data Flow Analyser in Constructive Logic. In Proc. of 13th European Symposium
on Programming (ESOP’04), number 2986 in Lecture Notes in Computer Science,
pages 385–400. Springer-Verlag, 2004.

5. David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting
a Data Flow Analyser in Constructive Logic. Theoretical Computer Science,
342(1):56–78, September 2005. Extended version of [4].

6. Cristiano Calcagno and Dino Distefano. Infer: An automatic program verifier for
memory safety of c programs. In NASA Formal Methods Symposium, pages 459–
465. Springer, 2011.

7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

8. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages, POPL ’79, pages 269–282, New York, NY, USA,
1979. ACM.

9. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-
noles, and Boris Yakobowski. Frama-C: A software analysis perspective. In Pro-
ceedings of the 10th International Conference on Software Engineering and Formal
Methods, SEFM’12, pages 233–247, Berlin, Heidelberg, 2012. Springer-Verlag.

10. Pascal Cuoq, Benjamin Monate, Anne Pacalet, and Virgile Prevosto. Functional
dependencies of c functions via weakest pre-conditions. Int. J. Softw. Tools Technol.
Transf., 13(5):405–417, October 2011.

18

11. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October
1991.

12. Facebook. Infer: A static analyzer for Java, C, C++, and Objective-C. https:

//github.com/facebook/infer.
13. Alexis Fouilhe and Sylvain Boulmé. A certifying frontend for (sub)polyhedral

abstract domains. working paper or preprint, May 2014.
14. Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David

Pichardie. A formally-verified c static analyzer. In Proceedings of the 42Nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’15, pages 247–259, New York, NY, USA, 2015. ACM.

15. Jeehoon Kang, Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and Kwangkeun
Yi. Towards scalable translation validation of static analyzers. Technical Memo-
randum ROSAEC-2014-003, Research On Software Analysis for Error-free Com-
puting Center, Seoul National University, November 2014. http://ropas.snu.ac.
kr/sparrowberry/.

16. Jong-Gwon Kim, Woosuk Lee, Jaeseung Choi, Chung-Kil Hur, and Kwangkeun
Yi. Shovel: A sat-based tool for information flow alarm classification. http://sf.
snu.ac.kr/shovel/.

17. Gerwin Klein and Tobias Nipkow. A machine-checked model for a java-like
language, virtual machine, and compiler. ACM Trans. Program. Lang. Syst.,
28(4):619–695, July 2006.

18. Patrick Lam, Eric Bodden, Laurie Hendren, and Technische Universitt Darmstadt.
The soot framework for java program analysis: a retrospective.

19. Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason., 43(4):363–
446, December 2009.

20. MITRE. Common Vulnerabilities and Exposures (CVE) 2015-8106. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8106.

21. MITRE. Common Vulnerabilities and Exposures (CVE) 2015-8107. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8107.

22. Yannick Moy. Automatic Modular Static Safety Checking for C Programs. PhD
thesis, Université Paris-Sud, January 2009.

23. George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’97, pages
106–119, New York, NY, USA, 1997. ACM.

24. George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. Cil:
Intermediate language and tools for analysis and transformation of c programs. In
Proceedings of the 11th International Conference on Compiler Construction, CC
’02, pages 213–228, London, UK, UK, 2002. Springer-Verlag.

25. Hakjoo Oh, Lucas Brutschy, and Kwangkeun Yi. Access analysis-based tight local-
ization of abstract memories. In Proceedings of the 12th International Conference
on Verification, Model Checking, and Abstract Interpretation, VMCAI’11, pages
356–370, Berlin, Heidelberg, 2011. Springer-Verlag.

26. Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, Daejun Park, Jeehoon Kang,
and Kwangkeun Yi. Global sparse analysis framework. ACM Trans. Program.
Lang. Syst., 36(3):8:1–8:44, September 2014.

27. Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. Design
and implementation of sparse global analyses for c-like languages. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, pages 229–238, New York, NY, USA, 2012. ACM.

19

https://github.com/facebook/infer
https://github.com/facebook/infer
http://ropas.snu.ac.kr/sparrowberry/
http://ropas.snu.ac.kr/sparrowberry/
http://sf.snu.ac.kr/shovel/
http://sf.snu.ac.kr/shovel/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8106
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8106
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8107
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-8107

28. Hakjoo Oh and Kwangkeun Yi. Access-based localization with bypassing. In
Proceedings of the 9th Asian Conference on Programming Languages and Systems,
APLAS’11, pages 50–65, Berlin, Heidelberg, 2011. Springer-Verlag.

29. David Pichardie. Building certified static analysers by modular construction of
well-founded lattices. Electronic Notes in Theoretical Computer Science, 212:225
– 239, 2008.

30. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Tools and
Algorithms for the Construction and Analysis of Systems: 4th International Con-
ference, TACAS’98 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS’98 Lisbon, Portugal, March 28 – April 4, 1998
Proceedings, pages 151–166, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

20

	ZooBerry: A Software Framework for Global Sparse Analyzers and Their Verified Validators

